Chapter 4

Description and Implementation

of Genetic Algorithms

This chapter is dedicated to the description of the Genetic Algorithms employed
in this research. A number of different operators have been implemented and
compared in order to find the most suitable configuration for the different problems
here addressed. Both the details about the different operators and their effects on
the Genetic Algorithms search are described with graphic aids and references are
made to the FORTRAN77 code reported in Appendix B. However, an exhaustive
treatment of the Genetic Algorithms process and of the underlying mathematics
is beyond the scope of this chapter. More detailed insights into such process may

be found in the literature listed at the end of this document.

4.1 Introduction

Many geophysical optimisation problems are non-linear and result in irregular
objective functions. Consequently local optimisation methods, e.g. matrix inver-
sion, steepest descent, conjugate gradients, are prone to trapping in local minima
and their success depends heavily on the choice of starting model. Furthermore,
in many problems the calculation of the derivatives can be difficult and computa-
tionally costly. Thus, global optimisation methods that can avoid these limitations
are particularly attractive for geophysical applications.

Genetic Algorithms are a search method suitable for the global optimisation



of irregular, multimodal functions. Starting with a set of initial solutions, these
algorithms progressively modify the solution set by mimicking the evolutionary
behaviour of biological systems, until an acceptable result is achieved. Because of
their initial random and progressively more deterministic sampling of the function
domain, these algorithms offer the possibility of locating relatively efficiently the
most promising areas of the solution space. They are able to solve non-linear,
non-local optimisation problems, without the need of curvature information, and
consequently without the need for derivative calculations. This can be particu-
larly useful because it allows for the use of fast, approximate, forward modelling
for which no exact derivative may be available, with consequent reduction of the
computation effort (see for example the description of the ray-tracing routine em-
ployed in this research in Chapter 3). Also, because Genetic Algorithms are based
only on direct space sampling any kind of linearisation of the problem to be solved
is avoided, with the consequent elimination of the errors involved in such an ap-
proximation.

Thes above factors make Genetic Algorithms particularly attractive for address-
ing complex real-word problems and they are increasingly being used to address
geophysical problems [1, 7, 10, 12]. However, the large dimensionality involved
in most geophysical optimisation problems can reduce the efficiency of Genetic
Algorithm search, both in terms of quality of the result and computational cost.

In this chapter the development of a method is described, referred to as the
pseudo subspace method, which facilitates the search in high-dimensional spaces.
It works by reducing the problem dimensionality in the first stages of the process
and by progressively increasing it once promising areas in the solution space have
been discovered.

The method has been included into the Genetic Algorithm process and tested
against different geophysical problems. The results from such tests are illustrated
in the following chapters, whilst here a description of the different Genetic Algo-

rithm implementations is given.



4.2 Genetic Algorithms

A standard Genetic Algorithm involves three basic operators corresponding to
the biological processes of selection, crossover and mutation. Selection involves
the choice of the individuals for the generation of offspring. Crossover is the
method of combining (mating) two individuals to produce an offspring. Mutation
is the random changing of some individual within the population. However, other
operators may also be implemented in a Genetic Algorithms. Detailed descriptions
of Genetic Algorithms can be found in [2, 3, 4, 5, 6]. Each operator can be
implemented in different ways. Choosing the correct combination is vital to the
effectiveness of the algorithm.

In setting up a Genetic Algorithm choices relating to the genetic operators as
weel as the parameter representation must be made. Such choices are generally
problem dependent. This step is crucial to the success of the algorithm since it can
seriously affect its performance. A general outline of Genetic Algorithms together
with the choices made to develop an algorithm to successfully invert geophysical
data is now given. Also, details about how the different genetic operators have
been coded in FORTRANT7 is discussed. In particular, two programs have been
implemented: program LinNorm and program Parent, listed in Appendix B. The
rationale behind the implementation of two programs, together with a detailed

description is given in the section 4.3.

4.2.1 Parameter representation

Most of the research and almost all the theoretical analysis of Genetic Algorithms
has been applied to binary-coded algorithms, i.e. each individual member of the
population is represented in binary form. However, recent experimental results
show that real coded Genetic Algorithms outperform binary ones in most appli-
cations [5, 14]. For this reason a real-coded Genetic Algorithm was implemented,
i.e., an individual is represented by an array of real values. These real values cor-
respond to the parameters to be reconstructed in the inversion process. In Genetic
Algorithm literature terminoly inherited from biology is often used: a parameter

is often referred to as gene and array of real number as chromosome. Figure 4.1



Figure 4.1: Genetic Algorithm parameterisation for the seismic refraction tomog-
raphy problem. The parameters represent the seismic slowness at the nodes of a

regular grid.

presents the Genetic Algorithm parameterisation for the seismic refraction tomog-
raphy problem discussed in Chapter 5. The parameters correspond to the seismic
slowness at the nodes of a regular grid. Figure 4.2 shows the Genetic Algorithm
parameterisation for the 2-D inversion of gravity and magnetic data that is dis-
cussed in Chapter 6. In this case the parameters represent the depth of the contact
between two geological bodies of different density and/or susceptibility. The pa-
rameters are then linked in arrays of real numbers to which the genetic processes
of selection, crossover and mutation are applied.

A second aspect of parameter representation is the choice of the limits the
parameters in the solution set are required to lie within. The first generation of
individuals, i.e., the members of the starting model, are randomly generated be-
tween these values and during the evolutionary process they are constrained to
remain within these limits. These limits depend on the nature of the problem
and are discussed in the specific applications. The generation of the starting ran-
dom population in the Genetic Algorithm process is performed by the subroutine
CREATE in the programs listed in Appendix B.

When detailed ’a priori’ information is available, this may be easily incorpo-

rated in the inversion process at this stage. Nodes for which the parameter value



Figure 4.2: Genetic Algorithm parameterisation for the 2-D inversion of gravity
and magnetic data. In this case the parameters represent the depth of the contact

between two geological bodies of different density and/or susceptibility.

is known with accuracy may be kept fixed during the entire process, or allowed
to vary between close constraints, thereby reducing the complexity of the search

domain.

4.2.2 Genetic operators

Different genetic operators have been implemented and tested in order to select

the most effective configuration. These implementations are described below.

Selection

Selection is the principal driving force that pushes the Genetic Algorithm popu-
lation towards a final solution. It works by first assigning a measure of fitness to
each individual, related to the value of the objective function at the corresponding
point in the solution space. Then, using this assigned measure of fitness, a rule for
selecting which individuals to use to create the next generation must be chosen.
This operator can be implemented in many different ways and its influence can
be varied. Implementations resulting in a strong selection pressure allow for fast
convergence, but have the drawback of concentrating most of the population (and

in few generations all of it) in a small part of the solution space. Due to this lim-



ited space sampling there is a greater risk of becoming trapped in a local minima
(a phenomenon known as premature convergence). Implementations resulting in
a low selection pressure will tend to decrease such risk, but at the cost of a much
slower convergence. For the algorithm to be effective a balance between these two
effects must be found.

A number of different selection implementations have been proposed in the
literature [5, 6] and two of the most common choices have been implemented:
linear normalisation selection, which has a high selection pressure [5, 6], and parent
selection, which has a low selection pressure [3].

In linear normalisation selection, an individual is ranked according to its fitness
and then it is allowed to generate a number of offspring proportional to its rank
position. Using the rank position rather than the actual fitness values avoids prob-
lems which occur when fitness values are very close to each other (in which case
no individual would be favoured) or when an extremely fit individual is present in
the population (in such a case it would generate most of the offspring in the next
generation). This selection technique pushes the population towards the solution
in a reasonably fast manner, avoiding the risk of a single individual dominating
the population in the space of one or two generations. The linear normalisation
selection is performed by the subroutines EVALUATE and REPRODUCTION in the
Genetic Algorithm program. EVALUATE ranks the solutions as a function of their
fitness and gives them a weight proportional to their position in the rank, while RE-
PRODUCTION determines the number of offspring to be produced by each solution
and creates the offspring.

In parent selection an individual is allowed to generate only one offspring
regardless of its fitness. All the individuals are mated randomly and through
crossover each couple creates two offspring. If the offspring fitness are better than
those of the parents they are substituted for them in the population. If not the
parents keep on living. With this method the selection pressure is low and diver-
sity is kept in the population because, as has been empirically demonstrated [9],
the offspring are statistically the closest points currently present in the population
to the parents they have been generated from. This means that an individual

is substituted by the (statistically) closest point if its fitness is better, a process



that suggests the idea of a ’stochastic parallel optimiser’. A good summary of the
advantages of such operator can be found in [9]. The parent selection is performed
by the subroutines REPRODUCTION and EVALUATE in the program Parent. RE-
PRODUCTION randomly mates the individuals in the population and calls for the
crossover process and for the fitness evaluation of the new individuals. EVALUATE
determines to which of the parents one offspring is closer and substitute for it in

the population if its fitness is better.

Crossover

Different kinds of crossover have been discussed in the literature [5, 6]. Four
of them have been implemented and tested: two-point crossover, multi-point
crossover, uniform crossover and uniform crossover with averaging of the parame-
ters. These different methods basically describe how the two parents are combined.
A graphic illustration of these different crossover processes is presented in Figure
4.3. In two-point crossover the chromosome is broken at two locations and the
part contained between such locations is swapped between the parents (Figure
4.3b). This has been one of the first kinds of crossover proposed in the literature.
Its main limitation is that it is strongly dependent on the relative location of the
parameters inside the chromosome. Parameters far apart in the representation
will be rarely involved in the same crossover process. Multi-point crossover is a
generalisation of two-point crossover, in which the chromosome is broken at more
than two locations (Figure 4.3c). A further generalisation is uniform crossover. In
this case a number of parameters are randomly selected independently by their lo-
cation inside the chromosome and swapped (Figure 4.3d). Uniform crossover with
averaging of the parameters is equivalent to uniform crossover, but in this case
the parameters are not simply swapped but averaged between the two individuals
(Figure 4.3e).

After extensive trials uniform crossover was found to be the most successful,
and it has been incorporated in all the implementations tested in this study. The
reason for uniform crossover being more successful than two-point and multi-point
crossover has already been stated and is due to the fact it is not dependent on the

relative location of the parameters that undergo crossover inside the chromosome.
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Figure 4.3: Graphic illustration of the different crossover processes tested in order
to select the most effective operators configuration. The initial parents are shown
in Figure a. Offspring are shown for two-point crossover (b), multi-point crossover
(¢), uniform crossover (d) and uniform crossover with average (e). In (e) the dark

grey represents the average between the parameters in the two parents.



It is necessary to appreciate the geometrical implications of uniform crossover
and uniform crossover with average in order to understand their different perfor-
mances. When two individuals undergo uniform crossover they swap some pa-
rameters, i.e., some of the components in the solution space. This means that
new individuals are created at the cross between lines parallel to the axis passing
through the parents. This is graphically illustrated for a simple 2 dimensional case
in Figure 4.4b. Two parents swap their coordinates and create two offspring at
the opposite corners of a rectangle.

In uniform crossover with average the coordinates are not swapped but aver-
aged according to some random weights. The result is that new individuals may
be created anywhere inside the rectangle. This is shown in Figure 4.4c. It is rea-
sonable to think that, due to the large amount of crossover performed in every
Genetic Algorithm run, with the use of uniform crossover with average every pa-
rameter undergoes a large amount of averaging processes with the result that it
tends to assume a value close to the average between the maximum and the min-
imum limit allowed in the representation. This is confirmed by my experiments
in which the solutions obtained tended to show homogeneous values close to such
an average. The better results obtained with uniform crossover without averaging
seem to be due to the fact that the individuals are kept more spread out in the
inversion process, and accordingly they can more effectively sample the solution
space.

In this study uniform crossover has been implemented in the following way:
two individuals are randomly chosen and a random number n between 1 and the
number of parameters is selected; then n random gene locations are chosen and
the floating point values of the parameters at such locations are swapped between
the two individuals. This process is performed by the subroutine CROSSOVER in
the program LinNorm.

The proportion of a population that is mated after each generation is defined
by the cross-over rate. The experiments performed suggested an optimum tuning

of the cross-over rate is 0.8.
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Figure 4.4: Geometrical representation of uniform crossover and uniform crossover
with average in a small 2 dimensional space. The parents are shown in (a).
Through uniform crossover they swap some components and the offspring are
created at the corners of the rectangle generated by parallels to the axis passing
through the two parents (b). With uniform crossover with average the offspring

are created inside such a rectangle (c).
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Mutation

This operator parallels the biological process of mutation. In this research Mu-
tation has been implemented by randomly changing some parameter values in
selected individuals. This is achieved by replacing the selected parameter values
by a new value randomly chosen within the limits allowed in the parameter repre-
sentation. The probability of this event must be kept very low in order to reduce
the chance of removing good individuals currently present in the population. In
the tests discussed below the mutation rate has been fixed at 0.01. In the programs
in Appendix B mutation is contained in the subroutine REPRODUCTION. When
the new generation is created each gene passed from one generation to the next
is mutated with a probability of 0.01. This involves assigning a random number

within the parameters limits.

Elitism

When crossover and mutation are applied it can happen that the best individual
in the population is altered. If its new fitness is worse than the previous one
the best solution found so far is lost. In this way convergence is not a monotonic
process but proceeds through improvements and worsening. A simple way to avoid
this phenomenon is to copy the best solution in the population and to pass it to
the next generation without any alteration. This operator is not known to have
any drawbacks and it has been implemented in the program in the subroutine

KEEPBEST.

Creeping

This operator has been proposed by [5] who used it as an alternative to random
mutation of parameters. It works by slightly perturbing some genes in the indi-
viduals it is applied to. In this way it performs a small scale mutation of some
parameters in an individual in order to slightly modify its position in the search
space.

The assumption behind the use of such operator is that after many generations

most of the population is expected to have high fitness, and this operator aim
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Figure 4.5: Geometrical representation of the combined effect of Creeping and

Crossover operators

should be to sample the solution space in the immediate surrounding of good
solutions, performing a kind of stochastic optimisation. However, the probability
of improving the solutions through such a random event is quite low. Accordingly,
this operator was implemented in a different way. Not all the population undergoes
crossover in a Genetic Algorithm iteration. Since in the reproductive process more
copies of the best solutions are produced it is quite likely that copies of the fittest
solutions are passed unaltered to the next generation. In my implementation such
unaltered copies undergo Creeping, i.e., the small random perturbation of some of
their parameters. This process has been coded in the subroutine RNCREEP and
sensibly enhanced the algorithm performance.

I propose that the reason for the success of this implementation is strictly
connected to the crossover process and not to the actual space sampling performed
at these perturbed locations. This is shown with the help of Figure 4.5. Suppose
we have two parents, P1 and P2 in Figure 4.5a. By uniform crossover they can
generate offspring O1 and O2 at the corners of the rectangle defined by their

coordinates. If individual P1 is passed unaltered to the next generation it produces
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n copies, whose location in the 2 dimensional space coincides with P1. Accordingly,
the only points that may be created by crossover with P2 are still only O1 and O2
(Figure b). However, if such copies undergo CREEPING, they are scattered in the
surrounding of P1 (P3, P4 and P5 in Figure 4.5¢). Now 20 different offspring may
be generated by crossover with P2. This allows for a potential better sampling of
the solution space in the surrounding of the best solutions in successive generations.
Obviously, not all the new locations illustrated in Figure 4.5d will be sampled, due
to the statistical behaviour of the crossover operator, but the potentiality involved
in this process is much stronger than the one due only to the sampling of the new

location P3, P4 and P5. A more in depth analysis of such phenomenon is on-going.

4.2.3 ’Pseudo subspace method’

In a recent paper Williamson [13] describes the inversion of seismic reflection data
using a multi-staged approach in which the resolution of the Earth model is pro-
gressively increased during the process. The method has been used in the context
of a local optimisation scheme and a more detailed description of its theoretical
basis may be found in [8, 11]. A similar approach has been used in the Genetic
Algorithm implemented here. This operation works by projecting the parameter
space onto a smaller subspace in the first stages of the inversion process, in order
to allow the Genetic Algorithm search to rapidly discover the most promising area
of the solution space. In the very first generations the total number of parameters
required by the problem is ’compressed’. In geophysical applications of Genetic
Algorithms it is common for the problem to involve the distribution of some phys-
ical property within the subsurface, usually expressed as values at nodes of a grid.
In this case the ’compression’ is achieved by connecting groups of adjacent nodes
into a single node. This is illustrated in Figure 4.6a. The velocity field in the
seismic experiment is described with only 6 nodes where 45 were used in the pa-
rameterisation shown in Figure 4.1. In the resulting smaller dimensional space the
Genetic Algorithm defines approximately correct values of the parameters within
a few generations. Because an exact solution very likely cannot be found with
such a coarse grid spacing there is no need to run the Genetic Algorithm for many

generations at this stage and consequently only a small sample population is also
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sufficient. In subsequent generations the spacing of the grid nodes is halved and
hence the parameters are progressively ’decompressed’ as new parameters are in-
serted in the domain. This is illustrated with the help of Figure 4.6. Each new
parameter is given a value linearly interpolated between adjacent nodes. This
guarantees that the solution is passed to the next stage without any alteration.
Again the Genetic Algorithm is run, in what is now a higher dimensional space, for
few generations with a relatively larger population. This process is repeated until
the size of the grid reaches some pre-determined limit, whereupon the Genetic
Algorithm is run for a larger number of generations, and with a larger population,
until an acceptable convergence is reached. In the case of the seismic experiment
this predetermined limit is represented by the parameterisation in Figure 4.1. It
was found that an initial population of 20 individuals and a final one of 100 gave
optimal results. The analogous process for the implementation employed in the

potential field inversion is shown in Figure 4.7.

4.3 FORTRAN implementation

The Genetic Algorithms above described have been coded in FORTRAN77. Because
of the different processes involved in linear normalisation selection and parent se-
lection, two programs have been implemented: program LinNorm performs linear
normalisation selection and program Parent performs parent selection. Compar-
isons of the two implementations on seismic refraction tomography is given in the
next chapter. The implementation of two different programs is justified by the
fact that the choice of the selection procedure affects also the way the solutions
are reproduced, mated and evaluated. Also, in the case of parent selection the
Creeping operator loses its meaning, because no multiple copies of any individ-
ual are created during reproduction. Eventually, as it is shown in the next two
chapters, linear normalisation selection performed better in seismic applications,
while the diversity imposed in the population by parent selection was beneficial
in the description of ambiguity in potential field analysis. Accordingly, Appendix
B contains the program LinNorm for the seismic experiments and Parent im-

plementation for the potential field problem. It is important to notice that the
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Figure 4.6: Pseudo subspace implementation for the seismic refraction problem.
At each stage the search space is ’"decompressed’ by inserting new parameters into

the domain.

different applications influenced only the Genetic Algorithm parameterisation and
consequently the way the pseudo subspace method in carried out. No specific
operator to address the mathematics underlying the two geophysical applications
is included and consequently the Genetic Algorithm implementation itself should
not be considered problem specific.

Details of how the different Genetic Algorithm operators have been coded in
the different subroutines reported in Appendix B have been given in the above
sections. Here the main processes are described by the use of the flow charts in
Figure 4.8 and Figure 4.9.

Figure 4.8 shows the flow chart for the program LinNorm. In the first pseudo
subspace method stage the population is initialised randomly. Each individual
fitness is evaluated and depending on such values the population is ranked, selected
and reproduced following the linear normalisation selection procedure. Mutation
is applied during the reproduction process as described above. At this stage a
fraction of the population equal to the crossover rate undergoes crossover and

the fraction that is passed unaltered to the next stage undergoes creeping. These
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steps are repeated for a predetermined number of iterations after which the process
enters the second stage of the pseudo subspace method. High fitness individuals
are passed to the second stage and their parameters are decompressed in order to
concentrate the search in the good areas in the solution space found so far, while
new individuals are randomly generated and added to the population in order to
allow the algorithm to keep on exploring different areas of the solution space. In
this way the population is also increased in order to partly compensate for the
larger solution space. The overall process continues until a converge criteria is
satisfied and the program ends. The choice of a convergence criteria is a very
subtle and crucial problem, and no satisfactory guideline has been found in the
literature. The problem is addressed in the next chapter but its study is on-going.
Therefore the convergence criterion had to be determined experimentally, as did
the crossover rate, mutation rate, and the fraction of high fitness population to
pass from one pseudo subspace stage to the next.

Figure 4.9 shows the flow chart for the program Parent. After the population
random initialisation all the individuals are evaluated. Then, unlike in the linear
normalisation case, all the population is mated. For each pair of parents, crossover
is applied, two offspring are created, their fitness is evaluated and selection is
performed by passing to the next generation the offspring or the parents depending
on their fitness. The subspace process is implemented in the same way as for the
linear normalisation case.

In the next two chapters the different Genetic Algorithm implementations are
compared and the results of their application to the inversion of seismic and po-

tential fields data presented.
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Figure 4.7: Pseudo subspace implementation for the potential field inversion prob-
lem. At each step the spacing between the parameters is halved and new param-

eters are inserted in the domain.
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Figure 4.8: Program LinNorm flow chart.
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Figure 4.9: Program Parent flow chart.
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