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SUMMARY

We present a system for inverting geological models in
cases where there are no established numerical criteria
to act as inversion targets. The method of interactive
evolutionary computation provides for the inclusion
of qualitative geological expertise within a rigorous
mathematical inversion scheme, by simply asking an
expert user to visually evaluate a sequence of model
outputs. The traditional numerical misfit is replaced by a
human appraisal of misfit. A genetic algorithm provides
optimal convergence into the target parameter space,
while optimising an ensemble of solutions, so that the
non-uniqueness of the problem may be explored. In
order to facilitate analysis of the results, we employ a
visualisation technique known as self-organised map-
ping to represent the parameter space covered by the
numerous model outputs. The result is a simple view of
an otherwise complicated multi-dimensional problem. A
user may infer much about the controlling parameters in
the model through a few graphical displays of the data.

The potential of this interactive inversion and visualisa-
tion technique is demonstrated when we invert a geody-
namic model for a conceptual pattern of fault spacing dur-
ing crustal extension. We also present an example where
the interactive scheme is linked to a numerical inversion
of induced polarisation data. In this case, we are explor-
ing for the numerical inversion parameters which lead to
a particular geological output.

INTRODUCTION

Although it is desirable to have a quantitative measure of misfit
for inversions, we are researching areas where visual judgment
is necessary to evaluate model results in the absence of suffi-
cient constraints. In many applications of geodynamic mod-
elling, a forward solution is judged visually according to its re-
semblance to patterns seen in the field, to the fact that it does
not contradict basic geological principles, or simply according
to the modeller’s expectations.

If we accept the fact that some inversion targets may be difficult
to quantify, then we need a method to incorporate human inter-
action in directing the inversion process. Recently, research in
artificial intelligence has resulted in systems to support such hu-
man interaction in optimisation problems (Takagi, 2001). They
have been used in such diverse fields as graphic design, music
composition, and the engineering of hearing aids. These sys-
tems are known collectively under the terminteractive evolu-

tionary computation(IEC).

We have extended the use of IEC to geological applications in
which we are targeting model results for which we have no ap-
propriate quantitative measure. The system represents an ad-
vance on time-consuming trial and error approaches by provid-
ing a formal role in the inversion process for geological expe-
rience which cannot be transformed into data. The traditional
numerical measure of data mismatch is replaced by the user’s
subjective evaluation. Interactive inversion works by producing
different solutions and presenting them to the user for judgment
and ranking. Our system ultimately provides a range of solu-
tions, which allows an assessment to be made about the non-
uniqueness of the problem.

We have adopted a technique known as self-organised mapping
(Kohonen, 2001) as a means to effectively view the range of in-
version results. This visualisation method creates an easy envi-
ronment in which to draw conclusions regarding parameter con-
trols on the model. The roles of individual parameters in con-
tributing to the non-uniqueness of the solution can be gauged
through a few simple plots.

Although numerical inversions, in principle, do not need any
visual evaluation, many available software programs return a
single result, depending upon chosen inversion parameters such
as misfit tolerance, smoothness criteria, etc. In this case, our
interactive inversion is used to explore the influence of the in-
version parameters, and not the geological parameters, on a de-
sired geological outcome. The IEC method, together with the
visualisation of the results, provides a systematic way to eval-
uate the roles of the inversion parameters in creating a class of
geologically meaningful results.

For a geodynamic application, we have chosen to investigate the
rheological controls on widely spaced faulting in a section of the
Earth’s crust which is undergoing extension. The coupled inter-
active and numerical application involves inverting chargeabil-
ity data from an induced polarisation (IP) survey over a vein-
hosted sulphide system.

METHOD

The interactive inversion proceeds as follows: a user runs a
modelling code with the aim of producing a geological model
that matches a conceptual target. A number of selected pa-
rameters is allowed to vary within given ranges. The system
initially generates a suite of different model outputs using ran-
domly chosen parameter values. In the two examples below,
the model outputs are either forward model images of a faulted
crust, or 2D sections of numerically inverted chargeability data.
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Since we have no automated method for discriminating between
geologically appropriate results, the user ranks each of them ac-
cording to criteria founded in his or her experience and knowl-
edge. A relative target misfit is now contained within these
rankings, and the rankings are provided to a genetic algorithm
(GA). The GA modifies the solution set by applying param-
eter swapping between highly-ranked models, generating new
sets of models that progressively converge towards the target.
A general overview of GAs is provided by Goldberg (1989),
and details specific to our inversion method can be found in
Boschetti et al. (1996). As in biological evolution, an element
of randomness exists in the generation of new models, so that
unexpected results may suggest new possibilities outside the ex-
perience or expectation of the geologist.

At the end of the interactive inversion, a target has been reached,
and the best result is associated with a particular combination
of the variable parameters. However, a number of model results
may satisfy the target, or come close to it, so that we have an
opportunity to investigate the non-uniqueness of the parameter
values which all result in similar outputs. For this we use a
self-organised map (SOM), which is a transformation of high-
dimensional (nD) data into a lower-dimensional (usually 2D)
plot. It is a classification algorithm which separates all the in-
put data into clusters according to similarity. Topology is pre-
served,i.e. two points lying close to one another in the higher
dimensional space also do so in the 2D space.

The 2D SOM which we use is a display composed of two dif-
ferent types of nodes:data nodesanddistance nodes. The data
nodes represent thenD data points, which are composed of the
set of variable model parameters in the interactive inversion.
Adjacent data nodes reflect points innD space which are simi-
lar. The distance nodes connect the data nodes, and give an in-
dication of the relative difference between thenD points. This
may be measured, for example, as the euclidean distance be-
tween points. Thus, the input data vectors are assigned to partic-
ular data nodes, and the connecting distance nodes are coloured
to show the magnitude of the distance. Data nodes are also
shaded, according to an average of surrounding distance nodes,
to produce a more continuous map. Clusters of data nodes close
together in the SOM represent collections of parameter vectors
which produce similar model results. The SOM plots in this
work have been obtained with the use of the MatlabTM SOM
Toolbox, written by Juha Vesanto.

APPLICATIONS

Geodynamic Modelling

The geodynamic example of faulting during crustal extension
uses a particle-in-cell finite element code which is well-suited
to problems involving very large deformation (Moresi, 1999;
Moresi et al., 2002). The goal is to find sets of material param-
eters which give rise to fault spacing wider than the thickness
of the upper crust. The location of faults is extremely sensi-
tive to initial perturbations, both in nature and in our numerical
models, so that a specific target image is not appropriate: we
look for general behaviour and relative spacing. Our numeri-
cal model is composed of two initially homogeneous layers, a

brittle upper crust overlying a ductile lower crust. The model
is extended from one end and faults develop naturally through
strain localisation.

Six model parameters are allowed to vary: the viscosityη of the
upper crust, and five yield parameters which describe the brittle
failure of the upper crust. These are the cohesionBo, the pres-
sure dependenceBp of the maximum sustainable shear stress,
which is equivalent to the friction coefficient in Byerlee’s Law
(Byerlee, 1968), the tensile limitBc of the crustal rocks, the
maximum proportion of strain weakeningEa, and the “satura-
tion strain”Eo beyond which no further weakening takes place.

Six generations of models are run, with eight simulations per
generation. A user ranks the output images of each genera-
tion, from 1 to 8, according to their similarity with the con-
ceptual target of widely-spaced faults. Successive rankings of
the outputs of each generation allow the algorithm to progres-
sively hone in on combinations of parameter values which pro-
duce images approximating the target increasingly well. Figure
1 shows the progression of the simulations and the rankings ac-
corded to each output image, for the first, second, and sixth
(last) generation of the inversion process. Dark areas in the up-
per crust denote plastic strain, sometimes localised into well-
defined shear bands, which are our representation of faults. A
number of models are not extended because they fail to con-
verge numerically. These are left unranked, and the GA ranks
them randomly at the bottom of the suite of solutions and does
not explore further in this area. Later analysis reveals that an
unrealistically high yield strength is the reason for the numer-
ical failing. Thus the loss of this particular area of parameter
space does not equal a loss of physically plausible solutions.
Although the first generation (panel i) does not produce any-
thing resembling the target image, the algorithm still eventually
finds, through the continued high ranking of the best results, a
solution which we deem acceptable. At each generation, model
results are compared with the best-ranked solution of the pre-
vious generation in order to assess whether we are converging
towards the target. By generation 6, half of the models exhibit
qualitatively similar solutions, and we halt the process.

Figure 2 illustrates the mapping of the output images onto the
SOM. All extension images have been labelled with their “ab-
solute” rank at the end of the entire inversion exercise, 1 being
the best model. This is different from the relative ranking per-
formed during the inversion run. SOM nodes which are close
together in Figure 2, and separated by small distances, represent
clusters of input vectors which result in similar output images.
It is clear that the area in parameter space at the top left corner
contains the models that are closest to the target. At this point
one may observe that some models far from the “best” corner
(e.g.the model ranked 5.5 in Figure 2) nevertheless share char-
acteristics of the best models. This is indicative of the non-
uniqueness of inversion solutions – models with very different
parameter inputs may produce nearly identical outputs.

The actual parameter values can be displayed in various deriva-
tives of the SOM plot which are not shown here. We can analyse
the influence of each model parameter on the solution. A high
viscosity is essential for producing the best model, together with
relatively small values for the other five components, includ-
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Figure 1: Evolution of the interactive inversion. Panels (i) to (iii) represent the first two and the last (sixth) generation of
the algorithm. Images are ranked according to their fault spacing, where dark areas in the upper crust indicate accumulated
plastic strain (faults). Some models have not been extended to full length because of numerical non-convergence. These are
left unranked, and the algorithm orders them randomly so as to fill up the bottom rankings. The third image of generation six
(panel iii) is the best result.

ing the ratioEa of strained to intact rock strength, denoting
weak faults. The last component,Eo, can in fact vary some-
what without affecting the final result, which is indicative of the
non-uniqueness of the solution with respect to this parameter.

Numerically Inverted IP Data

Numerical inversions do not require user interaction, but often
return a single solution. In the following example, we explore
the effects, on the geological picture, of changing the numer-
ical inversion parameters for chargeability data from a dipole-
dipole IP survey. The IEC scheme is coupled to the University

of British Columbia IPINV2D code. The variable parameters
are the data misfit tolerance, closeness to the reference model,
and vertical and horizontal smoothness. The geological target is
a vein-hosted sulphide system, so the model outputs that show
compact discrete zones are the most plausible. The data were
collected many years ago, and subsequently digitised from pa-
per pseudo-sections, so that there is no record of measurement
errors, noise, etc. The appropriate misfit tolerance, for example,
would only be found by exploratory data analysis. Interactive
inversion is an organized way to investigate the parameters.

Figure 3 shows the third generation of the IEC process. Each
image is the result of a single IP inversion. The depth of inves-
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Figure 2: Mapping of output images to SOM nodes. Data nodes (every second node) represent outputs from the inversion
process. The output images are labelled with their absolute rankings. The colours of the distance nodes in the SOM vary from
blue (close) to red (far). Data nodes are coloured according to an average of surrounding distance nodes. The best model images
are clustered in the top left domain.

tigation is not large, so the inverted results can be interpreted to
be showing the tops of veins. The first two generations had high
rankings assigned to images showing discrete zones of charge-
ability. In the third generation, we have five models which
match this conceptual target, although they are the result of dif-
ferent numerical inversion parameters. The SOM analysis is not
shown.

DISCUSSION AND CONCLUSION

In the above examples, we are looking for model results which
we are not able to sufficiently describe by numerical measures.
Finding a suitable combination of parameters which gives rise
to the target would previously have involved one of two more la-
borious approaches: the manual selection of parameters by trial
and error, or an exhaustive coverage of all parametric space.
Trial and error may succeed with a limited number of parame-
ters, but depends upon the user’s knowledge of the coupling and
feedback between them, which, in highly non-linear problems
such as the example involving crustal rheologies, may be im-
possible. A parametric sweep quickly becomes unfeasible due
to the sheer number of models which must be run as the number
of parameters is increased. In the faulting example, in excess of
20 000 models would have to be run in order to cover all pos-
sible parameter combinations, and each forward model takes a

few hours to run on a 935 MHz desktop computer with 500 MB
of RAM. Using IEC, we have found a number of solutions with
only 48 models being run. This vast reduction in individual
models can be attributed to the fact that visual ranking provides
more information in this type of search than numerical misfit
in a non-interactive inversion. A model containing one or more
features of paramount importance, but with a potentially large
numerical misfit because of, for example, spatial discrepancy
in feature locations, is ranked highly and provides a significant
step forward in the search through parameter space. In fact, be-
cause of the combinatorial nature of the GA progression, two
images which each contain a different feature of importance
can both be ranked highly in order to increase the likelyhood
of producing a new model containing both desired features. In
both the geodynamic modelling case, and the coupled numerical
and interactive inversion, neither trial and error nor a parametric
sweep takes full advantage of the knowledge of a user.

The power of inversion lies in demonstrating the range of non-
uniqueness of a solution, and using a SOM, we perform an
a posteriori investigation of the sensitivity of the results to
changes in our chosen variables. The GA optimises an ensem-
ble of solutions, which provides the range of non-unique results,
and the SOM represents the multidimensional parameter space
in a clear and simple 2D visualisation environment. It is easy to
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Figure 3:Third generation of IP inversions. Five out of twelve images show discrete zones of chargeability, but are the result
of different numerical inversion parameters.

draw conclusions regarding the controlling factors in the model,
and the connections between them. The IEC system and SOM
visualisation can be applied to any modelling problem which
would benefit from human interaction.
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