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Inversion of seismic refraction data using genetic algorithms

Fabio Boschetti∗, Mike C. Dentith‡, and Ron D. List∗∗

ABSTRACT

The use of genetic algorithms in geophysical inverse
problems is a relatively recent development and of-
fers many advantages in dealing with the nonlinearity
inherent in such applications. However, in their appli-
cation to specific problems, as with all algorithms, prob-
lems of implementation arise. After extensive numerical
tests, we implemented a genetic algorithm to efficiently
invert several sets of synthetic seismic refraction data.
In particular, we aimed at overcoming one of the main
problems in the application of genetic algorithms to
geophysical problems: i.e., high dimensionality. The ad-
dition of a pseudo-subspace method to the genetic algo-
rithm, whereby the complexity and dimensionality of a
problem is progressively increased during the inversion,
improves the convergence of the process. The method
allows the region of the solution space containing the
global minimum to be quickly found. The use of local
optimization methods at the last stage of the search fur-
ther improves the quality of the inversion. The genetic
algorithm has been tested on a field data set to determine
the structure and base of the weathered layer (regolith)
overlaying a basement of granite and greenstones in an
Archaean terrain of Western Australia.

INTRODUCTION

Many geophysical optimization problems are nonlinear and
result in irregular objective functions. Consequently, local opti-
mization methods, e.g., matrix inversion, steepest descent, con-
jugate gradients, are prone to trapping in local minima, and
their success depends heavily on the choice of starting model.
Thus, global optimization methods that can avoid this limita-
tion are particularly attractive for geophysical applications.

Genetic algorithms are a search method suitable for the
global optimization of irregular, multimodal functions. Starting
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with a set of initial solutions, these algorithms progressively
modify the solution set by mimicking the evolutionary behavior
of biological systems, until an acceptable result is achieved. For
a more detailed description of genetic algorithms the reader is
referred to Buckles and Petry (1992), Cavicchio (1970), Davis
(1987, 1991), and Goldberg (1989). Because of their initial
random and progressively more deterministic sampling of the
function domain, these algorithms offer the possibility of lo-
cating, with relative efficiency, the most promising areas of the
solution space. They are able to solve nonlinear, nonlocal opti-
mization problems, without the need of curvature information
and consequently without the need for derivative calculations.
This feature can be particularly useful because it allows for the
use of fast approximate forward modeling for which no exact
derivative may be available, with consequent reduction of the
computation effort (see for example the description of the ray-
tracing routine employed in this work). Also, because genetic
algorithms are based only on direct space sampling, any kind
of linearization of the problem to be solved is avoided, with
the consequent elimination of the errors involved in such an
approximation.

These factors make genetic algorithms particularly attractive
for addressing complex real-word problems, and they are be-
ing used increasingly to address geophysical problems (Billings
et al., 1994; Jin and Madariaga, 1993; Mathias et al., 1993; Stoffa
and Sen, 1991). However, the large dimensionality involved in
most geophysical optimization problems can reduce the effi-
ciency of genetic algorithm search, both in terms of quality of
the result and computational cost.

In this paper, we describe the development of a method,
which we refer to as the pseudo-subspace method, to facilitate
the search in high-dimensional spaces by reducing the prob-
lem dimensionality in the first stage of the process and by pro-
gressively increasing it once promising areas in the solution
space have been discovered. The method is applied to a set
of 45-dimensional problems. This dimensionality is small com-
pared to conventional seismic tomography inversion but, to
our knowledge, it represents one of the highest-dimensional
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genetic algorithm applications to seismic data published so far.
We hasten to add that 45 dimensions should not be consid-
ered as some maximum, and we believe that larger inversions
are feasible using the method outlined. However, we suggest
that an effort be made to keep the problem dimensionality as
low as possible, e.g., by subdividing the search domain into a
number of smaller subdomains, to facilitate and speed up the
genetic algorithm process. This concept will be discussed exten-
sively in the application to the regolith problem in the section
“Application to Field Data” at the end of the paper.

We also show that by coupling the genetic algorithm search
with local optimization in the last stages of the inversion, so-
lutions very close to the global minimum in the solution space
can be found more readily. This in turns shows that genetic
algorithms are effective in locating the valley in the solution
space containing the global minimum, enabling the local search
to descend such a valley toward the correct solution.

The potential of the method has been tested and compared
with traditional methods on a set of seismic refraction synthetic
data modeling different refractor geometries. In particular, a
horizontal refractor at different depths in the calculation do-
main (Figure 1a and Figure 7a), a refractor incorporating a
large vertical step to model a vertical fault (Figure 8a), and
a horizontal layering including an isolated body characterized
by low velocity (Figure 9a) have been modeled. These tests are
discussed in the section “Synthetic Examples.”

SEISMIC REFRACTION DATA

Synthetic first-arrival traveltime data were generated us-
ing a line length of 8000 m with a group interval of 200 m
and shots spaced at every 500 m, that results in a total of
615 rays/traveltimes that are inverted to define the velocity
structure in the first few hundred meters below the surface.
For the purposes of inversion, the slowness distribution in the
subsurface is defined by a 9 × 5 grid whose spacing is 1000 m
in the horizontal direction and 100 m in the vertical direction.
Thus, the model has a 45-dimensional solution space, formed
from the slowness values at each of the grid nodes.

The ray-tracing routine used in this study is a modified ver-
sion of the routine written by Asakawa and Kawanaka (1993).
Their ray-tracing algorithm is a numerical approximation but
it gave excellent results when compared to other widely used
algorithms, e.g., SEIS83. The routine has the advantage of be-
ing extremely fast; being able to calculate the first-arrival time
for the 615 rays in the test data set in approximately 2 s using a
33 MHz 486 PC. In the original code the slowness is assumed to
be constant inside the cells defined by the grid nodes. The cal-
culation is performed only at the border of the cells, resulting
in a very fast computation. We modified the routine by intro-
ducing linear variation of the slowness between the grid nodes.
Slowness at the edge of a cell is determined by linear inter-
polation using the slownesses at the adjacent nodes. Within a
cell, the ray is assumed to travel with a slowness equal to the
average of the slowness values at the two points at which the
ray intersects the borders of the cell. The advantage of using
a linear slowness gradient is that it allows the description of
the subsurface slowness field with fewer nodes than required
by a constant slowness cell, with a consequent reduction in the
dimension of the problem to be solved.

GENETIC ALGORITHMS

In setting up a genetic algorithm, choices relating to the pa-
rameter representation and genetic operators must be made.
Such choices are generally problem dependent and are crucial
to the success of the algorithm since they can seriously affect its
performance. A general outline of genetic algorithms will now
be given, and we will discuss the choices we made to develop
an algorithm to successfully invert seismic refraction data.

An introduction to the pseudo-subspace method, which we
added to the genetic algorithm to facilitate the search in high-
dimensional spaces will also be given.

Parameter representation

Most of the research and almost all the theoretical analysis
of genetic algorithms has been applied to binary-coded algo-
rithms, i.e., each individual member of the population is repre-
sented in binary form. However, recent experimental results
show that real coded genetic algorithms outperform binary
ones in most applications (Davis, 1991; Wright, 1991). For this
reason, a real-coded genetic algorithm was implemented, i.e.,
an individual is represented by an array of real values, which
in the application presented here corresponds to the seismic
slowness values at the nodes of a regular grid.

A second aspect of parameter representation relevant to the
seismic refraction problem is that it is sensible to constrain the
slowness values in the solution set to lie within reasonable lim-
its. The first generation of individuals, i.e., the members of the
starting models, are randomly generated between these val-
ues, and during the evolutionary process they are constrained
to remain within these limits. The method described here was
developed as part of a project to define the near surface struc-
ture of Precambrian rocks in the Western Australian shield.
Thus, our models (see the section “Synthetic Examples”) have
slownesses of around 0.18 s/km and the values of slownesses
in the solution set were limited to lay between 0.14 s/km and
0.25 s/km, which is equivalent to velocities between 7.14 km/s
and 4.0 km/s.

When detailed a priori information is available, it may be in-
corporated easily into the inversion process at this stage. Nodes
for which the seismic velocity is known with accuracy may be
kept fixed during the entire process, or allowed to vary between
close constraints, thereby reducing the complexity of the search
domain.

Genetic operators

A genetic algorithm involves three basic operators corre-
sponding to the biological processes of selection, crossover,
and mutation. Selection involves the choice of the individu-
als for the generation of offspring. Crossover is the method of
combining (mating) two individuals to produce an offspring.
Mutation is the random changing of some individual within
the population. Each operator can be implemented in differ-
ent ways. Choosing the correct combination is vital to the ef-
fectiveness of the algorithm.

Selection.—Selection is the principal driving force that
pushes the genetic algorithm population toward a final solu-
tion. It works by first assigning a measure of fitness to each
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individual, as related to the value of the objective function at
the corresponding point in the solution space. Then, using this
assigned measure of fitness, a rule for selecting which individ-
uals to use to create the next generation must be chosen. Thus,
the selection operator can be implemented in many different
ways and its influence can be varied. Implementations result-
ing in a strong selection pressure allow for fast convergence,
but have the drawback of concentrating most of the population
(and in few generations all of it) in a small part of the solution
space. Because of such limited space sampling there is a greater
risk of becoming trapped in a local minima (a phenomenon
known as premature convergence). Implementations resulting
in a low selection pressure will tend to decrease such a risk, but
at the cost of a much slower convergence. For the algorithm
to be effective, a balance between these two effects must be
found.

A number of different selection implementations have been
proposed in the literature (Davis, 1991; Goldberg, 1989) and
two of the most common choices have been implemented: lin-
ear normalization selection, which has a high selection pressure
(Davis, 1991; Goldberg, 1989), and parent selection, which has
a low selection pressure (Cavicchio, 1970).

In linear normalization selection, an individual is ranked ac-
cording to its fitness, and then it is allowed to generate a number
of offspring proportional to its rank position. Using the rank
position rather than the actual fitness values avoids problems
that occur when fitness values are very close to each other (in
which case no individual would be favored) or when an ex-
tremely fit individual is present in the population (in such a
case it would generate most of the offspring in the next gener-
ation). This selection technique pushes the population toward
the solution in a reasonably fast manner, avoiding the risk of
a single individual dominating the population in the space of
one or two generations.

In parent selection, an individual is allowed to generate only
one offspring regardless of its fitness. All the individuals are
mated randomly and through crossover each couple creates
two offspring. If the fitness of offsprings is better than those of
the parents, they are substituted for them in the population. If
not the parents keep on living. With this method the selection
pressure is low and diversity is kept in the population because,
as has been empirically demonstrated (Mahfoud, 1992), the off-
spring are statistically the closest points currently present in the
population to the parents they have been generated from. This
means that an individual is substituted by the (statistically) clos-
est point if its fitness is better, a process that suggests the idea
of a “stochastic parallel optimizer.” A good summary of the ad-
vantages of such an operator can be found in Mahfoud (1992).

Crossover.—Different kinds of crossover have been dis-
cussed in the literature. We implemented and tested four
of them: two-point crossover, multipoint crossover, uniform
crossover, and uniform crossover with averaging of the pa-
rameters. These different methods basically describe how the
two parents are combined. For a more complete discussion,
the reader is referred to Davis (1991) and Goldberg (1989).
Among these, uniform crossover was the most successful, and
it has been incorporated in all the implementations tested in
this study. We implemented uniform crossover in the follow-
ing way: two individuals are chosen randomly and a random

number n between 1 and the number of parameters is selected;
then n random gene locations are chosen and the floating point
values of the parameters at such locations are swapped between
the two individuals.

The proportion of a population that is mated after each gen-
eration is defined by the crossover rate. The experiments per-
formed suggested an optimum tuning if the crossover rate is 0.8.

Mutation.—This operator parallels the biological process of
mutation. Here it has been implemented in a traditional way,
i.e., by randomly changing some parameter values in selected
individuals. The probability of this event must be kept very
low to reduce the chance of removing good individuals cur-
rently present in the population. In the tests discussed below,
the mutation rate has been fixed at 0.01. Mutation has been im-
plemented by assigning a parameter that is a random value be-
tween the minimum and the maximum velocity slowness limits.

Pseudosubspace method

In a recent paper Williamson (1990), describes the inversion
of seismic reflection data using a multistaged approach to lo-
cal optimization, in which the subsurface is represented by a
series of constant velocity cells. During the course of the inver-
sion, a progressively smaller cell size is used, with a consequent
increase in the resolution of the model. We have used a simi-
lar approach in defining the slowness grid that determines the
model. However, in our models the subsurface distribution of
slowness is defined at the nodes of a grid between which linear
variation is assumed. Because of the linear slowness approx-
imation, even a very coarse grid with only four nodes at the
corners of the model still allows for a reasonable description
of the slowness field and hence a reasonably accurate travel-
time computation. With just four nodes, a genetic algorithm can
rapidly explore the resulting low-dimensional solution space,
while still being able to obtain a rough picture of the over-
all solution. Such a simplification would not be possible with
constant velocity cells.

In the very first generations of our algorithms, we used a
slowness grid defined by only a small number of points. Even
in the corresponding low-dimensional solution space a genetic
algorithm, rather than a traditional local optimizer, was used
to avoid the need of any initial model in the inversion. Within a
few generations, the algorithm successfully defined an approx-
imately correct slownesses at these nodes. There is no need to
run the algorithm for many generations at this stage because
finding an exact solution is very unlikely. Thus, only a small
population is needed at this stage.

For subsequent generations, the grid interval is halved, and
each new grid point is assigned a value equal to the mean of
the adjacent nodes. Again the algorithm is run, in what is now a
higher dimensional solution space, with an initially larger pop-
ulation for a few generations. This process is repeated until the
size of the grid reaches some predetermined limit, whereupon
the algorithm is run for a larger number of generations, and
with a larger population, until an acceptable convergence is
reached. We found that an initial population of 20 individuals
and a final one of 100 gave optimal results.

This “zooming” technique resembles a subspace method
used in large scale optimization problems (Kennett et al., 1988;
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Oldenburg et al., 1993). In this paper, we refer to such a tech-
nique when applied to genetic algorithms as the pseudosub-
space method. Further details about the technique can be
found in Boschetti et al. (1995a).

COMPARISON OF DIFFERENT GENETIC ALGORITHMS

To explore the effects of the different choices described
above, a series of genetic algorithms have been compared on
a data set obtained as described above in the section “Seismic
Refraction Data” using a horizontally layered synthetic model
with linearly varying slowness in the vertical direction (model
details shown in Figure 1a). The model is characterized by slow-
ness values that allow for the occurrence of both diving and re-
fracted rays and a uniform distribution of raypaths (Figure 1b).

Three different specific choices were tested: linear normal-
ization selection, linear normalization selection with pseudo-
subspace method, and parent selection with pseudosubspace
method. Each test consisted of five runs with different random
seeds, i.e., with different randomly chosen initial populations.
For each implementation, the best solution found by the algo-
rithm in these five runs, together with the convergence curve
is presented (Figures 1c–1h).

A comparison of Figures 1c and 1e shows an improvement
in the performance of the linear normalization selection when
the pseudosubspace method is used. The essential features of
the test model are reproduced with only significant differences
occurring at the top right of the model in an area of poor ray
coverage. This suggests that the algorithm benefits from the
inclusion of the pseudosubspace method.

The quality of the solution obtained with the parent tech-
nique (Figure 1g), even though it is obtained at a much higher
cost in terms of the number of required function evaluations
(Figure 1h) is not the best of the three solutions. This result
suggests that efforts to maintain diversity within the population
will not necessarily improve the quality of the final solution.

Clearly, the genetic algorithm with linear normalization se-
lection including the pseudosubspace method outperformed
the other implementations, and it has been used in all the ex-
periments described in the rest of the paper. In the initial gener-
ations, using a coarse grid, the algorithm still appears to be able
to locate the favorable area of the solution space in which to
concentrate the more detailed and time consuming subsequent
analysis.

LOCAL SEARCH METHOD

The convergence curves in Figure 1 illustrate a well known
characteristic of genetic algorithms—they are poor optimizers
(DeJong, 1993). They show a very fast initial convergence, fol-
lowed by progressively slower improvements. In fact such be-
havior is common to many optimization techniques, but is of
particular concern in genetic algorithms. The form of the curve
suggests that the algorithm should be stopped when an approx-
imate solution has been found, because further improvements
may be very costly. Improvements to the genetic algorithm so-
lution can only develop through crossover or mutation, i.e.,
random events. Depending on the exact form of the solution
space, further improvements to high-fitness solutions can be a
rare event.

In the case of the best solution found by the genetic algorithm
with the pseudosubspace method, small errors are present in

each parameter. This is because of the fact that the traveltime
misfit caused by slightly wrong parameters may be reduced by
introducing small errors at adjacent nodes. Improvement in
the solution at this stage may be obtained only by the accu-
rate tuning of most of the parameters at the same time, which
cannot be achieved efficiently by a genetic algorithm process.
However, further improvements to the inversion method can
be obtained by combining the genetic algorithm with a local
optimizing method. In the initial stages of the inversion, the
space-sampling properties of the genetic algorithm is used to
direct the search to the region close to the global solution.
The solution so obtained can be further improved using a local
search method such as a hill-climber algorithm.

Other hybrid genetic algorithm implementations have al-
ready been applied successfully to geophysical problems. A
related approach has been used in Mathias et al. (1993), al-
though in that case, a pseudosubspace method was not used,
and local search was applied periodically to more than one so-
lution obtained by the genetic algorithm. Also, Sen and Stoffa
(1992) showed how the performance of genetic algorithms can
be enhanced greatly by importing some elements from simu-
lated annealing process.

A number of algorithms for the local optimization of
functions in multi-dimensional spaces are described in the liter-
ature (Dixon and Szego, 1978; Press et al., 1992). The choice of
the algorithm to use is problem-specific and often experimen-
tal trials are required. We tested four local search methods:
the downhill SIMPLEX method, Powell’s method, the conju-
gate gradient method (Press et al., 1992), and the local search
routine from the Hill-climber method described in De la Maza
and Yurez (1994). Of these, the SIMPLEX method, Powell’s
method, and the local search routine from the Hill-climber
method do not use gradient information, while the conjugate
gradient method does. The approximate calculation performed
by the ray-tracing routine does not give gradient information.
Consequently, the numerical calculation of the required deriva-
tives is time consuming and the conjugate gradient method is
considerably slower than the other methods.

After extensive tests, the SIMPLEX code was found to be the
most reliable and stable algorithm and accordingly was used in
the successive tests.

Figure 2 illustrates the result from the local optimization of
the best individual from the genetic algorithm with the pseu-
dosubspace method, together with its convergence curve. The
SIMPLEX algorithm was able to improve the solution, mini-
mizing the squared error up to a level of approximately zero
misfit. The solution is almost indistinguishable from the orig-
inal model (Figure 1a). All the layers are well reconstructed
both in terms of velocity values and vertical position, with only
a minor departure from the original at the middle left-hand side
of the solution. Clearly, the two-staged procedure linking the
genetic algorithms’ global search with the local optimization
has been very effective.

EFFICIENCY

The performance of an inversion process is not only evalu-
ated in terms of the accuracy of the solution it produces, but
also in terms of its cost. In the case of a genetic algorithm,
such cost is measured basically in terms of the number of func-
tion evaluations (ray tracings in this case) required to obtain
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a)

c)

e)

g)

b)

d)

f)

h)

FIG. 1. Results from the comparison of different genetic algorithm implementations on a horizontally layered synthetic test with
linearly varying slowness in the vertical direction. The (a) synthetic model together with (b) the ray diagram are presented.
Both final models and convergence curves are shown for linear normalization selection with genetic algorithm (c) and (d), linear
normalization selection with the pseudosubspace method (e) and (f), and parent selection with the pseudosubspace method (g)
and (h). The contours represent the value of the seismic slowness in the calculation domain.
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the final image. In general, genetic algorithms are considered
a relatively expensive method, to be used only in cases where
local procedures proved to be unsuitable. Raiche (1994) con-
siders this to be particularly true for geophysical applications.
However, our results suggest that this is not always the case.

Clearly, an important decision in terms of the efficiency of the
two-stage optimization techniques described above, is when
to terminate the genetic algorithm and implement the local
search. We now implemented the genetic algorithm to output
the best solution every 50 generations after the final grid con-
figuration has been achieved. The best solutions after 100, 150,
200, and 300 generations for the genetic algorithm with lin-
ear normalization selection incorporating the pseudosubspace
method are presented in Figure 3. These pictures should be
compared with the result at the end of the process, i.e., after
400 generations, already shown in Figure 1e. It is clear that
an acceptable solution is obtained after only 100 generations,
with only minor improvements occurring up to 300 generations
after which variations are negligible.

An even more interesting test is to improve, by local search,
such solutions and compare the final results. In Figure 4, the
results obtained using the local search, initialized with the so-
lutions after 100 and 150 generations, are shown. The differ-
ences between the results are minimal, even when compared
with the result from the solution locally improved after 400
generations (Figure 2a). This shows that genetic algorithms
have discovered the “good” valley in the solution space very
rapidly. Furthermore, the computation effort, i.e., the number
of function evaluations, for the local improvement of the 100,
150, and 400 generations solutions by the SIMPLEX code is
almost the same (Table 1). Clearly, the space sampling of the
genetic algorithm after the 100th generation has not been very
productive. After a solution located in a good valley has been
found, there is little advantage in using the genetic algorithm
for further space sampling because more effective results may
be obtained by the local search.

It is very difficult to generalize about when to stop the genetic
algorithm and begin the local search. A number of alternatives
are available, for instance, waiting for no improvements to hap-
pen for a few generations, or waiting for variations in the misfit
to fall below a predetermined value. However, choosing such
a threshold can be very difficult and problem specific. Because
the genetic algorithm process is nondeterministic, it is possible

a)

b)

FIG. 2. Result from the optimization of the genetic algorithm solution with the (a) SIMPLEX algorithm and (b) convergence
curve.

to have many generations without any improvement, followed
by very rapid improvements as new domains are discovered
by crossover or mutation. Research to define effective crite-
ria suitable for controlling the inversion of the seismic data is
on-going.

As shown in Table 1, in 100 generations the genetic algorithm
performs approximately 6000 function evaluations to locate
the region in the solution space containing the global minima.
Such a computation effort is comparable to that required by
the local search to further improve the solution. Thus, a genetic
algorithm applied to this problem should be considered good
not only in terms of accuracy but also in terms of the compu-
tation effort. Inversion of the synthetic data employing only
the local optimizer starting from a random point in the solu-
tion space (i.e., under the same conditions used to initialize the
genetic algorithm process) were attempted and resulted in the
process getting trapped in local minima very far from the global
solution. Even in these cases, the process required a number
of iterations larger than required by the genetic algorithm to
find an acceptable solution.

STABILITY

As described above, each implementation of the genetic al-
gorithm was tested on five different random seeds (initial popu-
lations). The stability of the proposed inversion procedure can
be illustrated by comparing the results of the five different tests.
Since the genetic algorithm process is nondeterministic, we ex-
pect the solutions to differ. The best solution is illustrated in
Figure 1e. In Figure 5, the four other results obtained after 150
generations using the linear normalization genetic algorithm
with the pseudosubspace method are presented. In two cases,
there has been good reconstruction of the layering with minor
anomalous features (Figure 5a and 5b), while in the remaining

Table 1. The number of function evaluations performed in
100, 150, and 400 generations by the genetic algorithm and the
number of evaluations required by the local search to optimize
these models.

Generations GAs Local search
100 6316 10403
150 10814 10620
100 24286 10355
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two examples major anomalies are present (Figure 5c and 5d).
However, the results obtained after local optimization using
the SIMPLEX code are in acceptable agreement with the syn-
thetic image in every case (Figure 6).

This result suggests that in all five tests the genetic algorithm
with the pseudosubspace method has been able to find good
valleys in the solution space. All these solutions were suffi-
ciently close to the global minimum for the local optimizer
to further reduce the error. All the tests were initialized ran-
domly but converged to the same solution. This suggests that
only one global solution is present in the application, i.e., no
cases of clear ambiguity are manifested, although obviously the
number of tests is small.

a) b)

c) d)

FIG. 3. Best solutions after (a) 100, (b) 150, (c) 200, and (d) 300 generations for the genetic algorithm with pseudosubspace
method. An acceptable solution is already obtained after only 100 generations.

a) b)

FIG. 4. Models resulting from local optimization of the best solutions obtained after (a) 100 and (b) 150 generations of genetic
algorithm with pseudosubspace method. Only minor differences may be found between the two models.

Given the relative low cost of the genetic algorithm process,
as a general rule it might be advisable to perform more than one
genetic algorithm inversion with different, randomly chosen,
initial populations and locally improve the best solutions found.
These runs would help identify where more than one solution
to the problem is possible.

Similarly, the solution obtained from the local search does
not necessarily have zero misfit. In such a case it is impossible
to discriminate if such solution represents a local minimum or
a point whose surrounding space topography is so complicated
that it cannot be improved further even by the local search. In
one of the tests we performed, this has actually been the case.
Calculating the function values along the direction connecting
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a) b)

c) d)

FIG. 5. Results obtained using different starting populations after 150 generations using genetic algorithm with pseudosubspace
method. These results should be compared to the synthetic model in Figure 1a. Solutions in (a) and (b) are comparable to the
synthetic image, however (c) and (d) contain discrepancies.

a) b)

c) d)

FIG. 6. Results from local optimization, using the SIMPLEX code, of the four solutions shown in Figure 5 from the genetic algorithm
with pseudo- subspace method. All the reconstructions are in good agreement with the synthetic case (Figure 1a).
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a solution obtained from a local search to the synthetic image,
showed values to be constantly decreasing even at very small
steps. Thus, the local search had failed to complete the explo-
ration of the good valley. It was a lucky trial: not all the possible
directions can be examined in a 45-dimensional space, and the
existence of curved valleys connecting the local solution to the
global one usually cannot be excluded. Thus, the assumption
that the output from a local search must be a local minimum
should not be taken for granted. However, in the test exam-
ples the difference between the local optimizer solution and
the global minimum apparently is not large.

SYNTHETIC EXAMPLES

The two-stage inversion procedure described above has been
tested further on three other synthetic data sets: a shallow hor-
izontal refractor (see Figure 7), a refractor incorporating a
step (Figure 8) and an isolated buried body with anomalous
velocity (Figure 9). These noise-free data sets allow us to test
the method without the complications caused by the presence
of noise. The same conditions used in the flat horizontal layers
inversion example have been applied in all these tests. All the
synthetic images have been created with a 9 × 5 slowness grid
resulting in a 45-dimensional inversion problem.

Notice that the only a priori information used in these in-
versions is contained in the genetic algorithm implementation,
i.e., slowness field parameterization and slowness value con-
straints. This information is the same for all the different tests,
and no specific a priori information or starting model is needed
in the individual runs.

a)

c)

b)

d)

FIG. 7. Inversion of a synthetic data set simulating the presence of a shallow horizontal refractor. (a) Synthetic model, (b) ray
diagram, (c) result obtained using the genetic algorithm with the pseudosubspace method, and (d) result obtained after local
optimization.

The pseudosubspace method has been implemented in three
stages. In the first stage, the inversion is performed on a 3 ×
2 grid, whose spacing is 4000 m in the horizontal and 400 m
in the vertical direction. The node spacing is then halved at
each stage. Consequently, in the second stage, the inversion is
performed on a 5 × 3 grid and in the last stage it reaches the
final configuration of 9 × 5 nodes. Each test consisted of five
runs with different random seeds, and the best solution found
by the genetic algorithm has been improved further by the local
search.

Shallow horizontal refractor.—This configuration is similar
to the horizontal flat layer case previously analyzed, except
that the refractor is raised to the middle of the model and
the slowness below it kept constant (Figure 7a). It approxi-
mates the case of a shallow layer whose velocity increases with
depth overlying a layer with a constant and higher velocity.
This configuration is particularly interesting because it tests
the ability of the inversion process to recover the depth of the
refractor correctly. Intuitively, it is expected that many possible
solutions to the problem exist with increased depth to the re-
fractor being compensated by a higher velocity for the overly-
ing area and vice-versa. The solution obtained by the genetic
algorithm is shown in Figure 7c and after local optimization in
Figure 7d. The match between true model and the final solution
is very good, with the refractor correctly located in the vertical
direction and perfectly horizontal.

From the raypath’s diagram (Figure 7b), we see that no rays
penetrate to the lower part of the model, and hence no real
solution can be expected from such area. The slowness values
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a)

c)

b)

d)

FIG. 8. Inversion of a synthetic data set simulating the presence of a step refractor. (a) Synthetic model, (b) ray diagram, (c) result
obtained using the genetic algorithm with the pseudosubspace method, and (d) result obtained after local optimization.

a)

c)

b)

d)

FIG. 9. Inversion of a synthetic data set simulating the presence of a concealed body. (a) Synthetic model, (b) ray diagram, (c) result
obtained using the genetic algorithm with the pseudosubspace method, and (d) result obtained after local optimization.
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are simply artifacts of the genetic algorithm. Note further that
as the rays are concentrated in the area above the refractor it is
not surprising that the slowness in this area is well recovered.

Step refractor.—This model is a development of the previous
one with a step incorporated into the refractor (Figure 8a). As it
can be seen in Figure 8b, the model allows rays to dive through
the refractor. Again, the results after the two stages of the
inversion procedure are presented in Figure 8c (solution from
genetic algorithm) and Figure 8d (from the genetic algorithm
plus local optimizer). The final solution is accurate in the right-
hand and left-hand side of the model; however, small errors are
present in the central region. Overall, the final model is very
close to the original one, with the best fit in areas where there
are most rays, especially when these vary in orientation.

Concealed body.—In the final model, an isolated body with
low velocity is superimposed on a vertical velocity gradient
(Figure 9a). As shown in Figure 9b, most of the rays run along
the top and the borders of the body. In the resulting solu-
tion, the outline of the body is reconstructed almost perfectly
(Figure 9d) and this allows, as a consequence, excellent recov-
ery of the vertical velocity gradient. Note that the result ob-
tained using the genetic algorithm (Figure 9c) is so close to the
starting model that the local search was not able to improve it
further.

APPLICATION TO FIELD DATA

The algorithm presented in this study has also been applied
to a real data set to test its efficiency in practical situations.
Refraction data from a seismic survey near the Nevoria Gold
Mine, Southern Cross, Western Australia have been used. The
area is characterized mainly by greenstones and granitoids
overlain by a thick weathered cover (regolith). Such weathered
profiles are of great exploration interest and they have recently
been the target of various geophysical studies to deduce which
is the most viable method to map their base and internal struc-
ture. For such a purpose, the efficiency of the seismic refrac-
tion method has been tested. During that survey, shots were
fired and data recorded at 151 stations 25 m apart. The profile
lies across an almost vertical contact between greenstone and
granitoids that reaches the surface near shot n. 45 in Figure 10.
The first arrivals were analyzed with the plus-minus method
(Hagedoorn, 1959) in a study performed, in collaboration, by
the University of Western Australia and Curtin University in
Perth, Western Australia (see Dentith et al., 1992). The results
are presented in Figure 10.

The same data set has then been inverted with the use of a
genetic algorithm with the pseudosubspace method. However,
in this case no local optimization has been used. The rationale
behind such choice lies in the fact that improvements to the
genetic algorithm solution through the use of local optimizers
can be obtained only by a very small decrease in the error mis-
fit. This can be seen from the convergence curve in Figure 2b.
The success of such a process in different synthetic tests is very
important from a theoretical perspective because it shows that
a genetic algorithm search using the pseudosubspace method
is successful in detecting the valley containing the global min-
imum in the solution space. However, on real data sets the
refinements on the error misfit required by the local optimizer
may fall well below the limitations imposed by the presence of

noise. In such circumstances, the local optimization of the ge-
netic algorithm solution is obviously useless. A detailed study
of the influence of noise in the tomographic inversion of re-
fraction data, also aimed at establishing the maximum amount
of noise the algorithm can tolerate, is currently on-going. How-
ever, the synthetic tests we presented in this study show that the
quality of the genetic algorithm solution, even without local op-
timization, is satisfactory and accordingly its performance has
been tested in a field data application.

In the experiment described here, the inversion has been
carried out on a domain 3750 m long and 160 m deep, with a
resolution of 75 m in the horizontal and 40 m in the vertical di-
rection, resulting in a 51× 5 nodes grid. To reduce the problem
dimensionality, the domain has been divided into seven small
subdomains (9×5 nodes), each overlapping for two nodes at the
lateral borders. Figure 11 helps to describe the process. In this
way, the problem has been reduced to the same dimensionality
as that of the synthetic tests above. Once all the seven sub-
domains were inverted, the nodes at the extreme of the single
subdomains were disregarded because of the low ray density in
such areas, and the remaining nodes linked to obtain the global
51× 5 node solution.

The solution is shown in Figure 12. The result below the re-
fractor is not reliable because of the limited amount of rays
diving into such area. To facilitate the interpretation, the posi-
tion of the refractor has been marked by a thick line and the
slowness values below the line have been muted (notice that
the refractor position is discretized at the nodes location). Such
operation has been performed with the use of the ray-tracing

FIG.10. Result of the analysis of the real data set recorded close
to the Nevoria Gold Mine, Southern Cross, Western Australia,
with the plus-minus method. A schematic description of the ge-
ology of the area (obtained through lithologic analysis of RAB
chips) is also given: a weathered layer (c) overlays a basement
formed by (a) greenstones and (b) granitoids divided by an
almost vertical contact.

FIG.11. Schematic description of the process performed to sub-
divide the search domain into seven small subdomains. Notice
that such subdomains overlap at the lateral borders to disre-
gard the results obtained in areas of poor ray coverage.
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routine: each node slowness value is altered by a small amount
both in negative and positive signs, if the error misfit does not
undergo any change it means that no rays dive in an area close
to the node and such node should be muted.

The result in Figure 12 agrees well with the previous anal-
ysis obtained by the more traditional method presented in
Figure 10. Notice that a detailed comparison of the two pictures
is not possible because of both the approximations involved in
the plus-minus method and the coarse parameterization in the
genetic algorithm inversion. Nevertheless, the two images are
characterized by the same main features—the steep contact to-
ward the left part of the picture as well as the acute undulation
in the refractor position in the center, and the smoother undula-
tion at the right-hand side of the picture. Some disagreement is
present immediately to the left-hand side of the area where the
refractor reaches the surface (shots 35–40 in Figure 12). This
may be caused by the coarse parameterization in the genetic
algorithm inversion.

Eventually, an attempt to invert the overall domain in a sin-
gle process has been performed. The pseudosubspace method
has been implemented in such a way as to divide the search into
three stages of different dimensionality. In the first stage, the
search is performed on a grid with 13 nodes in the horizontal
direction and two in the vertical. Then the dimensionality is
increased to 25× 3 and eventually to the final configuration of
49 × 5 nodes, approximating the 51 × 5 dimensionality of the

FIG. 12. Inversion of the real data set with the genetic algorithm with the pseudosubspace method. The image has been obtained
by subdividing the search domain into seven small subdomains and by linking the individual results. The steep contact and the
undulations in the refractor position agree well with the previous analysis obtained with the plus-minus method presented in
Figure 10.

FIG. 13. Inversion of the real data set with the genetic algorithm with the pseudosubspace method without the subdivision of the
search domain. The solution should be compared with Figure 12. Errors are present in the refractor position and in the presence of
a low velocity anomaly in the middle part of the picture.

final image in Figure 12. The result is presented in Figure 13.
It can be noticed that the solution lacks definition in the re-
construction of the refractor position. The solution space is
too large to be searched accurately, and some details cannot
be resolved. Furthermore, errors are left in some parts of the
picture. The deep undulation in the middle part of the image
is substituted by a flat refractor with a low velocity anomaly
over it. This kind of error was also present in the synthetic test
inverted with a genetic algorithm without subspace search (see
Figure 1c) and is caused by details that cannot be resolved in
search domains that are too large. It is evident that the efforts
to keep the problem dimensionality as low as possible by sub-
dividing the search domain into small subdomains have been
particularly beneficial.

Nevertheless, it should be noted that the solution in Figure 13
is not totally unsatisfactory, as the contact between green-
stones and granitoids is well recovered as well as reasonably
good in the reconstruction of the average refractor position.
Also, the stratification overlying the refractor resembles the
one presented in Figure 12. This result suggests that problems
whose dimensionality is larger that the 9 × 5 nodes synthetic
tests presented above should not be considered completely
beyond the methods potential. This confirms the results
obtained with physical model data in which tomographic
problems up to 105 dimensions were inverted satisfactorily
(see Boschetti et al., 1995b).
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CONCLUSIONS

Geophysical problems tend to have larger dimensionality
than most of the optimization problems where genetic algo-
rithms have been applied traditionally. This means that genetic
algorithm are not usually applied to large complex geophysical
problem.

This study shows that by reducing the number of parameters
to be inverted in the first stage of the search and by the pro-
gressive increase of the complexity and dimensionality of the
problem genetic algorithm’s performances can be enhanced
greatly and larger problems could be tackled. Also, any fur-
ther possibility of reducing the problem dimensionality, such
as subdividing the search into small subdomains, should be
pursued.

The method potentiality cannot be compared at this time
with traditional seismic processing techniques in very large
problems, and it should be considered a useful tool to obtain a
relatively fast and accurate preliminary analysis. However, the
good results obtained in the reconstruction of both the refrac-
tor position and the slowness field on synthetic and field data
are particularly promising and suggest that further analysis of
the method should be pursued.
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