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Abstract 

 
We use an Interactive Genetic Algorithm to optimise the input parameters controlling the 
behaviour of a Cellular Automata. We aim to deduce which combination of parameters 
allow the CA to reproduce patters seen in geological scenarios as a result of fluid flow 

and chemical reaction in fractured media. 
 

Via the Interactive Genetic Algorithm the user can provide subjective feedback on the 
quality of the CA results, which would otherwise be difficult to express numerically. A 
simple modification to the IGA ranking process, combined with a Self Organised Map, 

enables the rapid on-line visualisation of the high dimensional parameter space and 
consequent control over the inversion itself. The insights into the topology of the 

parameter space offer a rough understanding of which parameters control different 
Cellular Automata behaviours. 

 
 
Introduction 
 
Interactive Genetic Algorithms (IGA) have been used in the optimization of problems for 
which it is impossible, or very difficult, to define a proper numerical cost function. The 
fitness, or quality, of a solution is defined subjectively by the user and provided to the 
algorithm, often in the form of a ranking.  
 
IGA were initially proposed in artistic applications, for which numerical evaluation of 
quality are not yet established. Subsequently, they have been extended to other 
engineering and scientific problems. An exhaustive review of academic and industrial 
applications, as well as details of different implementations, can be found in Takagi 
(2001). 
 
We have used IGA in the optimization of geo-dynamical problems related to mineral 
exploration. Our interest lay not only in the reconstruction of the initial parameters which 
can generate a certain geological behavior (Boschetti and Moresi, 2001), but also in a 
rough description of the parameter space of the problem, in order to achieve an 
approximate understanding of different mechanical behaviors found in nature (Wijns et 
al, 2002). To this purpose we found particularly useful to employ methods for 
visualization of high dimensional spaces (Boschetti et al, 2002). By plotting the entire 
population of an IGA run on a Self Organized Map (SOM) (Kohonen, 2001) an 
approximate understating of sub-domains of different geo-mechanical behavior can be 
obtained.  
 



In generating such plot the user is faced with a relatively simple, but time consuming 

problem. The subjective evaluation of the solutions in the IGA run is often provided in 

the form of a ranking. This ranking is performed only within individual generations, not 

between individuals from different generations. Consequently, at the end of an IGA run 

no ‘global’ ranking of the overall population is available. In a nutshell, we are not able to 

evaluate whether, say, the 7th individual of the 4th generation is better than the 5th 

individual of the 2nd generation, unless we ask the user again. The only ‘link’ between 

generations is given by the best individual(s) been carried forward from generation to 

generation, when elitism (a standard GA module, see Davis, 1991) is applied. However, 

this is not enough to generate a reliable global ranking.  

 
In our previous work we have asked the user to re-rank the entire population, on a global 
scale, at the end of the IGA run. This is time consuming, as well as very tedious. In this 
paper we propose a very simple method to overcome this problem. 
 
An interesting immediate application of the idea is the possibility of using the SOM (or 
similar high dimensional visualization methods) to monitor the IGA search on-line. This 
gives the user a second level of interactivity in the possibility to alter some GA 
parameters (like population size, mutation rate ect) as well as to modify the search space 
by changing the range or resolution of certain parameters (dimensions) or even altogether 
removing certain parameters deemed already ‘optimized’. 
 
The test application  
 
For the sake of clarity, we present our method by describing a test case. The purpose of 
the test case is to deduce, via global optimization, the set of input parameters which 
allows a Cellular Automata (CA) to reproduce patterns seen in real geological scenarios.   
Previous work on the use of Evolutionary Computation to evolve CA rules can be found 
in Mitchell et al. (1997). 
 
The CA used in this work models fracturing, fluid flow and chemical reaction in a 
geological medium. Figure 1 shows a CA run at different stages of its evolution. The 
lattice represents a 2D vertical section through the earth crust. Two fluids (red and blue) 
are injected into the system from the bottom with a certain pressure. Each cell in the CA 
is characterized by a (random) material strength value. When the fluid pressure reaches 
the maximum strength of a cell a fracture occurs. The presence of the fluid in the fracture 



further reduces the material strength, which increases the probability of the fluid to 
accumulate in the cell and the fracture to propagate from it. Consequently, the input 
material properties control the probability of the fracture to propagate in one direction, to 
bifurcate or to diffuse.  After a while the two fluids spread in the lattice and may get in 
contact with one another. When this happens, the two fluids mix, a chemical reaction 
occurs and gold precipitates (the fluid turns yellow).  
 

 

 
 
Figure 1. Four snapshots of the CA run at different stages. The calculation domain 
represents a 2D vertical section through the earth crust. Two fluids of different 
composition (red and blue) are injected into the system under pressure from the bottom. 
They fracture and move in the medium. When they mix, they react and deposit gold 
(yellow). 
 
The CA algorithm can be summarized in the following way: 
 

1) the lattice represent the material strength of the medium. The lattice points are 
initialized with random values between a minimum (min_stre) and a maximum 
material strength allowed (min_stre+stre_var); 

2) fluid is injected into the system at a certain pressure from the bottom; 
3) when the fluid pressure is greater than the material strength at a site the site 

cracks. In this case a fraction (%_fluid_flow) of fluid contained at the site flows to 
an adjacent site. The adjacent cell is chosen randomly. However the lower the 
material strength, the more likely a site is chosen. 

4) Once the fluid flows through a site, the material strength on that site decreases of 
the amount decr_strength (as it happens in real systems). However, the material 
strength at the sites where no fluid flows increases on the amount incr_strength. 
This is supposed to mimic the natural strengthening of rock bonds with time. As a 
result the more fluid flows in a site, the more likely it is that more fluid will flow. 
This condition allows the creation of fluid channels as seen in nature. 



Consequently, the values of  decr_strength and  incr_strength affect the pattern of 
fractures which can arise in a CA run. 

5) the parameter (press_for_crack) determines how likely a fracture can change 
direction of propagation. This parameter further affects the process at step 3 to 
determine the final direction of fracture propagation at each step. The physical 
interpretation of this parameter is to mimic the presence of local anisotropy in the 
medium.  

6) Finally, a parameter (time steps) determine the the number of cycles the CA is 
allowed to run, which mimic the duration of the geological process  

 
This is clearly an oversimplification of a real mineralization process. The purpose of this 
experiment is merely to see if patterns similar to the ones seen in nature can be obtained 
by tuning a CA simply by providing subjective judgments on the CA performance to an 
IGA. 
 
In this particular experiment we aim to obtain a final geological scenarios characterized 
by gold mineralization occurring only along long, narrow, isolated and possibly inclined 
thin bodies (dykes in geological jargon). A simple sketch of the target geological scenario 
can be seen in Figure 2. 
 

 
 
Figure 2. Target pattern of gold mineralization we aim to reconstruct via the CA. Because 
of the stochastic CA behavior, we are not interested in the exact spatial location of the 
mineralization, rather on its ‘statistical appearance’, which resembles pattern seen in 
nature. 
 
‘Global’ fitness evaluation in IGA 
 
The only fundamental difference between a standard GA and an IGA lies in the fitness 
evaluation, which is performed by the user (IGA) rather than calculated via a numerical 
cost function (GA). This does not require any algorithmic modification between the 
codes. It does however generate some implementation issues, mainly: 
 

1) the requirement of the subjective evaluation of the solutions imposes limitations 
on the population size. This occurs because such evaluation may be both time 
consuming and tiring (what Takagi (2001) defines as ‘human fatigue’); 

2) the requirement of a small population size may affect the choice of crossover and 
mutation rates; 



3) a proper interface is beneficial to speed up the user evaluation. This is very 
important in order to make routine real world applications efficient. 

 
Our proposed modification concentrates on point 3. In Figure 3 we can see a screen 
capture of the user interface we employed in our previous work (Boschetti and Moresi, 
2001). This is not identical, but conceptually similar, to other implantations described in 
the literature. This user interface employs a ‘drop down’ menu to input the rank position 
of the solution. Other user interface proposed in the literature allow to choose a class 
(‘very good’, ‘good’, ‘bad’, and so on). Repeatedly pressing the + or – key in the 
keyboard has also been proposed to rank in real time the quality of short music passages 
(??). These methods are effective when a global ranking is not required.  
 
 

 
 
Figure 3. Screen capture of an interface for subjective ranking of solution quality. On the 
top left we can see the target image. Underneath the GA current generation is displayed. 
At the bottom right the best individual from the previous generation (elitism) is also 
shown. Ranking is performed by using the ‘drop-down’ menu underneath each 
individual. This sort of interface allows for ‘intra generation’ ranking.    
 
When the optimization problem involves images or computer animations, and a global 
ranking is required, we propose to use an interface as in Figure 4. This is nothing but an 
image display software, which allows easy organization, view and sharing of digital 
pictures and videos. In this example we have used the free-ware software FotoAlbum 
(??). Other packages can be used in similar fashion.  
 



 
 
Figure 4. Screen capture of a proposed interface for ‘global ranking’. The image on the 
top left shows the target of the inversion. The remaining images are the IGA population 
at the first generation. The user can re-arrange the images in terms of quality by swapping 
their position via point and drag with the mouse. 
 
Figure 4 shows the output at the first generation of the IGA run (before the first ranking). 
The images are listed in order of individual number (1-10). The quality ranking at this 
stage is expected to be random. The user can re-arrange the image in terms of quality by 
swapping their position. This is achieved simply by dragging the images to the correct 
rank position. The result can be seen in Figure 5.  
 



 
 
Figure 5. Screen capture of the proposed interface after first ranking. The image positions 
have been re-ordered according to the similarity with the target. 
 
So far no great advantage is obtained compared to standard drop-down menu ranking. 
The benefit becomes apparent at the second generation (Figure 6). The first 10 images are 
the individuals from the first generation, with their previous ranking. The remaining 10 
individuals are from the second generation, still to be ranked. Their ranking is performed 
simply, as for the first generation, by dragging them into their correct position. By taking 
into account the quality of the individuals from the first generation as well, we implicitly 
obtain a global ranking among the entire IGA population. This can be seen in Figure 7. 
The process can be repeated at each generation. 
 



 
 
Figure 6. Screen capture of the proposed interface after the second generation. At this 
stage only the individuals of the 1st generation (first 10 after the target) have been ranked. 
The individuals from the second 2nd (remaining 10) have not been ranked yet. 
 

 
 
Figure 7. Screen capture of the proposed interface after the second generation. The 
individuals of the 2nd generation have been ranked, but accounting also for the individuals 
form the 1st generation. The result is a ‘global’ ranking among all the individuals. 
 



The overall process is particularly simple. At each generation the user has to rank the 
same number of individuals as in the standard IGA implementation. All this involves is to 
find an image in the previous population set which is similar in appearance and insert the 
new image close to that ranking position (judging whether it is slightly better or slightly 
worse). The effort required is approximately the same at each generation, almost 
independent on the number of individuals accumulated in the IGA run, since the previous 
generations are already ranked.  On the contrary, with the standard ranking method, at the 
last generation we would be faced with the challenging and time consuming task to have 
to re-rank several images (easily in the order of hundreds).  
 
Visualization of high dimensional parameter space  
 
In a previous work (Boschetti et al, 2002) we have shown how it is possible to obtain 
insights into an optimization problem via the use of high dimensional visualization tools. 
In that work we have used a Self Organised Map (SOM). SOM is a transformation of 
high-dimensional (nD) data into a lower-dimensional (usually 2D) plot. It is a 
classification algorithm which separates all the input data into clusters according to 
similarity and preserves topology, i.e. two points lying close to one another in the higher 
dimensional space also do so in the 2D space. SOM has been extensively employed in 
recent years in both scientific and engineering applications in order to visualise high 
dimensional data and highlight data structure and clustering. The SOM plots presented in 
this work have been obtained with the use of the MatlabTM SOM Toolbox, written by 
Juha Vesanto. More details about SOM, as well as the specific SOM implementation 
used in this work, can be obtained at http://www.cis.hut.fi/projects/somtoolbox.  
 
In Figure 8 we can see the SOM visualization of the IGA population after the 2nd 
generation. The first 7 plates show how the input parameter values are spread over the 
SOM 2D map. The final plate shows the fitness, i.e., the quality of the IGA population 
according to the user subjective evaluation. The best individuals (lower fitness) lie in the 
top left corner of the SOM. This seems to correlate with high values of incr_stre, high 
resistance to cracking (crak_pres), high fluid flow and strong strength variation. 
 
Another SOM based visualization helps to get further insight into the parameter space of 
the problem at hand. Figure 9 shows another SOM plate, usually called U-matrix. This 
plate gives us a rough picture of the search space topology. The colors give a measure of 
the distance between points in the SOM map, i.e., a measure of how stretched the 2D map 
is. Blue color corresponds to short distance and purple to long distance.  Roughly, purple 
areas can be interpreted as ridges dividing clusters, that is, as areas where points lie very 
far from one another, subdividing areas where many point lie close to one another. Figure 
9 shows two main clusters at the top and bottom left hand side of the image. From the 
analysis above, we know the top left cluster corresponds to the best fit images.  
 
Further insight can be obtained by displaying the images corresponding to each model 
and locating them over the SOM. This confirms that high fitness images are located in the 
top left, with other medium/good fit images distributed in the other clusters. Poor fit 
images seem to be spread over the rest of the domain. 



 

 
 
Figure 8. SOM visualization of the IGA population after the 2nd generation. 
 



 
 
Figure 9. Topology of the SOM map at the end of the 2nd IGA generation (center). The 
IGA individuals are displayed around the SOM and point to the location on the SOM 
map. This helps to get a visual picture of the search parameter space. 
 
Obviously, this sort of analysis becomes more accurate the further we proceed in the IGA 
run, that is, the more sampling of the search space we obtain. Figure 10 shows the SOM 
visualization at the end of the IGA run, that is after 6 generations. The main correlations 
seen after the 2nd generation are confirmed and the mapping of the search space is now 
more reliable.  
 
Figure 11 shows the search space topology and the distribution of the models at the end 
of the run. As expected the cluster containing the best fit images has been further sampled 
by the IGA and now it is larger and contains more information. The rest of the search 
domain has been sampled considerably less. 
 
The SOM map suggests the existence of 3 main clusters (see Figure 12). The images 
most resembling the target are all located on the top part of the SOM (cluster 1). Less fit 
images are located into a main cluster at the bottom right of the SOM map (cluster 2). 
Between the two main clusters a large ridge (purple) cuts the SOM map approximately 
diagonally. Another minor cluster can be seen at the bottom left (cluster 3). This also is 
isolated from cluster 2 by a wide ridge. Finally, the main cluster at the top may be 



subdivided into 2 minor clusters, due to the presence of a minor ridge running almost 
vertically (Clusters 1a and 1b).  
 

 
Figure 10. SOM visualization of the IGA population after the last generation. 
 



 
 
Figure 11. Topology of the SOM map at the end of the IGA run.  
 



 
 
Figure 12. Main clusters arising for the IGA space sampling. 
 
Results  
 
An approximate understanding of the values of the CA input parameters corresponding to 
the 3 main clusters can be obtained via the use of the plates in Figure 10. It suggests that 
matches to the target geological scenario (cluster 1) are obtained for:  

• strong fluid flows (high value of %_fluid_flow),  
• high values of the variation of material strength with time (incr_strenght),  
• high value of the parameter which controls local anisotropy, (press_for_crack), 

which favors cracks propagating along the same direction it comes from  
• a large variability in initial material strength (strength_var) 
• and medium value for the minimum material strength allowed in the system 

(min_streng) 
 
On the contrary, the length of the simulation (time_steps) and the decrease of material 
strength after fluid flow through a site (decr_stre) seem to have little effect on the results. 
 
The result makes intuitive sense. Strong variability in material strength allows fluids to 
concentrate in certain sites. A high amount of fluid flow increases pressure. The strong 
bias towards anisotropy allows for fluid to flow along preferred paths, and strengthening 
of material properties with time at sites where no fluid flow occurs reduces the 



probability of such sites to be fractured in the future. All this results in highly focused 
fluid flows. 
 
The only result of no immediate intuitive interpretation is the high variability in the 
decr_stre parameter, which controls the decrease in material strength after fluid flows. 
We would have expected a strong bias towards a high value for this parameter as well. It 
could be that its effect is compensated by a high value of incr_stre making it almost 
irrelevant. 
 
 A similar analysis suggests that the values of the parameters incr_stre, strength_var and 
%_fluid_flow are responsible for the differentiation between cluster 2 and 3.   
  
A more quantitative analysis is also possible. The SOM consists of an invertible 
mapping. To each point in the SOM map we can assign a vector in the original nD space. 
By back-inverting into the original nD space the boundaries of the clusters identified in 
Figure 12 we can thus have an approximate understanding of the input parameter ranges 
characterizing the clusters themselves.  These are displayed in Table 1. 
 
Table 1. range of parameter variability within the 3 clusters identified in Figure 12. 
 
 Min_streng  Press_for_

crack    
%_fluid_flow  Strenght_var  Incr_stre  Decr_stre Time_steps

Cluster 
1 

1.37–2.6    1.0–1.8    0.49-0.7   8.52-10.9    3.02–7.0   1.52-2.4 3.90-10.7 

Cluster 
2 

2.63-2.74 1.67-1.75 0.7-0.72 9.72-10.0 6.87-6.9 2.18-2.5 16.3-17.0 

Cluster 
3 

2.53-2.8 0.92-1.67 0.4-0.65 1.9-9.0 4.43-6.0 2.12-2.8 13.47-16.6 

 
 
There are a few obvious applications of such analysis: 

1) if we see that different clusters correspond to different CA behaviors (in this case 
to different gold mineralization styles), then we can identify which input 
parameters control the transition between behaviors; 

2) if we are not satisfied with the final IGA inversion, and we seek to generate a 
model with better match to our target image, then it would be reasonable to 
restrict the further parameter search to the most favorable area(s) of the solution 
space. In this case we would limit the search to cluster 1 (possibly even only 
cluster 1a). This would involve limiting the ranges of the input parameters (which 
would also allow to make the search resolution finer, should we wish so, without 
considerably affecting the search computational time); 

3) if either the SOM or the user experience and problem specific knowledge suggest 
points in the parameter space which it is worthwhile sampling, these can be 
incorporated into the IGA population. Simple mouse clicks in the appropriate 
location of the SOM map can generate such points via back-inverting the SOM 



mapping. This was proposed by Takagi (2000) and applied in geophysical studies 
in Boschetti and Takagi (2001) 

4) if the SOM suggests what the parameter space is under sampled or over-sampled 
the user could alter the IGA population size on-line. This would help either a poor 
run to search the parameter space more exhaustively by increasing the population 
size or would help a very good run to speed up by reducing the population size. 
Poor runs (especially if they seem characterized by premature convergence) may 
also be helped by temporarily boosting the mutation rate. A successful example of 
this approach is shown in Boschetti and Moresi (2001). 

 
Discussion 
 
Interactive inversion was first proposed merely as a substitute for traditional numerical 
inversion in problems affected by the limitation of lacking a numerical measure of 
solution misfit. Its not relying on ‘hard’ data and numerical estimates gives it the image 
of a ‘toy’ inversion option, when nothing else is available. Several years experience has 
shown us that the global optimization of complex, highly non linear, high dimensional 
geoscientific problems requires considerable computational effort, usually involving GA 
runs with hundreds of individuals running for hundreds of generations, resulting in tens 
of thousands function evaluations. In the light of this, the encouraging results obtained in 
this paper, as well as in other highly non linear mechanical problems (Boschetti and 
Moresi, 2001, Wijns et al, 2002), with just and handful of individuals running for less 
that 10 generation (resulting in less than one hundred function evaluations) is, at least, 
intriguing. 
 
We believe this is mostly due to the ability of the human brain to evaluate several aspects 
of the IGA solutions (images or animations) at the same time. This, together with the user 
expertise on the problem at end, provides the IGA search with far more information than 
it is contained in the single number used as measure of misfit in traditional inversion. 
Very broadly speaking, it appears the user is able to turn a standard optimization problem 
into a sort of Multi-Objective Optimization, in which more factors affecting the quality of 
a solution may be taken into account and evaluated by the human brain. If this 
interpretation is roughly correct, it may suggest a interesting area for further 
investigation.  
 
The use of Evolutionary Computation to evolve CA rules was pioneered by Mitchell et 
al. (1997). The use of Interactive GA to train a CA should also be considered as a first 
attempt and far more work is necessary before properly evaluating its usefulness. The 
complexity inherent in certain CAs, as well as their stochastic behavior, provide 
considerably challenge to any inverse approach.  Nevertheless, the difficulty in 
describing numerically their behavior and the patters they generate (see Wolfram, 1983), 
not to mention their defiance of most analytical tools, may suggest that an interactive 
approach can be useful, at least to quickly reconstructs patters which can be identified 
visually by expert users. 
 
Conclusion 



 
An Interactive Genetic Algorithm can be used to train a Cellular Automata to reconstruct 
patterns seen in natural geological scenarios. This has been applied to mineralization 
processes due to fluid inclusions, fracturing and chemical reactions in the earth crust. The 
information obtained by the IGA sampling, with the help the visualization of the high 
dimensional search space obtained via a Self Organised Map, can help in segmenting the 
parameter space and in obtaining a rough understating of which parameters control the 
different mechanical behavior expressed by the CA.   
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