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ABSTRACT

Given a Poisson potential field (or its derivatives) on a plane in free space, the
entire ambiguity domain (i.e., the set of all source distributions that could
generate the field) is easily reconstructed in the Fourier domain. The resulting
models show a range of variability far larger than normally expected.  In
essence, potential fields in free space only contain enough information to
determine an equivalent layer source. Anything further must be supported by
a priori  information. We formulate an inverse problem as a search in the set of
all compatible source distributions for solutions that also satisfy hard
constraints, such as downhole data and trusted cross-sections, and soft
constraints in the form of statistical information. Our experiments show that
statistical information is particularly effective in guiding the search towards
solutions resembling the regional geological style. A limited amount of hard
information in the form of drillholes appears to be required to reduce the
translational freedom admitted by the statistical characterisation.

1 Introduction

Among the different techniques available in exploration geophysics to obtain
information about the distribution of material underground, the analysis of
potential field data is of major interest. It is relatively inexpensive, and
airborne surveys allow the coverage of large, sometimes inaccessible, areas.

It follows that the literature on the inversion of potential field data is very
rich.  Blakely (1995) presents an accessible overview.  We broadly divide the
methods currently available into three categories, model-free, assumed
source, and ‘image processing based’ methods. In model-free methods, the
region of interest is discretised into regular blocks of constant density (for
gravity surveys) or magnetisation/susceptibility (for magnetic surveys), and
the problem reduces to finding a distribution of material that satisfies the
observations in a least squares sense. The principle of linear superposition
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applies to the calculation of the field, and so these methods are sometimes
called ‘linear methods’.

In assumed source models, the unknown bodies are typically described with
simple, regular shapes such as spheres, polyhedra, thin layers, etc. The
geometrical parameters of these shapes, together with their locations, are the
target of the inversion. The equations determining these parameters are
generally non-linear, hence the nomenclature ‘non-linear methods’ is
sometimes applied.

A number of methods are also available for a fast analysis of large data sets.
They are used to determine the average location of the main anomalous
bodies under a number of quite strict assumptions. Examples include Euler
deconvolution methods (Thompson, 1982), Werner deconvolution methods
(Ku and Sharp, 1983), the analytic signal approach (Roest, Verhoef and
Pilkington, 1992), Spector and Grant’s (1970) ‘statistical’ approach and similar
methods (Blakely and Simpson, 1986; Miller and Singh, 1994). These methods
have a character of image processing (or migration algorithms in reflection
seismic processing), though the boundary between these methods and our
other two classes is somewhat arbitrary.

No matter which method one employs, the inversion of potential field data is
always non-unique. An infinite number of solutions can be found that satisfy
the data equally well. This problem is usually circumvented by looking for
solutions with unique features (for example, searching for the smoothest
distribution of material satisfying the data), thus forcing an non-unique
problem to behave as a unique one. However, this leaves the actual extent of
the ambiguity domain (i.e., the range of variability of the solutions to a
potential field inverse problem) unknown. Worse, the ambiguity is disguised
by these methods. This issue affects both the implementation of the inverse
problem and the interpretation of its results. In particular it prevents us from
answering the following questions. How much does the problem
parameterisation affect the final results? Given a solution to the problem, is
there another solution that would lead to a completely different geological
interpretation? Is there a solution that can capture the average features of the
ambiguity domain? Basically, this is an issue of reliability of the overall
inversion process.

Answers to some of these questions can be found in the literature. Parker
(1974, 1975) showed how it is possible to define the admissible bounds of
density values consistent with a set of gravity measurements. As these bounds
are a function of depth, one can estimate the likelihood of simple sources
characterised by certain density values at different depths. Ander and Huestis
(1987) and Huestis and Parker (1977) performed similar studies relating
density/susceptibility values to the thickness of the causative bodies. Al-
Chalabi (1971) attempted to describe the ambiguity domain by exhaustive
sampling of small 2-D portions of the entire space. Because of the limitations
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in parameterisation, the actual size of the ambiguity was underestimated.
Also in the spirit of describing the ambiguity domain, Vasco, Johnson and
Majer (1993) and Boschetti, Dentith and List (1997), attempted an analysis of
sets of possible solutions using statistical means, to determine the variance
and the bounds on the parameters for acceptable solutions and possibly
recover an average model representative of the entire set. These approaches
suffer from the limitation that the extent of the ambiguity domain is so large,
and its shape so complicated, that reasonable results may be obtained only for
very simple problems. Also, Vasco's and Boschetti's methods perform the
statistical analysis on the collection of solutions found via specific inversion
algorithms. Despite the size of this collection being large compared to that
obtainable with traditional inversion methods, the question remains whether
their specific algorithms sample the solution space uniformly.

In a more formal approach, Mareschal (1985) proposed a technique to
reconstruct the entire ambiguity domain (the space of all possible solutions
that exactly  satisfy the observations). The method works by finding a
complete set of orthogonal functions spanning the ambiguity domain. Any
solution satisfying the data can then be obtained from this set of functions.
However, the formulation proposed by Mareschal makes use of Laguerre
polynomials, which leads to a parameter space difficult to relate to geometry
and geology.

In this paper we propose a modification to Mareschal's method. We first
discretise the source into layers, with constant density/susceptibility across
each layer.  The horizontal variation within a layer is discretised by point
sampling on a regular grid. Thus, we nearly have a ‘voxel’ representation.
However, this is not quite the same as a voxel representation, since the
horizontal variation is not piecewise constant, but rather, is a smooth (band
limited) function interpolating between the sample points. The vertical
variation is, however, piecewise constant. Through simple calculations in the
Fourier domain we are able to reconstruct the entire ambiguity domain to
potential field inverse problems at a given resolution.

This reconstruction in useful in two ways. First, we can analyse the actual
extent of the ambiguity of very simple potential field anomalies. Even though
the non-uniqueness of potential field inversions is widely known, a visual
appraisal of the range of variability allowed in the solutions may be striking.
We present a few examples to caution against the rote use of inversion
techniques that might lead to largely erroneous solutions.

Second, we can employ such reconstruction in an inverse approach. When the
entire ambiguity domain has been suitably described, particular solutions can
be selected using a priori information. The idea is to implement an algorithm
able to make use of any available information, such as downhole samples,
geological cross-sections, seismic profiles, statistical information (e.g.
geological styles  or textures typical of the area) and so on. One selects a
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suitable model by performing a global search in the ambiguity domain. The
search finds high probability solutions by minimising some cost function
designed to appropriately balance the different kinds of a priori information
available. Only solutions that exactly satisfy the potential field data are
considered in the search.

2 Direct Inversion of Potential Field Data

In this section, under the ‘flat earth’ approximation, we present the basic
formulae employed in the reconstruction of the ambiguity domain for both
gravity and magnetic inversion.

2.1 Gravitational Acceleration

The scalar potential energy V  at a point ( )z,y,x  due to a mass density
( )z,y,xρ  is given by

( ) ( ) ( )( ) 'dz
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where G is the gravitational constant, and the resulting acceleration vector is
V∇− .  We take z to be positive upwards, and assume that ( ) 0z,y,x =ρ  for

z > 0 .  The magnitude of vertical acceleration at ( )z,y,x   (negative of the
vertical component) is given by
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Equation (2.2) has the form of a 2 dimensional convolution
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is the Green's function for vertical acceleration. Define a 2-D Fourier transform
(and its inverse) in the ( , ) x y plane as
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where boldface denotes a 2-D vector.  We then have (e.g. Bracewell, 1965 or
Bhattacharyya, 1966)

ü ( , ) exp( )γ πz x yk k z z= − >2 0k .  (2.6)

Applying the convolution theorem to Equation (2.3) yields
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Now suppose that we want to calculate the vertical acceleration of a flat layer
parallel to the surface between 1z'z =  and 2z'z = , whose density varies only in
horizontal directions.  The resulting integral is

∫ −γρπ=
2

1

z

z

yx'zzyxzxz 'dz)k,k(ˆ)k,k(ˆG2)k,k(f̂ .    (2.8)

 Hence, we obtain for the transform of the vertical acceleration of the flat layer

)(ˆ)(ĝ)(f̂ zz kkk ρ=        (2.9)

where ρ̂  is the Fourier transform of the horizontal density variation and

 ( ) ( ){ } ( )z2expz2expz2exp
G

)(ĝ 12z kkk
k

k π−π−π=       (2.10)

is the ‘layer source influence function’. We refer the interested reader to
Blakely (1995) for a different formulation.

2.2 Total Magnetic Field Anomaly

For static magnetic fields, the scalar magnetic potential at a point ( )&
x = x y z T, ,

due to an anomalous dipole moment distribution ( )& &
m x  (where 

&
a  denotes a 3-

D vector) is given by
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where C  is 1 in emu or µ π0 4/  in S.I. units and ∇' denotes the gradient with
respect to primed coordinates.  We again take z to be positive upwards, and
suppose that ( )&

m 0x y z, , =  for z > 0.  The resulting anomalous magnetic field
&
B = −∇V .

Under the (usual) twin assumptions that the magnetic field due to the
anomaly is small compared to the ambient field 

&
F , and that the ambient field

does not change direction over the survey, the scalar total field anomaly is
harmonic, and given by (to first order in the anomaly field; e.g. Blakely, 1995)
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where Fe
&

 is a 3-D unit vector in the direction of F
&

. The integral in Equation
(2.12) over 'x  and 'y  has the form of a two dimensional convolution.
Proceeding cautiously regarding whether the gradients are evaluated at the
observation point )(∇  or the source point )'(∇ , (noting that −∇=∇'  when
applied to the convolution kernel) we find that
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Taking the two dimensional Fourier transform of Equation (2.12) together
with Equation (2.13) yields
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Writing the product of the two factors corresponding to ⋅∇Fe
&

 and '∇⋅m
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outer product, we find
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where the tensor operator ΛΛΛΛ
(

 is (in the Fourier domain) the matrix
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Suppose again that we want to calculate the field of a flat layer parallel to the
surface between 1z'z =  and 2z'z = , whose magnetisation varies only in
horizontal directions.  We obtain as the transform of the total field anomaly
due to the flat layer,
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where m̂
&

 is the 2-D Fourier transform of the magnetisation. If we further
assume that the direction of  the magnetisation m

&
 is constant, mexxm

&&&&
)(m)( =

say, then we obtain the relation between scalar quantities
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is now the ‘layer source influence function’ for magnetic fields. Note that the
vector-matrix-vector factor in (2.19) reduces to the (complex) scalar quantity
that is sometimes written as the product fmθθ  (e.g. Equation 11.25 in Blakely,
1995), but that (2.17) is more general.
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3 Reconstruction of the Ambiguity Domain

In this section we describe how Equations (2.9) or (2.18) can be used to
reconstruct the ambiguity domain for a potential field problem.  The inversion
of potential field data for an equivalent layer source can be written as a
deconvolution

]g[/[f][S] ℑℑ=ℑ       (3.1)

where S is the source, f is the measurement and g is the appropriate layer
influence function (developed in the previous sections).

Suppose that the data set f contains M measurements regularly sampled in the
horizontal direction(s).  We will invert for source distributions which are
non-zero in the domain 0z < .  As an aside, f  is rarely exhaustively sampled
in such a fashion.  Rather, it is interpolated to a regular grid from sparse
sampling (a form of inversion in itself, e.g. Issaks & Srivastava, 1989;
Horowitz et al., 1996).  Thus, the spectral content [f]ℑ  is itself known only
within the constraints imposed by this interpolation.  For the rest of this
paper, we pragmatically neglect this effect and assume that [f]ℑ  is known
perfectly. Clearly, however, there is scope for a more comprehensive inversion
constrained explicitly by the actual samples of  f (although possibly not
implemented within the framework of Fourier transforms).

The source variation is assumed to be piecewise constant vertically (a layered
earth), and to have band-limited, periodic horizontal variation.  The
discretisation within any one layer will be characterised by M points in the
horizontal direction(s) with spacing equal to the sample spacing. If there are
N layers in the vertical direction (with some problem-dependant spacing)
then there are MN source degrees of freedom.

By applying Equation (3.1) to each horizontal layer separately, we could
obtain N different source layers at different depths, each of which will
generate the measured response f.  This is just the well known idea that any
data can be attributed to an equivalent layer source.  Explicitly, let )(f̂ k  be the

kth Fourier coefficient of f̂  in a discrete Fourier transform (DFT) of the
regularly spaced measurement f. (That is, k is now a vector of integers). Also,
let )(ĝi k  be the kth discrete Fourier coefficient of the ith layer influence function
(Equation (2.10) or (2.19) ).  Suppose for the moment that 0)(ĝi ≠k  for all i
and k.  Then an equivalent layer source in the position of the ith layer of the
source domain is given by

)(ĝ/)(f̂)(Ŝ i
eq
i kkk = .    (3.2)
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It follows that 0)(Ŝeq
i =k  for all i (and given k) if and only if 0)(f̂ =k . Let us

now consider a new source distribution constructed from these particular
equivalent layer solutions, viz.

)(Ŝw)(Ŝ eq
iii kk k=           N,1i =       (3.3)

where now )(Ŝi k  is the kth Fourier coefficient of the new ith source layer.
Suppose further that

1w
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k ,       (3.4)

for each individual k. The superposition of the new source layers iŜ  then
generates f as follows;
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Thus, the collection of layers described by { } N,1iiŜ =  constitutes a possible
source distribution in the domain 0z <  that exactly matches the measured
data f.

Conversely, consider any compatible source distribution )(Ŝi k  such that

)(f̂)(ĝ)(Ŝ
N

1i
ii kkk =∑

=
   (3.6)

and suppose for the moment that  ( ) 0f̂ ≠k  for all k. Then we may define some
new

)(Ŝ/)(Ŝw eq
iii kkk =′   (3.7)

since 0)(Ŝeq
i ≠k  for all i, k.   Consequently,
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which implies that 1w
N

1i
i =′∑

=
k  for all k such that ( ) .0f̂ ≠k   Thus, under the

stated condition on f̂ , any compatible )(Ŝi k  can be expressed in the form (3.3)
with weights satisfying (3.4).

Now consider ( ) 0f̂ =k  for some given k. In this case, the condition on the

)(Ŝi k
 
becomes

( ) 0)(ĝŜ i

N

1i
i =∑

=
kk   (3.9)

for all k such that ( ) 0f̂ =k .  Whenever we find this situation arising in practice

(i.e. ( ) 0f̂ =k  for some k) then we replace Equation (3.3) with

 ( ) )(ĝ/wŜ iii kk k=   (3.10)

(absorbing the change in physical units into these specific iw k ) and also
replace the corresponding Equation in (3.4) with

0w
N

1i
i =∑

=
k   (3.11)

for each k such that ( ) 0f̂ =k .  With this minor modification, we have the
characterisation of the entire ambiguity domain at a given resolution
whenever 0)(ĝi ≠k  for all i and k.  We note that the null space of the problem
(set of annihilators) could be characterised in terms of (3.10) and (3.11).  By
linearity, we could then span the ambiguity domain by adding any eq

iŜ  (or
any other particular solution) to this null space. Instead we choose the
characterisation (3.3) and (3.4) and resort to  (3.10) and (3.11) only for k such
that  ( ) 0f̂ =k .

There are a few reasons for this choice.  Firstly, it is quite rare in practice for
( ) 0f̂ =k , and so (3.10) and (3.11) are rarely needed.  More important, the

equivalent layers eq
iŜ  are a natural set of particular solutions to the inverse
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problem.  Consequently, Equation (3.3) has an intuitive meaning as a
weighted combination of components of these natural solutions.  This
particular  linear combination also bestows greater importance upon positive

iw k  than would be the case if the classical null space characterisation were
used.  Algorithmically, this makes it easier to control the sign (and more
generally the range) of  ( )xiS .

The remaining problem is when ( ) 0ĝi =k .  From Equation (2.10) we see that
this does not occur in the gravity case, but can occur in the magneto-static case
(2.19) when k=0 or when the ambient field and the magnetisation are
orthogonal under ΛΛΛΛ

(
.  This leads to a further source of ambiguity in the

magneto-static case, over and above that discussed so far.  For example, the
case when  k=0 is the well known phenomenon that an infinite layer with
constant magnetisation produces no measurable field away from the layer
(since the dipole contributions at every point off the layer cancel).  In most of
the following, we will be considering the gravitational field, which is free of
these particular ambiguities.

4 The Extent of Ambiguity in Potential Fields

In this section, several simple anomalies are analysed. Using the constraint
Equations (3.4), the entire ambiguity domain for these anomalies could (in
principle) be reconstructed. We demonstrate that, even in simple cases, the
ambiguity domain is huge.

4.1 The Limitation of Using Simple Geometry

Figure 4.1 presents a gravity profile.  Commonly, two basic assumptions
would be employed in inverting such a profile. Firstly, a regular, well
defined, single anomalous body is assumed to be present. Secondly, the
location of the body is assumed to be underneath the positive anomaly in the
profile.

Figure 4.1 Gravity profile obtained by forward modelling the density contrast
distribution presented in Figure 4.2.
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The actual source distribution used to generate Figure 4.1 is presented in Figure
4.2. It represents the 2-D section of a rectangular prism with density contrast
0.2 g/cm3, infinitely extended perpendicular to the section. Such a model
would satisfy both of the assumptions of the previous paragraph.

Figure 4.2  2-D vertical section of a prism infinitely extended perpendicular to the
section,  whose density contrast with the surrounding material is 0.2 g/cm3. This
model has been used to obtain the synthetic profile presented in Figure 4.1. Here, as in
all of the 2-D plots presented in this section, black corresponds to a density contrast of
-0.2 g/cm3, while white corresponds to 0.4 g/cm3 density contrast.

Figure 4.3 displays four models obtained by inverting the profile in Figure 4.1
using the procedure described in the previous section. Each is due to a
different set of parameters iw k  in Equations (3.4). They all yield accelerations
that match the profile in Figure 4.1 exactly.

Figure 4.3. Four examples from the ambiguity domain associated with the
profile of Figure 4.1. Density distributions vary drastically from the model
presented in Figure 4.2. No clear isolated body can be seen, nor any clear
increase in the density contrast in the area immediately underneath the
positive peak in the profile in Figure 4.1.

Two related points are clear. Firstly, no regularly shaped, anomalous bodies
are necessary to interpret the profile under analysis. Secondly, a very
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irregular, scattered distribution of material could be responsible for the same
profile. An infinite number of models similar to the ones in Figure 4.3 could be
generated with the same technique. Later in the paper, we discuss the
physical/geological feasibility of these models. For the moment, notice that
they all have geologically feasible density contrasts.

From this example, we conclude that limiting the possible outcomes of an
inverse calculation to bodies characterised by simple geometry implicitly
disregards a huge number of possible models. In the example above, no
scattered distribution of small anomalous bodies would be allowed if the
search was limited to a single, regularly shaped anomalous body.
Consequently, simple geometry constitutes a very strong assumption on the
inversion that should only be imposed when justified by reliable a priori
geological information.

4.2 Forcing the Location of Anomalous Bodies

Another common practice in the inversion of potential field data is to locate
causative bodies underneath the main anomalies in the profile. This spatial
relationship is also at the heart of the visual interpretation of potential field
maps. Here we want to check the validity of this assumption.

Figure 4.4 shows two more exact inversions of the profile in Figure 4.1.  In these
examples the positive anomaly in the profile is due to a scatter of relatively
dense material, while a larger anomalous body is located in a different
horizontal position, (just underneath the flat part of the profile). Its effect is
compensated by the distribution of less dense material surrounding it, and its
presence is apparently concealed in the data. Although without specific a
priori information it would be impossible to reconstruct the presence of the
body from the data, this example shows that the location of large anomalous
bodies underneath the major anomalies should not be taken for granted.
Large anomalous bodies may be located underneath featureless parts of the
potential field data, depending upon the distribution of the surrounding
material.

Figure 4.4. Two models satisfying the gravity profile in Figure 4.1. As can be seen, the
horizontal position of the large anomalous body does not coincide with the positive
peak in the profile.  Its presence is compensated by less dense material surrounding it
and is concealed in the profile.
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4.3 Depth Ambiguity

The most serious and best known source of ambiguity is the depth of
causative bodies. This is demonstrated by Figure 4.5, in which possible
solutions characterised by bodies at different depths are presented. They all
generate the profile in Figure 4.1 exactly.

Figure 4.5. Four more models satisfying the gravity profile in Figure 4.1. They
all resemble very closely the model in Figure 4.2, however, small variations in
the density contrast at each node allow for the anomalous body to change its
vertical position considerably. Such position cannot be recovered solely from
the gravity profile, since each model reproduces the data exactly.

An analogous example is given in Figure 4.6. Figure 4.6a shows a synthetic
model used to generate a gravity profile. It simulates the presence of an
irregular basement.  Figure 4.6b, c and d show three models, generating the
same gravity profile, each having the basement at a different depth.
Obviously, the depth to the basement can not be recovered by simple analysis
of the potential field data. We therefore caution about the rote application of
methods such as Werner deconvolution (Werner 1953; Naudy 1971) or the
spectral methods from Spector and Grant (1970).  The pertinent questions to
be asked of such methods are “What are the (perhaps implicit) a priori
constraints being imposed by the method?” and “Are the constraints justified
in the region under study?”.
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Figure 4.6. Synthetic model used to generate a synthetic gravity profile (a) simulating
the presence of an irregular basement. Panels b, c and d show 3 models, satisfying the
same gravity profile, each characterised by the basement at very different depth.

5 The Mickey Mouse Effect

From the previous experiments it is obvious that completely different
geological models could fit the same potential field data. In this section we
want to be even more pessimistic and state that almost any idea on the nature
of the solution, even the most bizarre, could still be slightly modified to fit the
data under analysis. A few synthetic examples will illustrate this statement.

Suppose that a fictional explorer is convinced that an ore body with the shape
of Mickey Mouse™ is the target of an exploration survey. Figure 5.1 shows an
example of such an ore body. A gravity survey is conducted over the area and
the resulting profile is inverted in order to find a model that simultaneously
fits the data, and resembles the Mickey Mouse ore body. One might suppose
that if a model resembling Mickey Mouse can be found that fits the data
reasonably well, then the existence of such a curious ore body is confirmed.
Unfortunately this supposition would be false.

In the top row of Figure 5.2 a number of models are shown. They represent simplified
sketches of possible geological configurations, resembling, respectively, a dipping fault,
a folded layer and an isolated body (the same model studied in the previous sections).
The second row shows the gravity profile obtained from forward modelling these
sources. For each profile an inversion has been performed in which we search for a
model that resembles the Mickey Mouse ore body in Figure 5.1 as closely as possible.
The results are shown in the bottom row. For each profile a Mickey Mouse ore body,
in exactly the same location, can be found that exactly  fits the data. Once again, the
density contrasts are all in geologically realistic ranges.
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 Figure 5.1. A ‘cartoon’ section of the Mickey Mouse ore body (hand sketched by the
authors). It will be discretized to a 32*32 pixel source distribution for the inversions.

Figure 5.2. In this experiment we show that even the most bizarre geological
interpretations could still fit potential field data under analysis. The top row
shows three models while  the second row depicts the corresponding gravity
profiles. For each of these profiles a Mickey Mouse ore body, in exactly the
same location, can be found that exactly matches  the data.

We can be even more general and state that for any  profile we will be able to
find a Mickey Mouse ore body able to fit the data. The generality of this
statement is guaranteed by an image like the one in Figure 5.3. It represents a
Mickey Mouse image that gives zero field, i.e. a completely flat profile of zero
gravity anomaly. This is an example of an annihilator.
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Figure 5.3. This Mickey Mouse image has the property that it has a 0 gravity
field when used in a forward calculation. It is a homogeneous solution
belonging to the null space of 2-D inverse gravity problems. Such a source
distribution can be added to the solutions of any inverse problem (with the
same horizontal resolution) and still give a source that fits the data exactly.

5.1 Comments

It is clear now that potential field data alone are not a sufficient constraint for
an inverse problem. Without a priori  information, potential field data are not
adequate to confirm a geological model. If an inversion is constrained
towards a particular model, without justification by accurate a priori
information, the result may lead to erroneous geological interpretations.  The
only rigorous possibility is the use of the potential field data to refute a given
hypothetical interpretation.  However, we have also seen that the ability of
such data to refute hypotheses is limited, as evidenced by the Mickey Mouse
effect.

We can easily quantify the dimensionality of the ambiguity domain. If one
inverts for the NM ×  source model discussed above, each of the M wave-
vectors has N degrees of freedom. Equivalently, any solution can be
represented as a single point in an MN dimensional parameter space of the

iw k . Geometrically, the constraint Equations (3.4) can be viewed as the
equations of M different hyperplanes, each of dimension (MN-1). That is, each
constraint reduces the available number of degrees of freedom by one. The
aggregate space is the intersection of the individual hyperplanes, which are
clearly linearly independent. Thus, any model that exactly matches the
observations still has )1N(M −  freedoms, and this is the dimension of the
ambiguity domain (the size of the space of annihilators, or the nullity of the
problem).

The classical characterisation of the possible solutions to this problem is as the
null space translated by a particular solution. (That is, the particular solution
plus some homogeneous parts.)  Our characterisation differs slightly from
this, since it corresponds to a (component-wise) convex sum of particular
solutions, Equations (3.3).
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Essentially the same analysis applies to the potential energy )z,y,x(V  (using
appropriate layer source influence functions),  so that it is no use appealing to
the vector fields ( V−∇=B

&
or V−∇=g

&
) to overcome the ambiguity problem,

nor to any other quantity derivable from the potential energy. Further, the
recovery of an arbitrary magnetisation vector field ( )xm

&&
 would require even

more a priori information.

Clearly, some of the model sources presented above are not geologically
realistic.  However, they all incorporate aspects of reality. The density and/or
susceptibly contrasts employed are within a feasible range, and the level of
complexity in the solutions is more realistic than simple geometric shapes. The
next section focuses on selecting solutions with geologically feasible
constraints.

Note, that the concept of 'geologically feasible' is still not well defined from a
mathematical, physical, statistical, or even geological point of view. A few
previous attempts at a definition have been made (Pilkington, Gregotski and
Todoeschuck (1994), Pilkington and Todoeschuck (1990)). Such attempts could
be incorporated into the procedure described in this paper.  In addition, our
procedure could be extended to include any future criteria.

6 Selecting Appropriate Solutions

Based on a priori information about the area under analysis, let us now seek to
restrict the number of possible solutions. The simplest expression of the
ambiguity domain is in Fourier space. The parameters iw k  are just weights of
the Fourier source spectra for each equivalent layer participating in the
solution.  Unfortunately, interpreting the iw k  directly in terms of physical or
geological constraints is not simple.  In this respect, the parameterisation is not
much better than Mareschal’s Laguerre coefficients (1985).  Because of this,
restrictions due to a priori information must be indirectly applied to the
parameters iw k  (e.g., through iterative search).

The search we advocate here is fundamentally different from traditional
iterative inversions. In traditional search methods, one searches the entire
domain (defined by the problem parameterisation) for models that satisfy the
data (plus, in some cases, further a priori  information). This results in a model,
or a limited number of models, fitting both the data and the additional
constraints to within some specific tolerance.

In the method proposed in this paper, we search only inside the ambiguity
domain (i.e., only among models that fit the data exactly).  Consequently any
end result from the inversion will exactly satisfy the potential field data at the
full resolution of analysis.  Among these models, we search for models that
also satisfy other requirements.
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Contrast our approach with the traditional approach of simplifying the
problem by using bodies characterised by simple geometry. Two major
differences are found.  Firstly, we ask for solutions to resemble statistics of the
data under analysis, while other techniques force solutions into a particular
shape by limiting the search domain.  Secondly, our method allows for
different kinds of geological structures to be modelled (faults, folds, isolated
bodies, layers etc..) depending on a priori information, while most traditional
methods allow for only one kind of structure depending of the
parameterisation adopted.

6.1 The use of a priori  information

One of the aims of the inversion scheme presented here is to use as many
kinds of geological and physical a priori  constraints as possible. The different
kinds of a priori  constraints commonly  available can be broadly divided into
two classes:

1) Accurate ‘ground truth’ information. This may include density or
susceptibility measurements from drilling, or geological cross sections
considered particularly reliable, or perhaps surface geology. This kind of
information will be called ‘hard’ information in the rest of the paper.

2) General information on the geological style of the area. This may come from
large scale studies on the area, or from small scale, detailed studies on
adjacent areas that are considered to be somehow related to the area under
analysis. Such information might be summarised in a geological cartoon
representing the style of the area, or it might be a high-resolution sampling of
some quantity from a similar region, or it might even be as detailed as a
geostatistical variogram (or other statistics) for the region. This kind of
information will be referred to as statistical or 'soft' information in the rest of
this work.

A necessary condition for soft information to be useful in a search is that it is
quantifiable.  For an example drawn from geostatistics (Journel, personal
communication, 1995), a geological cartoon might be translated into a
variogram via level curves of some relevant quantity (e.g. isopachs) or directly
turned into a suite of indicator variograms.  Clearly, the short-range parts of
such variograms are poorly constrained.  However, the long range parts
quantify aspects of the interpreter's  geological knowledge of the area, and
might be useful to provide quantitative constraints on long-range correlations.
Inversion techniques could then be used to find solutions that match all such
information simultaneously. Of course, the advantage of autocorrelation
information is that it can be calculated from the Fourier representation of a
trial source distribution. This eliminates any need for back transformation of a
trial solution to the spatial domain during the search.
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6.1.1 Statistical (soft) information

To date, we have tried our technique using two different statistics,
autocorrelation (to represent long range behaviours with two-point statistics),
and a local multi-point statistic (designed to represent short-range textures).

The local multi-point statistic comes from scanning a template over some
prototypical model. At each position, the template lies over (say)  nm×
pixels.  We construct a corresponding mn dimensional ‘state space’ by
plotting the value in each pixel along a coordinate axis. Thus, each template
position defines a point in the state space. When the entire prototype model is
scanned, a set of state space points is obtained, the configuration and density
of which contains information about local textures.  Note that this method is a
higher dimensional probabilistic extension of the idea underlying recent
nonlinear analyses of time series (e.g. Packard et al., 1980). The method also
represents essentially the same statistic as captured by the ‘schéma glissant’ of
Matheron (1978) (for an English language description see also, e.g., Journel,
1997).  Autocorrelations are calculated from prototype models in the standard
manner (e.g. Press et al., 1992 p545; Isaaks & Srivastava 1989).

In the examples shown in this paper, the synthetics used for our forward
models are also used to calculate our statistics. In this sense, our statistical
information is the best possible.  In practice, prototypes might come from
exhaustive sampling of some (small) region of similar geology, or they might
come from adjacent regions.

During the search of the ambiguity domain, a comparison is performed by
calculating a misfit measure between the prototype model and the current
candidate inversion.  In the case of autocorrelation, the misfit will be just the
squared difference between the autocorrelation of the prototype model and
that of the candidate inversion. For the local multi-point statistic, we define
the misfit as the average of the minimum distances between the state space
points obtained from the prototype and those points generated by a candidate
inversion. We acknowledge that such a definition of misfit imposes a metric
upon the state space that may or may not be valid for the process(es) under
study. However, we suggest that the technique’s success in this study is
evidence that such a metric is useful.  We have also tried a linear combination
of these two misfit criteria.

In all cases we attempt to find solutions that minimise the misfit. It is clear
that the problems are non-linear in nature, containing multiple local minima.
An attempt to use a simple local search (the SIMPLEX method from Press et al.
(1992)) yielded very poor results.  Better results are obtained from the use of a
global search performed with a Genetic Algorithm (GA). A description of the
Genetic Algorithm used in this research can be found in Boschetti, Dentith &
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List (1996).  The particular characterisation of the search space in terms of the

iw k  fits nicely into a GA encoding.

Figure 6.1 displays the style of results that may be obtained with this
approach.   Four synthetic models used to generate the data set are shown in
the top row. The four models represent respectively (a) an isolated anomalous
body (similar to the gravity cases already presented), (b) a dipping fault, (c) a
deep basement overlaid by less dense material and (d) a combination of the
anomalous body in (a) and a shallow dyke. These models are all characterised
by 16 blocks in the horizontal direction and 8 blocks in the vertical direction,
resulting in a 128 dimensional space for the GA to search.

The second row represent the results of the inversion when autocorrelation
has been used as the misfit criterion. In all cases the actual synthetic model
has been used as a prototype.

It can be seen from the images in the second row that the use of
autocorrelation as a misfit criterion helps in recovering images characterised
by a style and a texture close to that of the prototypical model, when
compared to inversions based solely on matching the potential field. This is
particularly clear for the model in column (a) and (d). The example of the
rectangular anomaly in column (a) should be compared to Figure 4.3 (the
inversion of the gravity profile in Figure 4.1 without a priori statistical
information). It is clear that in this case  the algorithm 'knows' it has to look
for a single anomaly with an appropriate shape, surrounded by a mostly
constant background. The extent of scattered material in the domain is now
relatively limited.

Note that the use of statistical information is not enough to make the problem
unique. Solutions from different runs differ (much as they do in geostatistical
conditional simulation techniques). However, the appearance of the solution
is always very close to the prototype model. Large variation can be found in
the vertical position of the causative body. This result is in line with the
inversion shown in Figure 4.5.

Better results are obtained with the use of multi-point statistics as can be seen
from the images in row 3.  Now the texture and style resemblance is even
stronger. However, in both cases the existence of the ambiguity domain is still
clear, especially in the inability to exactly fix the vertical position of the
causative bodies. The fourth row in the figure shows the inversion
simultaneously using autocorrelation and multi-point statistics as the misfit
criteria. Clearly only marginal  improvement is obtained.

The weakness uncovered by these results is not entirely surprising, since the
statistics are translation invariant measures of source variation.  Consequently
such a priori information could not be expected to help much in determining
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source position.  Such measures are, however, helpful in determining things
such as lumpiness and texture.

Figure 6.1. 2-D test of the inversion of magnetic data with statistical a priori
information. In the top row we depict the four synthetic models used to generate the
potential field anomalies. In the second row we present examples of the inversion using
the autocorrelation of the prototype model as a priori information. (In all cases the
synthetic has been used as prototype model). The third row shows examples from the
inversion using multi-point statistics as the search criterion. The last row presents the
results when both autocorrelation and multi-point statistics are combined to form a
search criteria.

6.1.2 Hard information

We have seen how prototype models of the area under analysis can be used to
reconstruct solutions that resemble particular geological styles. When ground
information is available (and considered particularly reliable) it can be used to
constrain the problem more strongly. This can be achieved by asking the
solution to respect a priori density/susceptibility values at some nodes. Two
situations might typically occur.

Firstly, through some integrated geological/geophysical surveys we might
possess a geological section considered particularly reliable and we may want
to slightly improve the section by asking it to satisfy the potential field data.
This is equivalent to searching the ambiguity domain for the solution that is
closest to the input geological section, where the closeness can be measured in
a least squares sense. Notice the difference between this approach and the one
described in the previous section. Asking a solution to statistically resemble a
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prototype model means asking for the solution to have the same texture, or to
possess similar features but possibly at different locations. Now we ask the
density/susceptibility values to be approached pixel by pixel (as in the
Mickey Mouse example, with all of the attendant dangers).

Secondly, some downhole information may be available from the area under
analysis. This is basically similar to the previous case with the difference that
constraints are limited to only some nodes. Where samples do exist, they truly
constitute ‘hard’ information, and not the ‘softer’ information of the inferred
cross-section of the foregoing.  When there are only a few nodes, the
ambiguity domain is reduced but remains very large. However, this kind of
information is very useful when used in conjunction with statistical
information. Previously, we saw that solutions obtained by matching the
autocorrelation or the multi-point statistics with a prototype model have a
general appearance similar to the input model, but it is not possible to fix the
vertical position of the causative bodies. The use of  underground information
greatly helps in this task. We also note that, given statistical information and
the potential field, it is almost as useful to know where the anomaly is not as it
is to know where it is. Thus, ‘dry well’ hard data is still useful in tying down a
solution.

In Figure 6.2 we see the results from inverting the same data sets as in Figure
6.1 when the information from two drillholes is used. The two drillholes
provide the density contrast, and are assumed to be deep enough to reach the
bottom of the domain. They are located at columns 4 and 13 in the model
(recall that the model consists of 8*16 pixels). It is clear that, especially for the
examples a, c and d, that the presence of the underground information is
enough to allow the detection of the approximate vertical location of the
anomalous body. The dipping fault example, panel b, is much harder and the
solution less satisfactory. However, even in this case an improvement over the
inversion with only statistical information is apparent.
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Figure 6.2. Result from the four models presented in Figure 6.1 when underground
information has been used in the form of two drill-holes.

7 Extension To 3-D

We saw that the construction of the ambiguity domain does not involve any
iterative search and that, due mainly to the Fourier domain implementation, it
is actually computationally very cheap. The extension to the 3-D case is not a
major concern from this point of view. However, the inversion to find models
that satisfy the a priori data does involve iterative search and the increase in
the computational time required by this operation when applied to a 3-D case
is substantial. A considerable increase in the dimensionality of the problem in
3-D is the cause of this increased demand. A model of 16*16*8 blocks
represents a 2048 dimensional space. Global search methods, such as GAs, are
usually applied to much smaller dimensional problems, rarely exceeding a
few tens of unknowns. Although Boschetti et al. (1996) and Mathias et al.
(1994)  showed that larger dimensional spaces may be tackled by the use of
modified GAs, one must expect GAs' performance to be almost at a limit in
this application, and, at the very least, to expect quite a long convergence
time.

Accordingly, we  kept the dimensionality of the problem relatively low. In the
example shown below, the 'realistic synthetic' case is characterised by 16*8*8
blocks, while the real test has been performed on a 16*16*4 model, both
resulting in 2048 dimensions. Although this dimensionality may appear small
for exploration applications, it should be noted that it greatly exceeds the
typical dimensionality of standard inversions of potential fields found in the
literature.

7.1 A Realistic Synthetic Example

A data set of ore grades sampled in a gold mine in Western Australia has been
nonlinearly transformed into density contrasts. The resulting model was then
used to generate a 2-D gravity data set. The model data were also used to
calculate the target autocorrelation.

Two inversions were performed. In the first inversion only statistical data
have been used, i.e., the search for suitable models has been performed
simply by matching the autocorrelation of the prototype model with the
candidate inversion. A few test runs showed that the appearance of the
solutions obtained in this way resembled the prototype model but they still
showed a quite large variability.  This is in accordance with the results
presented for the 2-D case.

In the second inversion both statistical data and hard information (in the form
of four drillholes randomly placed in the domain) have been used. The four
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drillholes are assumed to reach the bottom of the domain. This is equivalent to
constraining the density values along four columns in the model. In this
instance a few test inversions showed that the results tend to be very similar,
i.e., the problem is much better constrained with the use of underground
information and the ambiguity domain is greatly reduced. An example from
the inversion is presented in Figure 7.1.  On the top, the synthetic density
model is shown; on the bottom left, the result from the inversion using both
statistical and direct data in form of drillholes; on the bottom right, the result
using only autocorrelation data. Both solutions resemble the original data set,
however the improvement seen in the bottom left result clearly shows the
value of (even limited) hard data.

Figure 7.1. Example of inversion of potential field data in 3-D. The top figure
shows the synthetic model used to generate a gravity data set. It consists of
real ore-grade values artificially transformed into density contrasts. On the
bottom left is  the result from the inversion when both statistical and direct
data in form of drillcore intersections are used. On the bottom right an
instance from the set of solutions obtained when only statistical data are used.

7.2 Inversion with Limited Real Data

The method has also been tested on a real total field magnetic data set
collected for experimental purposes by Western Mining Corporation in
Western Australia. In order to obtain a gridded data set the flight line
measurements (sampled at 25 metres from the surface) have been interpolated
into a 16*16 node grid, with 25 metre spacing in both the horizontal directions.
These are also the horizontal dimensions of the calculation domain, while in
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the vertical direction four layers, 25 metres thick, have been modelled. In
order to remove the regional trend, the gridded data set has been fitted to a
plane and the residual has been used in the inversion. This also justifies the
limited depth extent of the calculation domain.

A number of downhole samples (along two parallel lines, cutting through the
calculation domain) were available, with measurements of susceptibility
along the cores. These values have been used in two ways. The actual values
at the drillhole location have been used as hard information in the inversions,
i.e., the target solution has been asked to satisfy these values at the
corresponding blocks. Also these values have been interpolated on the entire
domain and the result has been used as a statistical model.  Basically in this
way we ask for a smooth solution. This is rationalised by the fact that no other
information was available on the area.

The result of the inversion can be seen in Figure 7.2. On the left-hand side we
have the interpolated values and on the right-hand side the result from the
inversion. This corresponds to a modification on the original image in order to
satisfy the potential field data and the required constraints. A more
sophisticated approach could be attempted where more underground
information, or better statistical information, is available.

Figure 7.2. Image used as a statistical model in the 3-D inversion of the real
data set (left-hand side) and the result from the inversion (right-hand side).
The solution satisfies the magnetic data set and closely resemble the statistical
model.

8 Conclusions
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The entire ambiguity domain (at a given resolution) can be expressed as a
particular mixed superposition of equivalent layer sources. Within the
potential field measurements in free space, there is at most enough
information to define the equivalent of one source layer. The resulting
ambiguity allows models of almost any visual appearance to fit the potential
field data exactly. Even completely wrong geological interpretations could be
slightly modified in order to fit a particular anomaly, and consequently the
result from the inversion of potential field data without further constraints
should be considered, at the very least, inconclusive.

Conversely, this work also suggests caution in the use of inverse methods that
impose strong assumptions directly in the problem parameterisation, since
entire families of possible solutions might be discarded spuriously. At the
very least, such techniques as Werner and Euler deconvolution and ‘model
free’ inversions involving smoothness assumptions should only be applied
with a clear understanding that it is these assumptions that are determining
the solution, more so than the data.

Seeking models within the ambiguity domain whose spatial variation is
statistically similar to some prototypical model(s), leads to solutions that
display similar textural character to the prototypes.  However, since the
statistical measures we have used are translationally invariant, there is still a
large amount of translational  freedom in the solutions, especially vertically.

Once the textural character has been constrained by the a priori data, and some
of the horizontal variation pinned down by the potential field constraint,
hard data, even ‘dry well’ data which does not intersect anomalous bodies, is
most effective in improving the results.

The ambiguity domain is best expressed in the 2-D Fourier domain, where the
‘constraints’ provided by the potential field are diagonal in k, and of (matrix)
bandwidth N in z. The autocorrelation of a given source distribution is also
easily expressed in the Fourier domain. There are also indications that some
local multi-point statistics can be given a simple Fourier characterisation,
along the lines of Wiener prediction theory. Thus, our statistical information,
like any other translation invariant measure, can be expressed in a natural
way in the Fourier domain.

As long as such statistics are easily expressed in the Fourier domain, the
search over the ambiguity domain can be confined entirely to the Fourier
representation.  If the misfit criteria are sufficiently simple, then the statistical
a priori requirements could be expressed as  linear constraints on the iw k .
Moreover, suitable choice of statistics could lead to banded equations,
potentially eliminating the need for a search entirely.

On the other hand, hard data is best expressed as constraints on the values of
the source at specific locations in the spatial domain.  If expressed as
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constraints (rather than as a minimisation), these equations, while diagonal in
the spatial domain, are full in the Fourier representation.

This is the usual problem that arises in data fusion, in this case related to the
complementary nature of dispersion in the spatial and Fourier domain.  One
representation makes one set of constraints appear simple, but causes another
set to become complicated.  Clearly, one would like to find a compromise
domain in which all the constraints are banded (in the matrix equation sense).
To this end, we have begun investigation into wavelet bases (Hornby et al.,
1998) and piecewise constant source distributions.  This work naturally leads
to more general considerations of precisely when a unique or low variability
solution can be expected to exist, and what the minimal, and (from a
geological standpoint) most widely applicable a priori assumption might be
that leads to this situation. We believe this calls for a delicate balance between
mathematical parsimony and geological common sense.
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