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Abstract: An effective inverse scheme that can be applied to complex three-dimensional hydrody-
namic forward models has so far proved elusive. In this paper we investigate an interactive inverse
methodology that may offer a possible way forward. The scheme builds on previous work in linking
expert review of alternate output to rapid modification of input variables. This was tested using the
Sedsim three-dimensional stratigraphic forward modelling program, varying nine input variables
in a synthetic example. Ten Sedsim simulations were generated, with subtle differences in input,
and five dip sections (fences) displayed for each simulation. A geoscientist ranked the lithological
distribution in order of similarity to the true sections (the true input values were not disclosed during
the experiment). The two or three highest ranked simulations then acted as seed for the next round
of ten simulations, which were compared in turn. After 90 simulations a satisfactory match between
the target and the model was found and the experiment was terminated. Subsequent analysis showed
that the estimated input values were ‘close’ to the true values.

Underlying most forward modelling exercises in
geosciences is an implicit inverse question. A formal
inverse approach to geological modelling has only re-
cently started to develop due mostly to two reasons:
first, standard geological modelling is extremely com-
putationally intensive, and second, it is hard to develop
numerical cost functions, to drive the inverse search,
that can capture enough geological knowledge to make
the search meaningful. Creating a cost function is diffi-
cult because it involves distilling into a single value an
assessment of the geometries, volumes, and positions,
as well as determining how geologically reasonable a
solution may be.

We employ interactive inversion to tackle the second
problem. The concept is of such simplicity as to make it
appear as little more than a novelty: replace the numeri-
cal evaluation of solution quality with a subjective value
provided by an expert user. Underneath the simplicity
there is a very powerful concept. We replace what in
most cases is an artificial numerical function with the
computational power of an expert brain. This provides
not only the best ‘geological processing power’ we cur-
rently have, but also intuition and expertise, in the form
of theoretical knowledge, experience, anda priori in-
formation. Here, the notion of ‘expert user’ may take
different meanings. At the most superficial level, a ge-
ologist may have enough expertise to reliably evaluate
basic similarities in different geological fields. This is
the level we use in this work. At another level, a user
who is an expert in some specific forward modelling
can employ his or her experience to better interpret the
modelling output in terms of the software functional-
ity. As a result, for example, convergence may be im-
proved, and geological understanding may benefit. Yet

another level involves a user who is an expert in the op-
timisation tool used (a genetic algorithm in this work),
who may be able to perceive when the inversion itself
needs ‘help’, and tune inversion parameters on the run.
Boschetti & Moresi (2001) demonstrate applications of
these last two cases of expertise. It would be possible
to employ all these levels jointly by asking users with
different expertise to rank models together.

Attempts to formalize the geological processing
power of a human expert have been presented in the
literature, but, to our knowledge, are incomplete. Our
own experience in attempting to develop a geological
image similarity module, accounting for human input,
is encouraging (Kaltwasser et al. 2003) but still far from
being applicable to real world problems. Extensive ref-
erence to interactive inversion, standard implementa-
tions, and a review of several artistic and engineering
applications can be found in Takagi (2001). Boschetti
& Moresi (2001) and Wijns et al. (2003) present appli-
cations to geoscientific problems.

More recently, we have focussed on visualizing the
results of an interactive inversion. The purpose is to
enable our inverse strategy to return information to the
user in a ‘language’ similar to the one the user employs
to feed information to the code. We expect the user to
be an expert geoscientist, not an expert in inverse the-
ory. We want the user to understand visually what the
inversion has achieved, to obtain further insights into
the problem, and, by doing so, to provide more infor-
mation to the inversion. Such information can be used
as furthera priori input in a subsequent inversion run
(e.g., Boschetti et al. 2003).

We extend this approach by employing more than
one visualization method. Complicated information
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Variable True Step size Min. Max.
E-W source location (m) 9500 200 8000 12000
N-S source location (m) 600 90 20 1100
E-W source velocity (m s−1) 0 0.25 -1.0 1.0
N-S source velocity (m s−1) 0.5 0.2 0.4 2.2
Flow rate (m3s−1) 9 1.5 1 13
Conc. (0.5 mm) (kg m−3) 0.025 0.01 0.01 0.1
Conc. (0.2 mm) (kg m−3) 0.10 0.03 0.0 0.3
Conc. (0.07 mm) (kg m−3) 0.175 0.06 0.0 0.3
Conc. (0.0004 mm) (kg m−3) 0.20 0.06 0.0 0.3

Table 1:Parameter values used in the Sedsim simulations.

can be better represented by combining different tools.
This method allows the user to provide more informa-
tion to the inversion than a single measure of quality.
What information, i.e., quality measure, the user may
decide to provide does not need to be determined be-
fore the inversion, but may arise spontaneously during
the procedure because of new insight into the problem.

The problem

The inversion has been applied to a simple sedimen-
tation problem where the initial conditions were known
exactly. A genetic algorithm (GA) provides an engine
for the inversion. Since geological forward modelling is
time consuming, the GA population is kept fairly small.
Boschetti et al. (2003) discuss convergence issues re-
lated to interactive GAs, while a more general discus-
sion of GAs can be found in Wright (1991). Here we
use populations of ten individuals. At the end of the
exercise, we have collected 90 individuals ranked by a
user in terms of similarity to a target image. Intragen-
erational rankings are simultaneously accumulated in a
global ranking order for post-inversion analysis.

The sedimentary model was deliberately chosen to
be quite simple, and represents a ramp setting over a
19 km by 19 km area, with a one kilometre grid spac-
ing. The topography slopes down from the south at
0.1 degree. Neither tectonic movement nor sea level
change was incorporated. This is a more complex sce-
nario than it may initially seem, as the below sea level
accommodation was rapidly filled and a more complex
meandering stream and delta formed. Likewise the low
angle of the initial topography leads to a greater vari-
ation in possible sediment profiles than would be ex-
pected from a steeper gradient. The model incorporates
4 different classes of sediments, including a medium
sand (0.5 mm), a fine sand (0.2 mm), a finer sand (0.07
mm) and a clay (0.0004 mm). The only parameters per-
mitted to vary in these simulations are those affecting
the input conditions of the fluid laden with sediment.
These are the initial east-west and north-south locations
of the fluid source, the initial east-west and north-south
velocities of the fluid source, the flow rate of the fluid

source, and the initial sediment concentrations of each
of the four different grain sizes.

The true values used in the Sedsim simulation are
given in Table 1, along with the allowed search ranges.
The model was run for 50,000 years. The initial param-
eters and the step sizes outlined in Table 1 were delib-
erately chosen so that the target simulation could not be
exactly reproduced. The goal of the inverse model is,
of course, to retrieve the true (or closest) input parame-
ters from the observations (the output of a stratigraphic
simulation). The initial conditions for the trial simula-
tion (Table 1) were chosen by a domain expert as being
likely ‘reasonable’ priors. A more formal approach to
prior selection may involve analogue studies in a real
case, or the complementary interactive methods of Cur-
tis & Wood (2004) (this volume).

Figure 1:Target simulation with every fourth fence (section)
shown for (a) lithology (grain size) and (b) ‘alternating age’.
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Class 1 best models
Class 2 good models (”acceptable”)
Class 3 acceptable sediment topography
Class 4 acceptable 0.5 to 0.2 mm grain distribution
Class 5 acceptable 0.5 mm grain distribution
Class 6 acceptable 0.07 mm grain distribution
Class 7 acceptable clay distribution

Table 2:Definitions of different classes for ranking.

Each of the variables was randomly initialized by a
genetic algorithm. This is a standard strategy in ge-
netic algorithm inversion, the influence of which, in the
final GA result, is discussed in Wright (1991). Ten sim-
ulations were run at each generation, and two output
sections, displaying lithology and sediment ages, were
used to rank the results in order of similarity to the true
sections (Figure 1), while the true input values were
hidden. Ranking was carried out by evaluating mod-
els according to the classes contained in Table 2, which
include both specific characteristics and overall resem-
blance to the target. The two or three highest ranked
simulations then acted as seed for the next round of ten
simulations, which were compared in turn. Lithology
was used exclusively to rank the first six generations,
after which it became necessary to analyse the alternat-
ing sediment age distribution in order to distinguish be-
tween some lithologically similar models. No separate
class was adopted for age characteristics (c.f. Table 2):
this comparator was used only for a relative rank be-
tween two good models that otherwise shared all the
same lithological class rankings.

Lithology was chosen as the primary comparator for
several reasons. Sedsim’s main purpose is to predict
lithological variations away from well holes, as this is
one of the key features that controls the formation and
behaviour of a petroleum system, affecting the source
rock, migration of hydrocarbons, reservoir formation,
and seal quality. It is also one of the most variable char-
acteristics, especially in near-shore and fluvial environ-
ments, where local variations in flow or sediment vol-
ume can have a marked effect on the lithology. It may
have been more representative of the typical Sedsim us-
age had the lithology been evaluated at several vertical
locations representing the lithology identified at a well
location, rather than along an entire dip section. The
secondary measure of simulation quality was taken to
be a display of age layers with successive ages alter-
nately coloured red and blue. These give a good idea of
the volume of sediment deposited at each layer as well
as the shape of each deposit, roughly akin to what may
be seen on a seismic section.

Sedsim stratigraphic forward modelling

Three-dimensional stratigraphic forward modelling
enables the combined influence of a variety of inter-
dependent basin processes to be studied at geological
time scales. The results reflect possible changes in sed-
iment distribution over time as a function of the chang-
ing depositional environment. Past studies have demon-
strated the value of this approach (Griffiths et al. 2001;
Griffiths & Dyt 2001; Griffiths & Paraschivoiu 1998;
Koltermann & Gorelick 1992; Martinez & Harbaugh
1993). Any computer modelling is only as good as
the validity of the input data and the algorithms used
in the program. The selection of prior information for
computer models should be no more onerous than that
required for a conceptual geological model of an area.
However, the need for quantitative data forces the geol-
ogist to a greater degree of commitment than may oth-
erwise be the case.

Sedsim is a three-dimensional stratigraphic forward
modelling program developed originally at Stanford
University in the 1980s and extensively modified and
extended in Australia since 1994. Sedsim flow and
sedimentation programs are linked to modules includ-
ing subsidence, sea level change, wave, storm, and
geostrophic current transport, compaction, slope fail-
ure, and carbonates. The program models sediment ero-
sion, transport, and deposition, and predicts clastic and
carbonate sediment distribution on a given bathymetric
surface. The conceptual background to Sedsim is de-
scribed by Tetzlaff & Harbaugh (1989). Sedsim is con-
trolled by a parameter input file, and files describing rel-
ative sea-level change, initial topography/bathymetry,
and tectonic movement for each grid cell over time.

Basic principles of Sedsim operation

Sedsim uses an approximation to the Navier-Stokes
equations in three dimensions. The full Navier-Stokes
equations describing fluid flow in three dimensions are
currently impossible to solve due to limitations in com-
puter speed (it would take longer to simulate a flow than
the real event). Sedsim instead simplifies the flow by
utilising isolated fluid elements to represent continuous
flow (Tetzlaff & Harbaugh 1989, Chapter 2). This La-
grangian approach to the hydrodynamics allows for a
massive increase in speed of computation and simpli-
fication of the fluid flow equations. Simulations over
geological periods can at best hope to capture the mean
conditions and create a general pattern of sediment dis-
tribution, rather than capture the exact timing of each
individual pulse of material.

Fluid elements travel over an orthogonal grid de-
scribing the topographical surface, reacting to the local
topography and conditions such as the flow density and
the density of the medium through which the element is
passing (e.g., air, sea water, or fresh water). Fluid ele-
ments are treated as discrete points with a fixed volume,
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Figure 2:Sammon’s map, with each point assigned a colour according to its quality ranking. Axes represent distance, but there
is no physical scale. The three ‘best’ points (simulations very similar to the target) are shown in red, ‘good’ points (somewhat
similar) are shown in blue, ‘mediocre’ points are grey, and ‘very bad’ points are coloured magenta. Simulation results for the
three best models are mapped onto their corresponding points, and the true (target) solution is plotted on the map by an×. The
‘combined best estimate’ is obtained by averaging the three best (red) points.

an approach known as ‘marker-in-cell’. Several simpli-
fications are made to the Navier-Stokes equations (Tet-
zlaff & Harbaugh 1989). The most important of these is
that the flow is expected to be uniform in the vertical di-
rection (i.e., the whole of the fluid element has the same
velocity), and that the friction experienced by the fluid
element is controlled by Manning coefficients. The net
result of these simplifications is that the Navier-Stokes
equations are modified into non-linear ordinary differ-
ential equations. These equations are now solved using
a modified Cash-Karp Runge Kutta scheme (Press et al.
1986) that ensures stable and accurate fourth order in
time solutions.

Although Sedsim has the capability to model many
aspects of the depositional process, the current exper-
iments used only a small subset of the modules avail-
able. Modules switched off were: internal nested
grids, slope failure, wave, storm, and geostrophic cur-
rent, sea level change, tectonic subsidence or uplift,
syn-depositional compaction, isostasy, and carbonates.
Even though the model used here was an extremely
simplified version of a typical Sedsim simulation, the
depositional environment modelled is typical of a river-
dominated delta in a cool, temperate, shallow lacustrine
setting with no significant subsidence over a 50 ka pe-
riod.

The simulations

Apart from the variables discussed above and listed
in Table 1, all other input values remained the same for

all 90 simulations. Each simulation took four hours un-
der MSDOS on an Intel computer (Fujitsu LifeBookc©)
running at 850 MHz with 256Mb RAM.

Visualization and analysis of the solution
space

The goal of the inversion is to optimize nine param-
eters controlling a sedimentation process. This results
in a nine-dimensional search space. A number of tools
have been proposed in the literature to visualize high-
dimensional (nD) spaces (Buja et al. 1996). In this
work we employ multi-dimensional scaling (MDS) and
a self-organizing map (SOM). Both methods attempt
to plot nD vectors on a 2D surface in such a way that
topology is best respected, i.e., in such a way that points
close to one another in the originalnD space are plotted
in close proximity in the 2D map. Obviously, with the
exception of trivial cases, respecting the topology per-
fectly is impossible. MDS and SOM differ in the way
they approximate such an impossible mapping. In a
nutshell, MDS yields a better overall picture of the dis-
tance relationships between thenD points, while SOM
provides a better picture of local relationships, acting
more like a clustering algorithm. Accordingly, differ-
ent kinds of information can be extracted by these two
tools. Using the accumulated global rankings of sim-
ulation outputs, we visualize and analyse,a posteriori,
the effectiveness of the inversion.
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Figure 3:Sammon’s map. Points are labelled with a quality ranking according to similarity to the target, and 1 to 20 refer to
good points. Classes 1 and 2 contain the best simulation results, but class 4 points are close to the good points.

Multi-dimensional scaling

MDS works by calculating all the pair-wise distances
between points in thenD space. Points are then po-
sitioned on a 2D surface in such a way that pair-wise
distances in the 2D map match the original distances as
much as possible. Among possible MDS implementa-
tions, we have adopted Sammon’s mapping (Sammon
1969), which emphasizes the preservation of small dis-
tances.

As explained above, we cannot expect this mapping
to be optimal. Consequently, we cannot expect the map
to be always easily interpretable. The highly non-linear
mapping inherent in the MDS approach may result in a
series of projections, rotations, and stretches that may
hinder the interpretation of data relations. Fortunately,
this is not the case in our test. Figure 2 shows an MDS
map containing all 90 points collected during the inver-
sion. Different symbols indicate the simulation quality.
The ‘best’ points (ranks 1-3) are coloured red, while
other ‘good’ points (ranks 4-20) are blue, ‘mediocre’
points are grey, and ‘very bad’ points are magenta.
Points belonging to these first two sets plot close to one
another, which may suggest the existence of an approxi-
mately convex area in the originalnD search space con-
taining good models. It is tempting to infer something

about the uniqueness of the solution. However, the lim-
ited number of points, as well as the approximate map-
ping we are using, compels us to use caution in drawing
such conclusions. This map should be used as a tool to
suggest patterns that need to be properly verified by fur-
ther analysis.

An obvious (though not sufficient) test to verify con-
vexity is to generate an input by the weighted average of
all good models, and judge whether the resulting geo-
logical model is also good. The simulation output from
the weighted average model, shown in Figure 2 as the
‘combined best estimate’, weakly confirms the convex-
ity hypothesis. Since an MDS map is not reversible, it
is not possible to take a generic point on the 2D map
and transform it into the originalnD space.

The above analysis refers only to the subjective rank-
ing of image similarity. In producing this ranking, the
user found it useful to assign the solutions to one or
more of the classes in Table 2. The first two classes
represent the good models, as mentioned above. The
other classes represent models that are not good over-
all, but that possess a good feature. Because of the
non-linearity inherent in the physics of the model, rela-
tionships between input parameters and classes are not
obvious beforehand. This is information we hope to ob-
tain from the inversion process.
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Figure 4:Sammon’s map. Points are labelled with a quality ranking according to similarity to the target, and 1 to 20 refer to
good points. Classes 1 and 2 contain the best simulation results, and class 6 points are relatively far from the good points.

The MDS map can be used to visualize the compara-
tive locations of the different classes within the param-
eter space. Figures 3 and 4 contain the points belonging
to, respectively, classes 4 and 6, plotted with grey cir-
cles. Figure 3 suggests that ‘0.5 to 0.2 mm distribution’
is an important factor in judging the quality of a model,
as it is rare to have a bad simulation within this class.
On the other hand, Figure 4 suggests that models are
not very sensitive to ‘0.07 mm grain distribution’ since
both good and bad models fit this criterion. Simulations
such as these also indicate the sensitivity of simulation
results to the various input parameters. The Sammon’s
map in Figure 3 shows that the quality of the simula-
tion is strongly dependent on the accuracy of predicting
the correct concentration of coarser grain material, with
class 4 points strongly matching with class 1 and 2 (best
and good models). This makes sense in several ways.
The coarse material drops out of suspension from a fluid
source first, and hence is typically deposited in either a
fluvial or near shore environment. Its presence has a
strong effect on subsequent physical processes in the
area. It is also capable of forming steep sediment pro-
files, again altering the hydraulic surface significantly.
Fine grained materials tend to form lower slope angles,
and drop out of suspension typically in deeper, calmer,
water. This has less effect on subsequent flows, which

is why we see in Figure 4 that the quality of a solution
is very poorly correlated with class 6, the concentration
of fine grained material.

The MDS visualisation provides some other infor-
mation. First, models closely resembling the target
seem to be located within a relatively small sub-domain
of the initial search space. Second, this domain seems
to be approximately convex. Third, the visual analy-
sis of the models, underlying the interactive inversion
approach, apparently captures important aspects of the
geological interpretation, since we can not expect the
previous two features to arise completely by chance.
Although we cannot exclude the existence of other ar-
eas in the parameter space containing good models, it
is natural to focus the search on the smaller sub-domain
identified above, should we wish to further improve our
analysis.

The self-organizing map

The last, and probably most important aspect of our
analysis, is to understand which input parameters most
control the variability in the geological process. We ex-
plore this important element via the use of Kohonen’s
self-organizing map (SOM) (Kohonen 2001). This al-
gorithm spreadsnD points over a 2D plane in such
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Figure 5:SOM representing the clustering of model outputs (total distance) and the distribution of the magnitudes of the nine
variables. Variables correspond to those in Table 1. Only the good points (quality ranking 1 to 20) are labelled on the map.

a way that neighbourhood topology is respected, i.e.,
two points lying close to one another in the higher-
dimensional space should lie close in the 2D plot. In
doing so, it acts as a classification algorithm that sepa-
rates all the input data into clusters according to similar-
ity. Depending on the topology of thenD points, more
than one data point may be assigned to a 2D cell. We
prevent this from happening by choosing a map con-
taining many more cells than data points.

The SOM is usually displayed by assigning a colour
to each cell, which represents the distance between
neighbouring cells in the originalnD space. These dis-
tances show how the map needs to stretch in order to
accommodate the complexnD topology. By doing so,
it implicitly displays basic data clusters, i.e., sets of data
points that are all in close proximity. An example is
given in the top left image of Figure 5. Unfortunately, a
SOM is more reliable in its representation of local clus-
ter relations. For global relations, the MDS described
above is better suited.

An attractive feature of a SOM is that it allows a dis-
play of the magnitude of each original dimension (i.e.,
each model parameter) at each cell location. This is
shown in the remaining images in Figure 5. The labels
indicate the location on the SOM of the 20 best models

generated during the inversion. Here also, they cluster
close to one another. By analysing the variability (and
values) of each dimension at the locations correspond-
ing to the best models, we can estimate which input
parameters most control the geological process. When
good models show a wide range of values for a specific
variable, such as for the north-south source velocity, we
conclude that the solution is not very sensitive to this
variable. On the other hand, if all good models share
a fairly constant value of a specific parameter, such as
for the flow rate or 0.2 mm grain concentration, we can-
not ascertain whether the solution is extremely sensitive
to this parameter, or whether the genetic algorithm has
fixed upon one value. Our further work will focus on
the choice of sample points to avoid the latter scenario.

Discussion

The results show that, at least in this case, conver-
gence to visually similar sections occurred within very
few generations. This offers hope that such a technique
may be a practical approach to the inversion of complex
3D stratigraphic forward models. The danger of getting
trapped in local minima is always present, in GA ap-
proaches as much as in other inverse strategies. One
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Figure 6:Convergence graphs of the nine variables, for selected generations, with the underlying true values shown as vertical
lines. (a) Source location in X and Y coordinates, (b) initial velocities in the X and Y directions, (c) flow rate, and (d) grain
concentrations.

approach to testing for the existence of these in a GA
environment is to introduce larger value ‘jumps’ every
nth generation and test for survivability.

There are obviously many different ways one could
extract final value estimates from the resulting predic-
tions. One could take modal values from the ten most
successful of all generations. Figure 2 shows that, even
without using a weighted average of predicted values,
the best results from simulations in the sixth and ninth
generations (6-9 and 9-2) are visually similar to the tar-
get simulation. In the case of the combined best esti-
mate model shown in Figure 2, a study carried out (be-
fore the model was run) using between 3 and 20 best
simulations, with weights corresponding to their qual-
ity, suggested that the optimal choice was three. Thus
the combined best estimate was a weighted average of
the input values from the three models most visually
similar to the target, all shown in Figure 2.

Some interesting features emerge from the predicted
input values associated with these visually similar sec-
tions. First, the simulations do not improve markedly
after the sixth generation. Second, there is a conver-
gence to source (X) values, source velocity (Vx) val-

ues, and flow rate (Q) values that are different from the
target values. The stable estimated values are not ran-
domly distributed, but are systematically offset by up
to 20% (Figure 6). The most obvious explanation for
this is that the GA has settled on a local numerical min-
imum that gives a result that is visually similar to the
target, i.e., this minimum is beyond the resolution of a
human interpreter. This may indicate that the suggested
convexity of the solution space of good models is valid
only at the visual level, which is a limitation of the vi-
sual ranking method.

It is clear that the comparison component could be
automated given a suitable section comparator as de-
scribed by Griffiths et al. (1996) and Griffiths & Duan
(2000), and the process sped up considerably. This may
be desirable considering the observation that the con-
vergence slows after the sixth generation. Obviously,
visual comparison is very effective for quick conver-
gence in the initial generations. In fact, it is proba-
bly more effective than numerical comparisons at this
first stage, where a human can quickly evaluate multi-
ple criteria with ease when outputs are very different.
However, as outputs become more similar, it is harder
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for a human to rank them. For this reason, age charac-
teristics were used to distinguish between lithologically
similar results. More types of representation could have
been used, e.g., water depth facies and porosity, but the
challenge for a human evaluator increases accordingly.
Thus at this stage, when model results become simi-
lar, it may be desirable to substitute, or otherwise inte-
grate, a numerical evaluation. Another approach could
involve capturing the decision making process of the
modeller and using that to guide the inversion (e.g.,
Kaltwasser et al. 2003). Nevertheless, this has been a
valuable demonstration of the possibility of combining
a relatively simple, subjective comparison scheme with
a GA approach to taking geological priors and testing
their validity.

Conclusion

An interactive inversion scheme, which combines
human evaluation of model outputs with a genetic algo-
rithm for the exploration of parameter space, is effective
in converging towards a target section when using 3D
hydrodynamic modelling. The use of human interac-
tion may have a particular advantage in ranking model
outputs near the start of the process, where multiple cri-
teria can be quickly evaluated. At the end of the inver-
sion, we visualize the parameter space for all results,
using, in this case, multi-dimensional scaling and self-
organizing maps, to draw conclusions about the relative
importance of different physical parameters that control
the sedimentation process. The visualization may also
be used to delimit areas in parameter space where fur-
ther investigations should be concentrated.
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