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ABSTRACT

A number of techniques for downward continuation of potential
field data, some already established in the literature and some
novel, are tested and compared on synthetic and measured
potential field profiles.  A combination of Wiener filtering and
Translation-Invariant denoising gives best results on synthetic data
with added white noise.  A Multiscale Edge Transform followed by
a mild low-pass filter, and the ISVD method, prove to be the two
most stable and robust approaches on measured data.

INTRODUCTION

Downward continuation is the process whereby, from
measurements of potential field data on a plane, we can estimate
the field closer to the source.  The downward-continued field is
sharper, and consequently allows for better resolution of
underground rock distribution.  The usefulness of this process is
limited by the fact that the operation is extremely sensitive to
noise.  When downward-continued, a signal is amplified
exponentially, with an exponent proportional to the spectral
frequency.  With noise-free data, downward continuation is well
defined, provided we do not attempt to continue below the source
level (Boschetti et al., 2001).  In the presence of noise, the
amplification of high frequencies is so strong that it quickly masks
the information in the original profile.  Low-pass Fourier filtering,
while suppressing such noise, also blurs the signal, defeating the
purpose of sharpening by downward continuation.

Despite this difficulty, the geophysical community has long
been interested in the technique because of its relevance to mineral
exploration.  A good downward continuation process would
provide sharper images, allowing an enhanced interpretation.
More importantly, downward continuation is closely linked to
numerical inversion in order to reconstruct underground features.
Stable downward continuation has the potential to provide a more
accurate determination of both horizontal and vertical extents of
geological sources (Boschetti et al., 2001).

As explained above, the problems in the downward
continuation process are mostly due to the presence of noise.  As

is the case in other technical fields, the definition of what
constitutes noise is very much problem-dependent and subjective.
If we aim to reproduce the potential field at ground level, noise is
represented by errors in the measurement and in the pre-processing
stage.  If we wish to reconstruct the field at deeper levels, for
exploration purposes, noise is also represented by small, shallow
geological sources in which we are not interested or which we
cannot accurately model.  If we want to obtain information at a
continental scale, many exploration targets become noise in the
analysis.

In this work, we test and compare a number of techniques for
stabilising downward continuation.  Some of the techniques are
standard tools in the literature.  Others have been proposed
recently.  Finally, two methods are, to our knowledge, novel.  We
believe that the results emerging from the comparison may be
useful for practitioners who need to choose among many available
methods.

MULTISCALE EDGE-BASED DOWNWARD
CONTINUATION

In Boschetti et al. (2003), we introduce a Multiscale Edge
Transform (MET) specifically designed for potential field analysis.
This is used in order to remove specific features from a potential
field signal.  The work is mostly based upon multiscale edge
theory developed by Mallat and Zhong (1992).  They show that the
information necessary to reconstruct a signal is contained in a
subset of its wavelet transform.  The magnitudes of the wavelet
transform at the multiscale edges represent such a subset.  Here, an
edge is defined as the local extremum of the wavelet transform.
Multiscale edges are defined as the collection of edges of the
wavelet transform at all scales.  An extension of the theory,
specifically designed for potential field analysis, can be found in
Hornby et al. (1999).  For the sake of clarity, we summarise here
the MET process:

1) Upward continue the potential to several levels;
2) At each level, calculate the wavelet transform of the field;
3) Pick the multiscale edges as the locations where the wavelet 

transform has local extrema;
4) Store the position and wavelet magnitude of such edges.

For one-dimensional profiles, the multiscale edges group
themselves into strings in the scale-space wavelet domain.  In the
wavelet literature, these strings are called branches, whilst the
collection of branches is called an edge tree.  The positions and
shapes of branches are strongly related to the locations and shapes
of individual features in the profile.  The correspondence between
features in the profile and edge branches is due to the localization
property of wavelets.  This suggests that by manipulating some
edge branches and reconstructing the profile, the features
corresponding to such branches could be modified, thus allowing
a signal processing tool to operate locally on specific parts of the
image, leaving the rest minimally perturbed.

In Boschetti et al. (2003), we exploit this property by
identifying the multiscale edges which correspond to features in
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the signal, and removing those features from a gravity profile by
suppressing the corresponding multiscale edges before the inverse
transform.

Using the same technique, here we attempt to stabilise the
downward continuation operator by removing the edges that are
due to spurious oscillations caused by noise amplification.  In
order to do so, we need a criterion to discriminate between edges
due to features in the signal and edges due to spurious noise
oscillations.  The choice of such a criterion is contestable, but a
simple method follows:

1) Build the edge tree from a potential field profile; the edge tree 
links the edges generated by the same feature within the 
different scales to give the branches;

2) Perform traditional Fourier-based downward continuation;
3) Pick the edges in the downward-continued profile; among 

these edges, the ones corresponding to the branches present in 
the initial edge tree are kept, and the others are deleted;

4) Reconstruct the profile from the remaining edges.

Basically, we prevent features that were not present in the
original profile from appearing in the downward-continued profile.
The implicit assumption is that if a feature is so weak that it does

not appear in the starting profile (i.e., it does not produce edges),
the data may not be of sufficient resolution or fidelity to define that
feature.  This is a debatable position, but not one under scrutiny in
this work.

We test the algorithm on the gravity profile in Figure 1a,
obtained from the density model in Figure 1b.  This is a synthetic,
noise-free profile.  Consequently, its downward continuation is
stable (Figure 1c).  If we add the white noise of Figure 2a to the
profile and downward-continue, we obtain the profile in Figure 2b.
The profile is hardly interpretable.  By filtering the spurious
multiscale edges, we obtain the profile in Figure 2c.  The main
features in the profile are clearly sharpened and the profile closely
resembles the noise-free downward-continued one.  Spurious
oscillations are still present, but they are of much smaller
amplitude and they do not prevent visual inspection of the signal.
If these oscillations are deemed problematic, they can be further
suppressed by applying a mild low-pass filter.  The result is shown
in Figure 2d.

For comparison, in Figure 3a we show the results of applying a
separation filter (Jacobsen, 1987) and downward continuing the
filtered data to the same level as in Figure 1c.  The separation filter
is designed to remove spectral components due to sources above
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Fig. 1. (a) Synthetic, noise-free profile 3 m above the shallowest source.  (b) Density model.  (c) Downward continuation to just above the shallowest
source.
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Fig. 2. (a) White noise added to the gravity profile.  (b) Standard  downward continuation of noisy profile.  (c) Downward continuation filtered with
the multiscale edge based method by filtering the spurious multiscale edges we obtain the profile in.  (d) Suppression of the minor oscillation from
profile (c), via standard Fourier filtering.

(a)

(b)

(c)

(d)



the level to which we are downward continuing.  Another common
sharpening operation is the first vertical derivative shown in Figure
3b.

The results in Figure 2d should be considered a significant
improvement on the noisy, unfiltered, downward-continued profile
of Figure 2b.  The main feature of the MET-processed data is the
sharpness at the location of the edges in the original profile.
Alternative Fourier approaches which use a low-pass filter of some
kind before downward continuation will always produce slightly
blurred results, as in Figure 3a.  We owe our sharper results to the
fact that MET filtering of the noise-induced oscillations is not
achieved by smoothing the overall profile, but by acting mostly on
the oscillations at the positions where they occur.  Finally, the first
vertical derivative sharpens the image, but removes low-frequency
components as it does so, thereby eliminating information
regarding the total mass of anomalies.  We observed that even the
first vertical derivative of the unprocessed noisy data is oscillating,
indicating to the reader the extent of our heavy-handedness in
adding noise.

OTHER WAVELET-BASED DENOISING TECHNIQUES

A number of wavelet denoising methods have been proposed in
the signal processing literature.  Most of them involve three steps:

1. Transform the noisy data by the use of an orthogonal wavelet 
basis;

2. Apply some kind of thresholding to the resulting transform;
3. Inverse transform the signal into the original domain.

A straightforward denoising via an orthogonal wavelet
transform usually exhibits local artefacts like Gibbs phenomena.
The size of these artefacts is connected intimately to the
discretization of both the signal and the wavelet, and in particular,
to the spatial alignment between the signal singularities and the

wavelet used in the process.  Coifman and Donoho (1995) propose
a Translation-Invariant (TI) procedure to overcome this problem.
It consists of denoising different shifted versions of the same
signal and then averaging the results.  We tested this idea by
applying the TI procedure to our noisy gravity profile.  We aimed
to remove noise before downward continuation.  We used different
levels of Gaussian noise, various orthogonal wavelet bases, as well
as both soft and hard thresholding.  In hard and soft thresholding,
all the wavelet coefficients below a given threshold are set to zero,
while the others are unmodified for hard thresholding, or shrunk
by a value equal to the threshold for soft thresholding.  Our results
proved to be both data and wavelet dependent.  In Figure 4a, a
good result is obtained with a symmetric wavelet called Symmlet,
while in Figure 4b with another wavelet (asymmetric Daubechies
wavelet) the downward continuation exhibits local high
frequencies.  However, with differently generated noise we
obtained exactly the opposite outcome: a good result for the
Daubechies wavelet and a noisy downward continuation with the
Symmlet wavelet.  These results did not prove sufficiently robust
to convince us to pursue this avenue.

WIENER FILTER DENOISING

The Wiener filter is the optimal linear filter, in the mean square
sense, for the restoration of signals degraded by convolution and
additive noise.  It is often used to deblur or denoise images.  Its
calculation requires the assumption that both noise and signal
processes are second-order stationary, which is a reasonable
assumption in profiles collected over relatively small distances.

To simplify our notation we will consider the one-dimension
case with zero-mean noise, but the method can easily be extended
to 2D and non-zero mean noise.

Let f be our signal degraded by the filter h and the noise n. x is
the degraded signal
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Fig. 3. (a) Application of a separation filter and downward continuation of the filtered data to just above the shallowest source.  (b) First vertical
derivative.



where * denotes convolution.  Wiener filters are usually applied in
the frequency domain.  We write Y[k] and X[k], for the discrete
time Fourier transforms (DTFT) of the signal y(i) and x(i),
respectively.  We also write H[k] for the DTFT of the degradation
filter h.  Then the DTFT of the restored signal is the product of
X[k] with the Wiener filter W[k]:

The Wiener filter is defined by

where P
f
[k] is the power spectrum of the signal and P

n
[k] is the

power spectrum of the noise (which is obtained by taking the
Fourier transform of the signal and the noise autocorrelation).  Let
us divide both numerator and denominator by P

f
[k]:

Considering the term as the inverse of the signal-to-noise 

ratio, the behaviour of the Wiener filter can now be easily
explained:

- where the signal is strong, , the Wiener filter is 
the inverse filter H-1[k];

- where the signal is weak, , the Wiener filter is zero.

We would like to apply this Wiener filter to our measurement x,
which is a degraded version of the signal f we want to downward
continue.  If we assume that the only degradation is an additive

(4)

(3)

(2)

(1)
white noise with a variance σ

n
2, then P

n
[k] = σ

n
2 and H[k] = 1.  So,

the Wiener filter simplifies to:

In order to compute this filter we need to estimate the power
spectrum of both the original signal f and the noise n.  Obviously,
we do not know f.  We chose to approximate f via the use of the
noisy signal x, denoised by the Translation Invariant procedure.
Although the TI procedure is not robust enough to solve our
downward continuation problem, we believe it might be effective
when coupled with the Wiener filter.  Also, we estimate the
variance of the white noise by using the popular robust median
estimator (Donoho, 1994):

where MAD is the median of the magnitudes of all the coefficients
at the finest decomposition scale of the wavelet transform.

We could now denoise our measurement with the Wiener filter
and then downward continue the result.  However, the order can be
reversed.  The Wiener filter proposed has the interesting property
of being independent of the level of downward continuation; thus
it can be applied either before or after the downward continuation
(DC).  The Wiener filter corresponding to the degraded downward-
continued measurement DC(x) is indeed:

The downward continuation can be written in the discrete case
as a circular convolution:

where dc is the inverse DTFT of the well-known downward

(8)

(7)

(6)

(5)
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Fig. 4. (a) Downward continuation to the level of the shallowest source after denoising by Translation-Invariant method, using Symmlet wavelet and
soft thresholding.  (b) Downward continuation after denoising by Translation-Invariant method, using Daubechies wavelet and soft thresholding.

(a) (b)



continuation operator used in Fourier domain.  From the property
P

a*h
[k]=H[k]2 P

a
[k] for any signal process a and filter h, it follows:

This method gives promising results, as can be seen in Figure
5, and is more robust to different noise realisations than the
Translation Invariant procedure alone.

ISVD METHOD

Fedi and Florio (2002) propose the Integrated Second Vertical
Derivative as a downward continuation method.  It is based upon a
representation of the downward-continued field as a sum of
vertical derivatives of increasing order via a Taylor series
expansion.

The issue becomes that of computing stable vertical derivatives
at any order, and the choice of a suitable truncation criterion.  The
authors propose the use of both Fourier and space domain
transformations.  The vertical derivatives are computed in three
steps:

1. Vertically integrate the field by using a frequency domain 
operator;

2. Compute the second vertical derivative via the second 
horizontal derivatives according to the Laplace equation;

3. Repeat the procedure for all other vertical derivatives by using 
the Laplace equation starting from the field and its various 
vertical derivatives.

The first step of this algorithm involves a stable integration in
the Fourier domain.  However, if we use standard Fourier methods
to compute second derivatives, we would reintroduce instabilities.

(11)

(10)

(9)

We have also verified that the use of cubic splines to calculate the
second derivative gives similarly unstable results.  The problem
can be reduced by using the three-point finite-difference relation

which is equivalent in the Fourier domain to multiplying the DTFT
of f by –4sin2(πk).  Therefore, the high frequencies are less
amplified with the three-point finite-difference than with the
Fourier domain derivative operator (2πki)2.

This results in a smoothed signal allowing a stable result, but
also an undesired smoothing of the important features in the signal
(Figure 6).

APPLICATION TO REAL DATA

We have applied the MET, the Wiener-filter-based algorithm,
and the ISVD method to real data.  We used an airborne magnetic
profile collected over the Murray Basin in eastern South Australia,
over Cambrian Volcanics rocks.  The data were sampled at 90-
metre height and the profile interpolated at 6-metre spacing.

Figure 7a shows the magnetic profile.  Figure 7b shows a
traditional unfiltered downward continuation of 18 metres
(equivalent to 3 horizontal spacing intervals).  Figure 7c shows the
profile downward continued via the Wiener filter.  The
performance is quite poor.  There are at least two reasons for this
result.  First, the white noise assumption is most likely not correct.
Second, the method used to calculate the noise level (Donoho's
robust median estimator, introduced above) seriously
underestimates the noise level (which is, in turn, partly a
consequence of the departure from the white noise assumption).
This result shows that this technique might be beneficial only
provided we have a satisfactory knowledge of the noise statistics,
and, at the same time, it emphasises the importance of such
information for successful downward continuation.

Figure 7d shows the profile downward continued via the ISVD
method.  The result is much better than with the Wiener filter.  We
still have a few large oscillations, but the profile is now
interpretable.  Finally, Figure 7e shows the profile downward
continued and filtered via the MET technique.  The profile is

(12)
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Fig. 5. Downward continuation after denoising by Wiener filter with
Translation-Invariant method, using Symmlet wavelet and soft
thresholding.

Fig. 6. ISVD downward continuation using three-point finite
differences to compute the second derivative, with 10 terms in the
Taylor series expansion.



cleaner, the oscillations smaller and fewer.  The profile 'looks'
somehow more realistic, and it presents features that are not
obvious in the ISVD profile (in particular the two sharp lows, and
the much smaller high near sample 100).  The drawback of using
real data in testing algorithm performance is that we are unable to
judge whether these different features should be attributed to 'real'
signal components or to algorithm artefacts.  We are thus unable to

draw a final judgement on the relative performance of ISVD and
MET method on this data set.  However, both offer a considerable
improvement over standard downward continuation and the
Wiener filter method.

As a last note, the reader should not be surprised about the good
performance of the MET technique on real data, compared to

Trompat et al. Improved downward continuation

255Exploration Geophysics (2003)  Vol 34, No. 4

Fig. 7. Test on real data.  (a) Real magnetic profile.  (b) Standard unfiltered downward continuation.  (c) Downward continuation via Wiener filter
and TI denoising.  (d) Downward continuation via ISVD method.  (e) Downward continuation via MET method.
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(e)

(a) (b)



poorer performance on noisy synthetic data.  The reason is quite
simple.  The real data set (as measured, not downward continued)
has far more edges than the synthetic set.  The MET algorithm
works by constraining the reconstruction at edge locations, and the
larger number of edges results in a better performance.  More
edges also better control the artefacts due to the distortion in the
wavelet transform imposed by removing spurious edges.

DISCUSSION

According to our tests, Wiener filtering, ISVD and MET
techniques have the potential to usefully improve the downward
continuation process, and more work on each algorithm is
justified.  Our experiments highlighted a few important points.
First, Wiener downward continuation depends crucially on noise
statistics.  Without reliable information, this method is doomed to
fail on real data sets.  Should better noise statistics be available, we
believe its potential is high, as demonstrated by the performance
on synthetic tests.

The ISVD method offers a major improvement in dealing with
the instabilities induced by Fourier processing.  More
understanding is required to properly select the truncation
threshold of the Taylor series in the calculation of the vertical
derivatives.  This process also can benefit by better understanding
of noise statistics. 

From an algorithm perspective, the MET method is the one
which offers more hope for improvement, for example through the
manner in which the wavelet transform of the signal is
reconstructed from the edges which are left untouched (the ones
we do not remove, i.e., the ones we believe are not due to noise).
Currently, edge removal forces quite a strong distortion in the
original wavelet transform, which, in turn, introduces some
oscillations in the signal.  A less brutal edge removal, together with
an allowance for the remaining edges to adjust their positions and
intensities slightly, may considerably improve the technique.  For
a more in-depth analysis of the MET algorithm see Boschetti et al.
(2003).

Finally, it should be noted that a level of subjectivity is inherent
in the judgement of what makes a good downward continuation
algorithm.  When we attempt to downward continue below the
source level, we should expect oscillations in the profile to occur
which are not strictly a consequence of 'noise'.  This is explained
in detail in Boschetti et al. (2001).  Whether we want such
oscillations removed depends on what we define as 'noise' and as
'source', as well as on whether we want to know if we have
continued below the source level itself.  Both issues depend on the
purpose of the data analysis.  Consequently, a brute force
algorithm, able to always suppress all oscillations, may not
necessarily be the best choice.  In this view, the MET algorithm,
which is more 'local' than the Wiener and ISVD method, offers the
option to act selectively on specific features of the profile, without
the need to impose the same amount of filtering on all features.
This may lead to a more flexible algorithm which allows for more
control by the user, who can chose where and how to manipulate
the profile, depending on the purpose of the downward
continuation exercise.

CONCLUSION

A stable downward continuation procedure remains one of the
most difficult hurdles in potential field analysis, with no clear
breakthrough foreseeable in the immediate future.  We have
proposed two new methods, Multiscale Edge Transform followed
by a mild low-pass filter, and a combination of Wiener filtering and
Translation-Invariant denoising, both of which deserve further
study.

Downward continuation has strong links to the numerical
inversion of potential field data.  We envisage the use of the
algorithms presented here in conjunction with an anomaly removal
algorithm.  This would incorporate a partial downward
continuation to the level of the shallowest sources, followed by
individual removal of these sources before further downward
continuation.  The procedure could be implemented within a
visualisation package in which specific features are selected and
processed in real time.
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