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Abstract- Inversion algorithms employ numerical evaluation
of the mismatch between model and data to guide the search
for minima in parameter spaces. In an alternative approach,
the numerical evaluation of data misfit can be replaced by
subjective judgement of the solution quality. This widens the
class of problems that can be treated within the framework of
formal inverse theory, in particular including various
applications in which “structural similarity” between model
and data determines the quality of the fit. In this paper we
compare the performance of a traditional numerical inversion
with an interactive inversion, in which a priori knowledge,
experience and even personal intuition are provided by the
user via subjective jugement. The comparison is performed
on a  geological application and shows that user expertise can
partly compensate for lack of sufficient constraints in the
numerical inversion.

1 Introduction

Inversion is an important tool in many real world problems
and scientific applications. It attempts to reconstruct
parameter distributions from measurements of their physical
responses. This is achieved by a more or less structured
search into a parameter space through the use of forward
modeling.

In the early stages of some scientific applications of
inversion (for example in geophysics), such searches were
performed manually by a human operator making
adjustments to some a priori guess of the parameter setting.
The search would proceed in a trial and error fashion in order
to match measured data and reconstruct a reasonable model.
This is often called forward modeling. Much research in the
last two decades has concentrated on automating this sort of
process, with the use of sophisticated inversion procedures.
Automation appears to eliminate most of the subjective
judgement involved in repeated forward modeling by
removing any input from the operator.

In fact, the subjectivity is not removed, it is simply hidden
because the presence of a priori (purely subjective)

assumptions is still crucial for the successful outcome of
automatic inversion procedures — although in a much more
subtle way. The inherent non-uniqueness underlying most
real world inverse problem results in additional information
being necessary in order to select a single solution among the
ensemble of infinite distributions able to fit measured data.
Such a priori information may be provided in the form of 1)
a specific starting model for the inverse run, 2) a specific
parameterization restricting the search to predetermined
geometrical/statistical patterns, or 3) extra mathematical
requirement for the solution, as maximum smoothness or
sharp boundaries, often chosen more for mathematical
convenience than for physical reasons. Since such a priori
assumptions are often hidden deep in the inverse algorithm,
the ‘black box’ use of such tools leaves the average user
unaware of the precise nature of these assumptions — and
hence unable to judge whether the assumptions themselves
are suited to a particular case. It should be noted that here the
term ‘subjective’ is referred to choices that the user has to
take ‘a priori’, i.e., independently of the data under analysis
and that affect the final result of the inverse process. The
crucial point is that two users taking different ‘a priori’
choices would necessary end up with different results.

Nevertheless, many real world problems are poorly
constrained by data (geological applications being a very
good example) and the expert user’s subjectivity, knowledge,
experience and intuition can still play a major role in their
solution. The implementation of fully automated systems for
data analysis and Artificial Intelligence approaches have been
implemented with full success only on a limited number of
real world applications.

Recently, research in Artificial Intelligence has developed
systems to support artistic creativity (Takagi 1998a,b). They
have been used, for example, in graphic design and music
composition. The systems take advantage of fast computation
to generate a suite of images or music sequences. Then, an
artist looks at the different images or listens to pieces of
music and ranks them according to his/her own tastes. An
inversion strategy takes such judgement into account in a
formal mathematical way to generate a new set of



images/music sequences, iteratively converging towards the
artist’s tastes/inspiration.

In this paper we propose the extension of such techniques to
scientific inverse problems, and in particular to
geophysical/geological applications in which subjective
judgement is necessary either to discriminate between
ambiguous solutions, or to evaluate different models in the
absence of sufficient constraints. In doing so we present the
first step in the development of a system for interactive
inversion of geophysical/geological processes. The system
offers three main useful features: 1) it allows a more
systematic application of forward modelling codes, as an
advance on the time-consuming trial and error approach; 2) it
provides a formal role for relevant geological experience and
knowledge in inversion which is often extremely difficult to
translate into mathematically rigorous constraints; and 3) it
may suggest valid solutions falling outside the range of
original expectation, by facilitating a ‘brainstorm-like’
process between the geoscientist and the inversion procedure.

In particular we are interested in testing the potential of such
a technique compared to traditional, numerical inversion. We
compare the interactive, subjectively driven, inversion to a
traditional numerical inversion for a synthetic mantle
convection problem. The results shows that user experience
may in some cases compensate for lack of accurate data.
Such a comparison with a purely numerical inversion has, to
our knowledge, never been presented before in the interactive
inversion literature.

2 Interactive Inversion

The purpose of interactive inversion is to allow the user to
direct the parameter space search according to his/her
subjective judgement. In order to do so the traditional
numerical measure of data mismatch is replaced by the user’s
evaluation. Humans find it hard to express subjective
judgement with absolute values, while they generally find it
much easier to compare different instances of the same
process and rank them according to certain criteria.
Consequently interactive inversion works by producing
different possible solutions and presenting them to the user
for judgement and ranking. Genetic inversion (Genetic
algorithm, genetic programming, etc.) works by optimising
an ensemble of solutions, unlike other inverse strategies that
search the solution space following one single path.
Accordingly they are an obvious choice for interactive
inversion applications.

Here we describe the modifications necessary to make  a
Genetic Algorithm work interactively.

2.1 Interactive Genetic Algorithm

Formally, the modifications to a Genetic Algorithm required
to make it work interactively are minimal. Once a set of
chromosomes is generated, it is fed to a forward code. Then a
set of outputs (in the form of either images or animations) is
produced. The images (or animations) are visualized and the
user ranks them according to his/her subjective judgement.
The ranking is then fed in to the GA which uses it to produce
the next generation of chromosomes. Notice that, since
ranking is implicitly present in some selection strategies
(such as Linear Normalization selection, used in this work),
effectively no formal algorithmic change in the code is
imposed by replacing a measure of fitness with the subjective
evaluation.

From an implementation point of view, some work needs to
be done in order to make the subjective ranking input ‘user
friendly’ and spare the user from tedious file editing. A user
interface needs to be built that allows the user to
simultaneously view all the different solutions generated by
the GA, rank them easily and proceed with the GA
operations, possibly within a few mouse clicks. There is also
the issue of avoiding human fatigue in examining numerous
solutions for many generations, which could result in lack of
attention and accuracy. These issues are dealt in the
Interactive Inversion literature — we refer the reader to Kishi
and Takagi, 1999. In  regards to our application, the
description of the specific human interface is given as we
lead the reader through the experiment.

3 Interactive inversion at work

In this experiment we attempt to reconstruct the parameters
(e.g. material properties) that produce a certain 2D geological
section using animations of thermal convection in the Earth
mantle.

This kind of problem has implications for deep crust-mantle
studies. A crucial parameter for the understanding of deep
crust-mantle heat convection is the geotherm, i.e., the
(increasing) temperature profile in the earth as a function of
depth. The continental geotherm determines whether magmas
can be generated, and the extent to which rocks undergo
metamorphism and geochemical modification. The geotherm
can be measured directly only in the shallowest few km's of
the crust, and indirectly at greater depth through
mineralogical methods when small samples are ejected in
volcanic eruptions.

This is a classical coupled heat flow problem and the forward
model is, in principle, very simple to solve using a finite
element fluid flow code. However, in the practical case, it is
extremely difficult to know the parameters of the forward
model (radiogenic heat production of deep crust and mantle,



thermal conductivity of the lower crustal rocks, viscosity of
the mantle, and the global partitioning of heat flow between
oceans and continents).

These uncertainties lead to an inverse problem where the
parameters to be determined include the physical properties
of the crust and mantle. As already mentioned, in geology,
such problems are usually tackled by repeated forward
modelling and a good deal of intuition based upon simple
one-dimensional scaling laws. Such intuition can usually
come from a user with expertise in the field.

From the inversion point of view, this is a useful test problem
for three main reasons: 1) the fit to the geotherm for any
given forward problem is quantitative so that, in principle, a
genuine, traditional automatic inversion can be performed; 2)
the practical limitations of the data can be simulated easily in
the experiment. In the Earth, only the uppermost part of the
geotherm can be measured with the remaining constraints
coming from assumptions based on the physical processes
involved in the system. 3) The problem retains significant
complexity, such that ambiguous solutions are possible and
need to be eliminated by recourse to estimates of geological
likelihood based on experience and physical intuition. This is
hard to code, directly, in a mathematical sense because we
would, here, consider such features as the shape of typical
boundary layer instabilities or the ways in which the flow
patterns evolve over time — highly difficult to formulate in a
pixel-by-pixel comparison of animations.

There is also the possibility that the additional information
available in the evolution of the animation in two dimensions
will allow an expert operator to speed up the inversion, as
well as discard models of little geological meaning. The
extent to which these assumptions are helpful in constraining
the inversion can be tested explicitly.

3.1 Experimental setup
The user is provided with a single image representing a 2-D
geological vertical section (see Figure 1). The purpose of the
experiment is to deduce the parameters (e.g. material
properties) of the simulation that produce this geological
section after the system has evolved for a specified time. In
particular the parameters to be determined are the thicknesses
and thermal diffusivities of two crustal layers, the viscosity
of the underlying mantle layer, and strengths of  the

radiogenic heat sources in each layer. This results in an eight
dimensional search space.

Figure 1. Target section for the synthetic test. The section
has been obtained using the same forward code employed in
the inversion.

At the beginning the user is presented with ten animations
(see Figure 2). This number has been chosen taking into
account that ranking more animations would be increasingly
difficult for a human operator (notice here that normal GAs
runs usually involve a much larger population). Each
animation has been generated by the GA, through its standard
stochastic behavior, coupled with the physical forward
model. The user then views the animations and ranks them
according to 1) how close the final configuration is to the
target section; 2) how ‘geologically feasible’ the overall
animation (i.e., the geological evolution) is; 3) his/her
general experience and knowledge of the area under analysis.
The user interface has been built in such a way that viewing
of each animation is done by simple clicking of the mouse on
a specific section (final frame), and the final stages of each
animation are viewed together, in order to facilitate the
ranking operation. The input of the ranking itself is done by a
simple mouse click in small windows underneath each
animation. These may appear as minor details, but are quite
important in practical applications, to prevent fatigue and
keep the attention of the user on the problem by sparing
him/her tedious manual operations. After the ranking is done,
the GA starts its usual process and generates a new set of
animations for the next evaluation. The process keeps on
until the user is satisfied with the result, i.e. with an
animation that looks geologically reasonable and produces a
final result close to the target image.



Figure 2. First generation of the interactive GA run. The sections are the final stages of animations initialized randomly.

In Figure 3 we see the result of the inversion at the third
generation. Now together with the new 10 individuals, at the
bottom right hand side we see the best individual from the
previous generation. Keeping the best individual in a GA run
is a standard operation. In this case it provides a way to rank
the new generation according to previous results. The kink in
the ‘mantle’ (dark hook), that is the typical feature of the
target image starts to appear in the eighth individual. This
animation will now be selected as best individual.

Figure 4 shows the eighth and last generation. As this is an
exploratory test the choice of stopping at the eighth
generation was purely by chance. In a real test we would
have stopped as soon as a satisfactory match has been found.
In this case we were interested in exploring the solution
space and testing the GA behaviors. As we see many
solutions “close” to the target have been found. The solutions
found during this inversion process show a good fit to the
modeled geotherm.

They also reproduce the structural features of the convection
processes in the layer. These features are merely second order
signatures of the physics of the system. However, such small
clues which hint at how a process was initiated are vital in
geology and it is reassuring to see that this information can
be captured by the appropriate ranking choices.

The best results from the subjective inversion have
eliminated one of the crustal layers. This highlights the fact
that, for this simulation, some parameters produce first-order
differences in the outcome, while others serve to fine-tune
the result. The total crustal thickness has a first-order effect,
but it was parameterized as a sum of two internal layers,
whose relative thicknesses had a second order effect on the
simulation. In the genetic algorithm, this is not an ideal
situation because the relative thicknesses can not be
constrained. The selection of parameters should be made
more carefully. The first pass of the inversion does, however,
serve as a way to analyse the parameter space to help ensure
the parameters are chosen to be as independent as possible.

3.2 Comparison with numerical inversion
A second test was run on the same model. This consisted of a
traditional numerical optimization. The misfit used was the
squared error between the target temperature profile and the
one generated as final result of the animation. The numerical
inversion was run with exactly the same GA
parameterization, number of individuals and number of
generations. The result from both the interactive and
numerical inversion can be seen in Figure 5. Both the quality
of the result and the computational cost of the 2 inversions
are comparable.



Figure 3. Third generation of the interactive GA run. The eighth individual starts to show strong similarities to the target
section. Notice also that the best individual from the previous generation (eleventh individual) is used in the ranking stage.

Figure 4. Last (eight) generation of the interactive GA run. Many individuals now show similarities to the target section.



Figure 5. Best result from the interactive inversion (left) and
numerical inversion (right)

A number of interesting conclusions can be drawn from this
experiment:

1) The similarity between the numerical and human driven
inversion is a very important result for geological
applications, in which reliable data are rare and often sparse.
For this specific application, as stated above, reliable
temperature data can be obtained only close to the earth’s
surface, and measurements at depth can only be extrapolated
from other data. In this test, the numerical inversion was
given an unrealistic advantage in assuming error free
temperature measurements along the entire profile. In real
applications reliable temperature data at depth would be rare,
inaccurate and at times absent. The ability of the geoscientist
to direct the inversion to a successful solution without such
data looks very promising.

2) During the human driven inversion, solutions
characterized by specific features judged of particular
relevance to the problem were selected even if their global
similarity to the target image was relatively poor. Basically,
the users had performed a sort of mental eigen-vector
decomposition, with selection of what are considered the
crucial directions of the search. This process is completely
impossible in a traditional GA run, in which only data misfit,
with no extra information is used.

3) The geoscientist was also using his/her knowledge of the
inner mechanics of GA inversion in his/her choices, paying
attention to leave certain ‘good’ features in the GA
population even if belonging to low quality individuals. This
is again impossible for a GA, that is ‘unaware’ of its own
mechanics.

These last two strategies carry both advantages and
disadvantages. The disadvantage lies in directing the GA run
too much, with the risk of preventing its main feature, that is
the global search. The advantages are the possibility of
speeding up the search and using a priori information. Notice
that in this case there would be a double use of a priori
information, first in the subjective judgement, second in the

ability to interfere with the standard GA run. Also, this
provides the option of interactively controlling some GA
parameters, like population size and rate of mutation,
depending on the convergence speed and variability in the
population. This offers a completely new avenue to explore.

4) While numerical inversion is sensitive only to the
temperature profile, human driven inversion is sensitive
particularly to geological structures and to dynamic
evolution. Both are modeled as color images in the
animation. Specific choices of the colors will allow the
discrimination of certain features at the expenses of others.
This confirms previous results on Interactive Inversions: the
selection of a proper visualization and user interface becomes
a crucial part of the inverse problem.

.

4 Conclusions

In scientific inverse problems measurements rarely supply
sufficient constraints on a problem to allow for a unique and
stable solution from inversion. Additional external
constraints are used in these cases but are often constructed
more for mathematical convenience than for strict physical
appropriateness. This is because it is often hard to code
analytically or numerically realistic a priori information. We
have presented a simple way in which an inverse run can be
driven entirely by subjective judgement from users with
reasonable knowledge and experience. The method has
proved to be successful and compared well to traditional
numerical approaches. It requires only minimal time and
effort from the user, most computational time being absorbed
by computer forward modeling (as in any inverse
application). We believe this technique can greatly widen the
range of problems admissible for inversion and can be used
for many scientific and industrial applications, either alone or
in conjunction with traditional numerical techniques.
.
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