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Abstract 

 
We present a modelling approach to rapidly assess the effect of management 
decisions on ecological problems and demonstrate its use in fishery management. 
Each stage of the approach is controlled by a graphical user interface which allows a 
team of non-expert modellers to compare the outcomes of multiple model simulations 
and to decide what further simulation is needed.   
 
A distinguishing feature of the method is that it allows the goal of the management 
strategies to arise as a result of the interaction between the user and the model, rather 
than being defined a priori, as well as to change during the process in response to the 
information and the insight such modelling may provide. We envisage that a 
management team, rather than a single user, may also employ the method as an 
avenue for communication, in order to discuss the potentially conflicting aspects of 
different model outcomes along the path to finding workable compromises. We 
discuss an application of the approach to the sustainable management of a recreational 
fishery in a marine park in Western Australia. 
 

1  Introduction  
 
The multiple use management of a natural resource involves finding a compromise 
between different types of natural resource use including extractive and non-
extractive, and between the short and longer-term sustainable exploitation. Effective 
management of a natural resource involves planning and setting goals and objectives, 
designing strategies with which to achieve them, implementing the management 
strategies, and evaluating them to determine if they achieve the objective for which 
they were designed (Sainsbury et al. 2000). 
 
Conceptually, we can envisage an abstract space, in which all possible available 
strategies (that is possible management interventions) exist; in principle, resource 
managers could then search this space in order to find a desired compromise. When 
simulation is used as a resource management tool, this abstract space becomes 
somehow less ‘abstract’, since its (albeit simplified) representation coincides with the 
set of model input parameters. The simulation model then represents a mapping of 
points in input parameter space to an output data-space where projected outcomes of 
management decisions can be viewed and analysed. Seen from this perspective, a 
resource management problem appears similar to many engineering or applied 
mathematical problems, in which a numerical optimisation tool can be used to map a 
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desired policy outcome (from the outcome space) back into the strategy space, 
thereby easily deducing a set of reasonable, if not optimal, strategies (Sainsbury et al., 
2000; Doyen and Béné, 2003; Doyen et al., 2007; Martinet et al., 2007).   
 
Researchers and practitioners experienced with resource management problems are 
well aware that this approach would be unlikely to work in practise, for several 
reasons: 
1. optimisation routines need to convert the judgement of the suitability of a strategy 

outcome into a numeric value, which is then minimised or maximised. A 
meaningful numerical expression is very difficult to implement since most often 
a) different objectives are sought to be reached at the same time, b)  the relative 
importance of these different objectives need to be weighted subjectively and c) 
these objectives may represent contradictory requirements. 

2. Management objectives need to be stated clearly a priori. However, defining 
objectives is often the result of negotiations and forms part of the purpose and 
outcome of the modelling exercise itself. 

3. As information becomes available to stakeholders through the modelling process 
management objectives may change, as stakeholders may realise they are 
unrealistic or incompatible with other objectives.           

 
In this paper we describe an approach which attempts to overcome the limitations 
described above by coupling a computer simulation modelling tool with input derived 
from expert users and by allowing the human supervision to become an integral part 
of the modelling process. The purpose is to enable a manager or a management team 
to use a numerical optimisation routine as an optional addition to the more traditional 
running of a simulation model as a tool in resource management. Furthermore, at each 
stage of the approach, the user is in full control of the modelling process and able to 
interact with it at different levels. This interaction results in a) a very flexible way to 
define the suitability of a strategy outcome, b) no need to define the goals of a 
resource management a-priori and c) the possibility of changing goals at any stage of 
the process as a result of the information accumulated so far. In this manner, we aim 
to see the goals of the resource management emerge as a result of the interaction 
between the modelling exercise and the manager(s). The framework makes explicit 
the role of the simulation model in providing understanding of a system rather than 
simply predicting a possible outcome.  
 

2  The approach 
 
The approach involves a computer model, (referred to as Simulation Model in the rest 
of this paper) which captures the behaviour of an ecological and social system (in this 
specific case a fishery) in order to predict the environmental, social and economic 
effect a management strategy may have. This provides a mapping between the 
available management options and the estimated effects. This Simulation Model is 
embedded in a software package called ScenarioLab which also includes a Graphical 
User Interface (GUI) to facilitate the interaction between the model and the user(s) as 
well as an optimisation routine (a Genetic Algorithm in this case) which can 
optionally be used. ScenarioLab is designed to allow users (managers and stake-
holders) with little modelling or ecological expertise to use the Simulation Model in 
order to explore management options and their effects. Figure 1 summarises the use of 
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ScenarioLab; this includes running the Simulation Model and analysing the output 
according to criteria which may be subjective, and not necessarily defined a priori 
(label 1 in the figure). This is followed by two options for the users: if they want to 
investigate the effect of different specific management options they can do so (label 2, 
this effectively represents a direct exploration of the model input space by the users; 
see also ‘forward modelling’ in Section 6 ). If the problem is more complicated and 
alternative management options are not obvious or the users want to ensure they are 
not disregarding less intuitive but still available management options, then they can 
pass their evaluation of the Simulation Model outputs to an optimisation routine (label 
3) which automatically performs the exploration of the input space and provides new 
potential management scenarios to evaluate via the Simulation Model. Details of the 
approach and software implementation are given while the reader is guided through 
an example application.  
 

3  An example application: fisheries management in a marine park 
 
Our test case is a simplified representation of the fishery in the Ningaloo Marine Park, 
a 300 km long fringing coral reef in the northwest coast of Western Australia (see 
Figure 6). For a number of decades the park has undergone increased fishing and 
tourism pressure despite being located 1200 km from the closest large city (Perth). 
Our study aims at devising a set of fishing regulations that will ensure a sustainable 
future for the park; recreational fishing currently represents one of the main drivers 
for local tourism. Previous initiatives have established a number of sanctuary zones 
and imposed a set of recreational fishing regulations, as well as a compete ban on any 
form of commercial fishing within the park. The evaluation of the effectiveness of 
current regulations and sanctuary zones and the assessment of the possible need to 
adjust or redefine management objectives, are the main purposes of our analysis. 
 
The studied area, which includes the park and surrounding region, has been divided 
into a number of zones in accordance with both ecological and administrative 
constraints and is displayed in Figure 6 (where the boundaries of the Ningaloo Marine 
Park and the existing sanctuary zones are given for reference). The boundary of the 
park roughly separates the shallow inshore waters from a deeper marine environment 
along a 40 metres depth contour and it can also represent the margin between two 
different ecological environments. A description of the modelled species is given in 
the next section. 
 

4  The Simulation Model 
 
The purpose of the Simulation Model is to estimate the expected effect of a number of 
fishery regulation options which are available to the management team. These 
management options control the number of dispensed fishing licences, the total areas 
reserved as sanctuary zones, daily catch limits, and minimum and maximum legal 
lengths for two species of interest. Once such regulations are defined, the Simulation 
Model mimics the behaviour of a fishing fleet (in this case of recreational fishers) and 
the effect of their catch and by-catch on the modelled foodwebs. The output is then 
presented to the user in the form of time series of biomass and catch for the different 
species.   
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For each regulation option the model is run a number of times under different model 
settings, characterised by different ecological inputs. The purpose is to capture, to 
some extent, the uncertainty in the model parameterization resulting from the lack of 
precise biological data as well as the inherent uncertainty of biological and ecological 
processes. This choice aims to inform the users of the range of variability which they 
need to expect in the modelled response even given precisely defined fishery 
regulations. In order to keep the computation load acceptable, in this application we 
decided to run the model under three different model settings, which try to capture 
‘pessimistic’, ‘neutral’ and ‘optimistic’ system states.     
 
A detailed description of the Simulation Model implementation can be found in the 
Appendices; here we briefly describe the main modules. 
 
The ecological module accounts for trophic relations among different species; at 
present five fish species within a 3-level food-web are modelled for each 
environment/zone (Figure 2). This model includes: 

1) a lower trophic level prey, representing the basic food source for the entire 
foodweb. 

2) 3 intermediate species; these include two species targeted by recreational 
fishing, whose dynamics are the focus of the study, as well as a competitor 
which undergoes possible by-catch;  

3) a top predator, which is also accounted for as by-catch.  
 
The size of the foodweb is constrained for the sake of computational speed. 
 
Two types of foodwebs are used in order to discriminate between the different 
ecological zoning. A detailed description of the ecological module is given in 
Appendix C . 
 
The fishing module models the fishing behaviour, the sharing of the catch among 
vessels targeting the same fishing zone, the effect of gear selection and the choice of 
the target species. A detailed description of the fishing module is given in Appendix 
D  
 
The economic module models the fishers’ decision making; fishers store their past 
record of catches and choose which fishing zone to target according to a prediction of 
what the most profitable zone might be in the next iteration. The prediction is carried 
out by attempting to maximise the catch of each individual vessel while accounting 
for the behaviour of the overall fleet (Boschetti, 2007). The economic module is 
described in detail in Appendix E  
 
A fishing regulation module; this defines the fishing regulations at each fishing zone 
and represents the management strategy options (input space of the Simulation 
Model). These include the extent of sanctuary zones, the number of fishing licences 
allowed, and the bag limits, and legal minimum and maximum length for two species 
of interest: Spangled Emperor (Lethrinus nebulosus) and Chinaman Cod (Epinephelus 
rivulatus).  The module can be extended easily to include other regulatory and 
assessment criteria.  
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The scenario management module; this includes the Graphical User Interfaces 
which allow the resource manager to a) decide what strategy to test; b) evaluate and 
rank the strategy outcomes; and c) employ the numerical optimisation tool, if 
required. This module is described in detail in the next section while more 
information about the technical implementation of the Graphical User Interface and 
the software flowchart are given in Appendix A  
 
The numerical optimisation tool which allows to search the strategy parameter 
space. In this implementation we use a real-coded Genetic Algorithm (Davis, 1991). 
Details about this module can be found in Appendix B   
 

5  The Scenario Management Module 
 
At the core of this method lies the belief that the aim of the management program may 
not need to be set a priori. In the following we assume that a team including managers 
and stakeholders (rather than a single expert user) may jointly undertake the exercise, 
not only for decision making but also as an avenue for communication. This leads to 
exploration and discussion of the conflicting aspects of different model outcomes. 
 
When ScenarioLab is launched the management team is first presented with the 
Initialisation GUI shown in Figure 7. On the top left hand side a panel called 
“Parameter Ranges”, lists the parameter values of eight specific regulation items the 
management team can use to control fishing in the park. Two of these parameters are 
global: the extent of the area closed to fishing (expressed as a multiplying factor of 
total area of the current sanctuary zones) and the number of fishing licences 
dispensed. The other parameters refer to the specific species of current management 
concerns: Spangled Emperor and Chinaman Cod. For each species, the management 
team can impose regulations on the maximum daily catch as well as minimum and 
maximum legal lengths. The “Parameter Ranges” panel is editable and allows for the 
definition of the minimum and maximum value allowed for each parameter; that is the 
‘reasonable’ range within which we search for suitable management options. These 
values define the bounds of the Simulation Model input parameter space and they are 
naturally required by most numerical optimisation routines.  
 
At the bottom left of Figure 7 a panel called “Initial Values” contains four smaller 
panels called Specification 1-4. These are scenario specifications that correspond to a 
management strategy and are defined by a set of eight numbers chosen randomly 
between the ranges defined in the “Parameter Ranges” panel (in Figure 7 only five 
fields can be seen, the two global parameters and the quota and minimum and 
maximum legal length for the spangled emperor; the parameters for the Chinaman 
Cod can be selected via the drop-down menu in the middle of each Scenario 
specification panel). Each field is editable so the management team can modify the 
random values should it want to analyse a given scenario. Once the team is happy 
with the chosen values these input data are passed to the Simulation Model to run the 
simulations, at the end of which the Evaluation GUI (shown in Figure 8) is displayed.  
 
The evaluation GUI shows three panels, a green one on top, a red one to the lower left 
and a blue one to the lower right. Within the green panel are four smaller grey panels, 
one for each scenario specification. Each panel displays the output of an independent 
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run of the Simulation Model. As an example, we analyse Specification 1. The plot 
displays two sets of time series: for a given species, the red time series show the 
evolution of the biomass through time, while the black time series indicate the catch. 
Each set of time series consists of three individual time series (dashed, thick and thin 
lines) describing the behaviour of the species under different model settings 
(‘pessimistic’, ‘neutral’ and ‘optimistic’ system states) in order to capture the inherent 
uncertainty in the model parameterization and process, as described in Section 4 . By 
using different drop-down menus the time series of all modelled species in all 
modelled zones can be analysed. 
  
At this stage, the management team has two options: it can either direct further 
modelling by defining new scenarios to test or it can use the optimisation module to 
help the process.  

5.1 User Guided Procedure 
The team can decide what scenario should be tested next (this corresponds to arrow 2 
in Figure 5). Should the team detect any feature in a scenario outcome worth further 
analysis it can modify some of the fishing regulations for that scenario via the editable 
field on the right hand side of the plot (which currently shows the specifications of the 
individual run which generated the plotted time series). The Simulation Model is then 
run and the new output plotted in the refreshed panel for the team to examine the 
effect of new regulation. 

5.2 Assisted Search  
Alternatively, the user may decide to employ the Genetic Algorithm (GA) to facilitate 
the search in the scenario parameter space. This corresponds to arrow 3 in Figure 5. 
The rationale for doing so is that optimisation routines like GA are tailored to search 
parameter spaces; in highly non linear problems (like ecological modelling), models 
may generate counter-intuitive results and a well designed search may reveal 
combinations of input parameters resulting in outcomes that even an expert user may 
not predict; it is this possibility of generating unexpected results which makes 
optimisation routines useful in these kinds of problems. 
 
In order to carry out this search, the GA needs some indication from the user of what 
scenario resulted in good outcomes and which resulted in bad ones (the equivalent of 
‘objective function evaluation’ in the parlance of numerical optimisation). The user 
can provide this feedback via the ‘ranking’ drop-down menu (currently displaying 
‘Not ranked’ in Figure 8), which the management team can use to instruct the GA on 
whether the outcome of a specific scenario is the ‘best’ in comparison to the other 
outcomes, the ‘worst’ or somewhere in between, in which case a numerical rank can 
be provided.  
 
This feedback can be thought of as training the GA. The GA then takes this feedback 
into account for its own internal functioning (Davis, 1991) and generates a new set of 
scenarios. Through this menu the management team can provide a subjective and 
relative evaluation of the suitability of the model outcome. The evaluation is relative 
in the sense that the model outcome is compared to the outcomes in the other three 
scenarios.  The evaluation is also subjective because it is obtained by assessing 
various aspects of the model results and depends on the management team as well as 
on the purpose of the modelling exercise. In the case of multiple users we expect that 
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the ranking of the model outcomes will involve discussions with exchange of ideas, 
information, views and opinions.  
 
Finally, in the red panel at the bottom left another scenario specification and output 
panel is displayed representing the best outcome among all models run so far. This 
panel has two roles: first it ensures the best result obtained so far is not lost and 
second it provides a link, and thus continuity, between the different iterations in 
ScenarioLab. 
 
The process then iterates with the management team choosing between the “User 
Guided Procedure” and the “Assisted Search” until a set of satisfactory regulations is 
obtained or enough information has been collected.  
 

6  Relation to other modelling approaches 
 
Computer models can be used for different purposes and consequently in different 
modes. For the sake of this discussion we group these modes roughly into four 
classes: 
 

1) Forward modelling; a model can be used in order to reproduce an observed 
behaviour or to explore the model behaviour. This is usually done by 
modifying some input parameters and then observing and classifying the 
variation in the model output. In this mode the user implicitly performs an 
optimisation (if he/she aims to reproduce the observed behaviour) and a 
sensitivity analysis (by observing the impact of a change in the input 
parameters), however no computer routine is explicitly used to facilitate these 
tasks. At times the user may not even be aware of his/her mentally carrying 
out these two mathematical processes; this approach is called ‘forward 
modelling’ in some disciplines. This is probably the most widespread use of 
computer modelling and some users can become extremely proficient at it. 
The main drawback of this approach is that a considerable amount of time is 
required to develop a deep knowledge of a problem and of a specific 
numerical model. 

2) raditional numerical optimisation; in this mode an optimisation routine is used 
to explore the model parameter space in order to match a target model 
behaviour or response. This is a typical use in engineering or applied 
mathematics. It is a way to formalise and speed up the forward modelling 
approach but, as discussed in the Introduction, depends crucially in the 
definition of the cost function which determines quantitatively how well the 
target behaviour has been reconstructed. This cost function needs to be given a 
priori, thus changes in the purpose of the optimisation are not allowed without 
re-writing the cost function and restarting the process. 

3) Teaching or education purposes; here the model is used to train users to carry 
out a certain task or to learn a specific skill. The ‘flight simulators’ are a well 
known example, but similar ideas can be developed to teach high-school 
students about dynamical processes (Hogan and Thomas, 2001) and to train 
managers to address complex tasks (Dorner, 1996). 

4) Participatory modelling; here modelling is used as an avenue for 
communication aimed at addressing a problem, reaching an agreement or 
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highlighting the issues which need to be better modelled in the next phase of 
the project. 

 
Obviously the above classes should not be considered as rigid, since mixed 
approaches are possible. To a certain extent, ScenarioLab allows inclusion of most of 
the above modes within a single platform and a single approach. The forward 
modelling mode is represented by arrow 2 in Figure 5 and ScenarioLab can be used 
purely in this fashion if the user so wishes. Compared to carrying out forward 
modelling without the Evaluation GUI, this approach provides some minor 
advantages in the automated visualisation and the automated storage of the tested 
input parameter sets. More importantly however, the Evaluation GUI allows manual 
modification of sets of parameters at the same time (four in the example given in this 
paper) and to compare the different results without having to retrieve stored model 
output. The current ‘best’ outcome (red panel in Figure 8) also provides a reference to 
the best scenario so far generated, which is something that is easy to lose track of 
when tens or hundreds of scenarios have been run manually.  

 
The numerical optimisation mode is represented by arrow 3 in Figure 5; as discussed 
at length above, in the current implementation the subjective evaluation of the user 
replaces the numerical evaluation of the cost function, which is standard in traditional 
optimisation approaches. While the rationale for doing so has been discussed in the 
Introduction, an option for traditional optimisation could obviously be included in 
ScenarioLab should the need arise and provided the limitations of the approach are 
well understood. This could be done, for example, by providing a number of pre-
defined standard cost functions in a further GUI window as well as an option for 
choosing real data or sets of expected behaviours to match.  
 
We believe that one of the important features of ScenarioLab is the possibility to 
combine the subjective, human-driven optimisation with the forward modelling 
approach which, in the optimisation jargon, provides for both exploration and 
exploitation of the input parameter space: that is, it allows the users to alternate 
between a global optimisation stage (human-driven optimisation) in which novel 
behaviours are explored, and a local optimisation stage (forward modelling) in which 
the current behaviours are locally explored (exploited, in optimisation jargon).  
 
Teaching as well as a participatory modelling are also possible in ScenarioLab; an 
instructor can guide the analysis of how the model outputs relate to the input 
parameters for teaching purposes and a facilitator can assist a discussion leading to 
the subjective judgement of the model output in a participatory setting. In the latter 
case, the validity and usefulness of the model can also be discussed and the ranking of 
the model outputs can highlight potentially diverging views on the interpretation of 
model outcome and the purpose of the management exercise itself. 
 
Once again, we believe that the most powerful component of the approach lies in the 
possibility of incorporating all these approaches into a unified framework, thereby 
allowing for analysis, exploration, learning and discussion to occur as components of 
a single process. 
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7  Generalising ScenarioLab to other modelling problems 
 
One of ScenarioLab’s features is that the criterion according to which a model run is 
judged is not fixed and can change during the iterations, that is, it can change as a 
result of the insights and learning which occur during the modelling exercise itself. 
This is an extremely powerful feature, both conceptually and practically, which goes 
beyond the classic view of a model as a fixed and closed system. It enables the users 
to do what they are best at, which is to provide judgement, insight, intuition and even 
ethical concerns and to make the most of the only thing a computer does well: fast 
computation. 
 
Technically this is possible by passing to a GA the subjective ranking provided by the 
users in place of the commonly expected numerical evaluation of a cost function. This 
idea is at the core of what is called Interactive Evolutionary Computation (IEC) 
(Takagi and Iba, 2005; Takagi and Ohsaki, 2007). (Takagi, 2001a) describes the 
technique, together with an exhaustive list of software-engineering applications. In 
recent years we have gained a considerable experience with the application of IEC to 
several complex numerical problems (Boschetti and Moresi, 2001; Wijns et al., 
2003a; Wijns et al., 2003b; Boschetti, 2005) which share many features with 
ecological modelling: they are high-dimensional, highly non-linear, require 
approximate solutions to differential equations, are often spatially explicit and can 
include combinations of continuous and discrete computation. In these experiments 
interactive optimisation has been carried out by students, modellers, practitioners with 
no specific modelling expertise and experts in numerical optimisation (so far we have 
never tested the method with teams of multiple users).  Our experience with these 
applications is that the combination of the GA search and the feedback provided by 
the expert user can be extremely powerful, allowing the discovery of acceptable 
solutions in very few iterations (Wijns et al., 2003a) and in considerably less time 
than required by traditional forward modelling (Boschetti and Moresi, 2001).  
 
To users familiar with numerical optimisation and with traditional GA this 
convergence speed can be surprising. Our conjecture is that this enhanced 
performance is due to at least three main reasons. First, the expert feedback provided 
by the user effectively makes the mapping between input parameters and outcome 
space smoother than the one provided by traditional numerical cost functions 
(Boschetti, 2005). For example, a user may disregard minor numeral variations in an 
image pixel values or minor oscillations in a time series which do not impact their 
overall problem-specific interpretation; a traditional numerical optimisation routine 
may spend several iterations optimising these minor variations with no apparent 
advantage to the user. At times these minor features may even result in the numerical 
optimisation routine being mislead towards unpromising areas of the parameter space, 
which may result in a final solution of poor quality or in further computational effort 
to rediscover the more promising area. Second, a user can switch very quickly the 
attention of his/her analysis between different features of the model output; this 
results in implicitly giving different weights to different features in the solution, 
which may be relevant at different stages of the optimisation process. In other words, 
the user’s subjective judgement ‘adapts’ to the different stages of the optimisation 
process while a numerical optimisation would be insensitive to them. Third, a user is 
in general more capable to discriminate between global and local improvement in a 
solution: the user subjective judgement allows for the search to rapidly jump between 
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different areas of the solution space without getting trapped for many iterations in the 
proximity of a single local minimum (Kishi and Takagi, 1999; Boschetti and Moresi, 
2000). Rather than spending several iterations trying to fine tune a solution, a user is 
capable to judge whether a different area of the solution space should be investigated 
(and thus abruptly switch the solutions’ rank) or to terminate the optimisation given 
that a satisfactory solution has been achieved.  
 
Obviously, the requirement for a human intervention in the process also carries a 
number of drawbacks: we can’t expect the users to be able to control and possibly 
manually tune the several hundred input parameters that ecological models often 
require. A suitable selection of the important parameters must be done before the 
method can be used and it is inevitably problem specific. In principle, automated tools 
could be designed to support the user’s task. As an example, an algorithm could be 
trained to ‘understand’ and ‘replicate’ the user implicit choices as we tested in 
(Kaltwasser et al., 2005). An algorithm of this sort could take over from the user once 
a sufficient training has been reached, after which the user could simply supervise the 
algorithm by checking that the ranking is consistent and/or restarting the training once 
he/she realises that new ranking criteria should be employed. Research into Artificial 
and Computation Intelligence is likely to provide tools of this kind and future 
applications of interactive optimisation may benefit from this.     
 
Also, it might be argued that the subjectivity implied in the human intervention is 
exactly what we wish to avoid by using numerical models in the first place. There are 
several problems in industrial applications and applied mathematics to which this 
comment surely applies. However, these are problems for which the choice of the cost 
function to optimise is ‘natural’ in the sense that it clearly represents the purpose of 
the study and reliably ‘measures’ the level to which the purpose is achieved. As 
discussed in the Introduction this rarely applies to ecological or social problems in 
which subjectivity and uncertainty is inherent in the definition of the problem. 
Designing a cost function in numerical form to use with a traditional, rather than 
interactive, optimisation routine would merely hide, not remove, this subjectivity.    
 
Another important drawback is that the computational effort required by the 
ecological models will affect the speed with which the users can interact with the 
search process. With very large and slow models, the users may be able to interact 
with the GUIs only once or twice a day, letting the model run in the background for 
hours in between. In this case, a few days may be needed in order to obtain an 
acceptable solution. In our experience, this cumbersome approach did not degrade the 
result of the experiments and still proved much faster and effective than fully human-
driven trial-and-error exploration of the same parameter space (provided a single user 
was in charge of the modelling exercise and consequently could easily schedule the 
interaction with the model (Boschetti and Moresi, 2001)). However, it is unlikely that 
the same would hold true when a team of multiple users wishes to employ the method, 
since scheduling regular meetings would be impractical and the momentum of the 
discussion generated by the insights gained by the modelling would probably be lost. 
 
This raises the question of what simulation models can be used in this approach. If, as 
we suggest, this tool is most suitable for ‘small’ and ‘fast’ simulation models, could it 
still have a role in addressing problems which require heavier computation? The 
answer may lie in a two stage approach in which two simulation models of the same 
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process are used to address a complex problem. ScenarioLab could then be treated as 
a demonstrational, educational and exploration tool in combination with the simpler 
of the two simulation models. In this setting its role is to introduce non-modellers 
(resource managers or stakeholders) to modelling and allow them to experience in 
first person what the modelling exercise involves and to understand what reasonable 
outcome it can generate. It also allows the same users to highlight, thanks to the 
insights the modelling can generate, what specific issues need further, more detailed 
analysis and which questions deserve further inspection. 
 
This subsequent, more detailed analysis can then be carried out via the more complex 
simulation model. We expect that by using the simpler model to better define the 
crucial components of the problem, which would be far more time consuming to 
achieve directly with the larger model, this  two-stage approach would allow a saving 
of time and resources. We also envisage that the involvement of end users and 
stakeholders from the beginning of the modelling exercise could result in a better 
definition and understanding of the expected results.  This two-stage approach is 
currently being tested in a larger setting of the Ningaloo Park study and we will report 
on the results in the coming years. 
 
Finally, models can be used to test the feasibility of proposed interventions, to find 
efficient ways to achieve specific goals but also to explore alternative options not yet 
considered. The latter can also be attempted via traditional numeral optimisation but 
designing an effective cost function for this purpose can be very difficult.  This is 
where the user can be most valuable to the optimisation process by purposely 
choosing solutions with specific properties, for example being different from 
solutions already considered, thereby ‘biasing’ the optimisation towards unexplored 
areas of the solution space.  
 

8  Conclusions 
 
Two principles are at the basis of ScenarioLab. First, the evaluation of a modelling 
outcome is subjective and contextual: different users may judge an outcome 
differently depending on their expectations, needs, assumptions and expertise. Since 
assumptions, like expectations and expertise, may change as a result of the modelling 
results, the evaluation of a modelling outcome may change during a ScenarioLab 
session. Second, humans find it easier to express relative judgments (“model outcome 
3 is worse than model outcome 7 but better than model outcome 2”) than absolute 
ones (“model outcome 3 is the fourth best among all runs”).  These two principles 
have been the main driver for the development of ScenarioLab’s graphical user 
interfaces (GUI) which allows users to control and evaluate different model runs in 
parallel and to direct future modelling iterations. 
 
For this to be possible the tool needs to a) be intuitive enough to be comfortably 
controlled by non-expert modellers, b) run reasonably fast so that the results can be 
computed in near real-time, c) provide a flexible way to define the suitability of a 
strategy outcome and d) allow modification of goals at any stage of the process, as a 
result of the information provided and the discussion it generated. We have described 
a number of implementation features and software tools which accommodate for such 
needs.  
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Figures 
 
 

 
Figure 1 – Diagram of ScenarioLab workflow: ovals represent algorithms, rectangles 
input and output data, think arrows data transfer and dashed arrows user evaluation. 
The use controls every iteration through the process: after the Simulation Model has 
generate the output, the user evaluates the environmental effect (label 1 in the figure) 
and either chooses what further management option to test (2) or passes a subjective 
evaluation of the environmental effect to a optimisation routine (3) which then calls a 
further simulation.   
 
 

 
Figure 2 - The studied area and the current management zoning within the Ningaloo 
Marine Park. 
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Figure 3 - ScenarioLab initialisation GUI containing the management parameters for 
the Simulation Model. 
 

 
Figure 4. ScenarioLab Evaluation GUI. 
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Figure 5. Diagram of the overall ScenarioLab method. 
 



 17

 

Appendix A – Graphical User Interface and software flowchart 
 
Here we describe in more detail how the GUI communicates with the Genetic 
algorithm and the Simulation Model. This represents the high-level description of the 
software flowchart as summarised in Figure 5. 
 
In the first step (block 1 in Figure 5) we need to define the global parameters required 
by the Genetic Algorithm, which include cross-over rate, mutation rate and number of 
individuals (which represent the number of scenarios in this work). 
 
The second step consists in launching the Initialisation GUI (block 2 in Figure 5). 
Here the user can define the allowed ranges for the management parameters in the 
Genetic Algorithm search, which defines the volume of the input parameter space. 
Once this is done the initial Genetic Algorithm population is generated randomly. 
Each individual in the population represents the input parameter for one scenario, that 
is one Simulation Model run. The user also has the opportunity to modify the random 
values in any of the scenarios if a specific set(s) of input management parameters 
needs to be modelled.  
 
Once these values are defined, they are passed to the Simulation Model Control 
module (block 3). This module runs all scenarios, that is, it applies the Simulation 
Model to each set of input parameters (four in the Figure) and generates 4 model 
outputs, one for each scenario. 
 
The output from each scenario is then passed to the Evaluation GUI (block 4), where 
it is visualised as time series. Here the user has two choices. He/she can modify the 
input parameters of an individual scenario in order to explore the consequences of a 
different management strategy. In this case the modified scenario input is passed to 
the Simulation Model Control module which runs only the modified scenario, whose 
output is then automatically refreshed in the Evaluation GUI (path 5 in Figure 5, 
corresponding to arrow 2 in Figure 5).  
 
Alternatively, he/she can decide to rank the scenarios’ output as described in Section 
5.2  and corresponds to arrow 3 in Figure 5. In this case the ranking is passed to the 
Genetic Algorithm (block 6), which process the information and generates a new set 
of four scenarios input. These are passed to the Simulation Model Control module, 
which runs all Scenarios before sending the new outputs for visualisation to the 
Evaluation GUI. These two options (modifying a single scenario input or using the 
Genetic Algorithm) can be iterated until the user is satisfied with the modelling 
outcome. 
 

Appendix B – Interactive Genetic Algorithm 
 
In an interactive optimisation (Takagi, 2001b) the traditional numerical 

measure of data mismatch is replaced by the user’s subjective evaluation. Humans 
find it hard to express subjective judgment with absolute values, while they generally 
find it much easier to compare different instances of the same process and rank them 
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according to certain criteria. Consequently interactive inversion works by producing 
different possible solutions and presenting them to the user for judgment and ranking 
(Takagi, 2001a). The idea was originally developed in the field of Artificial 
Intelligence in order to support artistic creativity and has since then been applied to 
several industrial and scientific applications.  

  
Genetic Algorithms (GAs) are a search method suitable for the optimisation of 

highly non-linear functions. Starting with a set of random solutions, these algorithms 
progressively modify the solution set by mimicking the evolutionary behaviour of 
biological systems (selection, cross-over and mutation), until an acceptable result is 
achieved.  GAs are today an established technique, with wide range of applications to 
both theoretical and industrial problems. We refer the reader to (Davis, 1991) for 
basic description of genetic algorithms and to (Boschetti et al., 1996), for a more 
detailed description of the specific GAs implementation used in this work. The 
mathematically oriented reader can also refer to (Boschetti and Moresi, 2001) for a 
discussion on the implications of subjective evaluation in both the search space 
landscape and convergence speed of a GA. 

 
Formally, the modifications to a traditional Genetic Algorithm required to 

work interactively are minimal. Once a set of initial random potential solutions 
(management variables, in our case) is generated, this is fed to a forward model (the 
Simulation Model in our application). Then a set of outputs (time series of catches and 
fish biomass in our case) is produced. The outputs are visualized and the user ranks 
them according to his/her subjective judgement. The ranking is input to the next GA 
iteration which processes it by applying selection, cross-over and mutation to the 
current solution set in order to produce the next solution set to model.  

 
There are two main reasons why GAs offer themselves naturally to be 

implemented within an interactive setting. First, GAs work by optimizing an ensemble 
of solutions, unlike other optimisation algorithms that process one single solution; 
since we want to present several instances of model outputs to a user in order to 
compare them and assess them in a relative, rather than absolute fashion, only 
population-based optimisation algorithms offer this option. Secondly, some non-
interactive GA implementations naturally process the ranking of the solutions fitness 
rather than their exact numerical values. This is done in order to reduce the probability 
that the algorithm converging rapidly to a local minimum (see (Boschetti et al., 1996) 
for a technical discussion on this topic). Employing the user ranking of the models’ 
output in the Evaluation GUI thus allows use of a standard GA algorithm without any 
need to pre-process the subjective evaluation. To our knowledge no other optimisation 
algorithm provides both these features. Once the rank has been established, a criterion 
needs to be chosen to process it; in a GA, this reduces to deciding how many copies of 
a solution should be passed to the next iteration as a function of the rank position. We 
used what in the GA literature is referred to as Linear Normalization selection, 
according to which the number of copies is inversely proportional to the rank position. 
Other criteria could be adopted but given that in an interactive optimisation very few 
solutions are processed, care should be taken to ensure that copies are not produced 
only from a few top rank solution(s). 

 
From an implementation point of view, some work needs to be done in order 

to make the subjective ranking input ‘user friendly’ and spare the user from tedious 
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file editing. A user interface needs to be built that allows the user to view at the same 
time all the different solutions generated by the GA, rank them easily and proceed 
with the GA operations, possibly within a few mouse clicks. This is important in order 
to reduce the burden of examining numerous solutions for many generations, that 
could lead to a lack of attention and accuracy (particularly amongst non-scientific 
management audiences). These issues are referred to as ‘human fatigue’ in the 
Interactive Inversion literature (Kishi and Takagi, 1999). To overcome this potential 
problem, in our implementation we provide the user with the option of ranking only 
some of the models’ output (the ‘best’ and ‘worst’ output according to subjective 
evaluation) if so he/she wishes; in this case the unranked outputs are assigned a 
random rank. Because the most important information of the GA process is provided 
by the solutions with best and worst fitness, in our experience this options results in a 
faster analysis and less fatigue on the user without compromising noticeably the 
results  ((Wijns et al., 2003a); also Takagi, personal communication). 
 
Particularly interesting is the effect of the subjective judgement on the GA 
performance. In traditional optimisation the shape of the search landscape is 
determined by the choice of cost function, which is fixed, determined a priori and 
often hard to design. In an interactive inversion the human subjective judgement 
implicitly shapes the search landscape. Not only this is not fixed a prior (as discussed 
in the main body of the paper) but also inevitably changes when the user moves the 
focus of the analysis on different features (catches versus biomass estimation, or 
between different target species or different combinations of the above). This explains 
why satisfactory results are often obtained within very few function evaluations 
(Boschetti and Moresi, 2001; Wijns et al., 2003a). Also, the user may tune the search 
criteria during the inversion, depending on the knowledge he/she accumulated during 
the process, providing another layer of ‘interactivity’ to the approach.  
 

Appendix C - The Ecological Module 
 
Here we describe a) the spatial subdivision on the modelled area, b) the trophic 
relations within the simplified foodweb assigned to each zone and c) the migration 
between adjacent zones. 
 
The modelled area is subdivided into 10 spatial zones. Each zone is assigned a distinct 
foodweb. Two types of foodweb are modelled, one for shallow and one for deeper 
waters. Each zone is assigned one of the two foodwebs according to its bathymetry 
and migration can occur between adjacent zones with the same foodweb type (see 
further details below). Within each zone the trophic relations described below are 
applied to the local foodweb.  
 
Each species undergoes the following processes: spawning and recruitment, migration 
consumption and growth, natural mortality and losses due to predation and fishing. 
Consumption, growth, natural mortality and losses due to predation are modelled as 
continuous processes. Spawning and recruitment are modelled as discrete events. 
Fishing is modelled as a continuous process during the fishing season. 
 
Each species in our model is divided into age classes (NClasses is set to 10 here) and 
the biomass (Bs,a) of each age class (a) of each species (s) is tracked. This is updated 
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simultaneously in each zone. To simplify the notation, for the rest of the document we 
have dropped the index for the zone.  
 

C.1 Growth 
 
The consumption-based growth of species s, in age class a, (excluding the basal 
trophic level) is modelled as: 
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where: 
Cs,a = maximum clearance rate of predator s of age a 

sε  = assimilation efficiency of predator s 
ls,a = maximum growth rate of predator s of age a 

bp
asQ ,

,  = availability of prey p of age b to predator s of age a 

Bs,a = biomass of species s of age a 
  
The growth of the basal trophic level is controlled by a logistic equation rather than a 
grazing term: 
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where: 
ls,a = maximum growth rate of basal species s of age a 
Ba = biomass of age class a of the basal species 
K = Carrying capacity of the zone where the basal species is living 
 

C.2 Migration and movements 
 
Migration is modelled between zones sharing the same foodweb type. This is carried 
out by defining species biomass density for each zone and setting the migration rates 
as a function of the density gradient between zones:  
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 is the migration of a species s and age a from zones i to zone j and is 
calculated as follows: 
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where: 
M as

ji
,
→

 = migration from zone i to zone j for species s and age a 

Ds,a = migration coefficient for species s and age a 
Zij = length of the boundary between zones i and j 
Ai = surface area of zone i  
Bj

s,a = biomass of species s and age a in zone j 

C.3 Natural mortality  
 
We model natural mortality due to senescence as: 

NBB asasas ,,, −←  Eq C-7 
 

where Ns,a is the natural mortality term for species s and age a, defined by: 

( )2,,,,, ,, DNBNN asasQasas asL +=  Eq C-8 
 

where: 
NL,s,a = linear mortality coefficient of species s of age a 
NQ,s,a = quadratic mortality coefficient of species s of age a 
Bs,a = biomass of species a at maximum age class 
Ds,a = density of species a at maximum age class 
 
  

C.4 Loss due to predation 
 
Loss due to predation is modelled via an equation similar to Equation Eq C-1 (with a 
sign changed): 
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where: 
Cp,b = maximum clearance rate of predator p of age b 

as ,ε  = assimilation efficiency of prey s of age a  

lp,b = maximum growth rate of predator p of age b 
as
bpQ ,

,  = availability of prey s of age a to predator p of age b 

Bs,a = biomass of prey s of age a 
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C.5 Spawning and Recruitment 
 
In this instance we use the Beverton-Holt formula for computing the biomass of the 
new recruits:  
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 Eq C-11 

 
where: 
B1 = biomass of new recruits of the year (of age 1) 
α = Beverton-Holt α for the species 
β = Beverton-Holt β for the species 
Br = spawning biomass 
and  is defined as: 
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with: 
Ba = biomass of fish of age a  
wa =percentage of reserve (gonadal) weight in the total weight of the fish 
fa=part of fish of age a that are matures 

 
Finally for each species, the amount of biomass of age >1 recruits is calculated as 
follows  
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Appendix D - The Fishing Module 
 
Yield is represented as the biomass caught by the fishing vessels and total removals as 
the total amount of fish removed from the system (catch plus by-catch). 

The biomass loss due to fishing by fleet j (n this case recreational fishers) is modelled 
as: 
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with: 
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Vj = number of fishing vessels in fleet j 
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as
j

q ,  = catchability of species s age class a  to fleet j  
V
jY  = Size specific gear selectivity for vessel type used by fleet j 

as
jX ,  = Effect of fleet j on species s age class a (this is the proportion of the catchable 

biomass that the gear kills, either because it is landed or because it is caught and 
discarded; it is set to 1 if a target species of legal size, otherwise it is set at to a user 
defined value for bycatch species). 
 
When catch limits or quotas are in place the catch is defined as the minimum of 
equation A-15 and the allowable catch (i.e. the bag limit or remaining quota). 
 

Appendix E - Economic module 
 
The fleet includes N fishing vessels Nn ..1= , which are modelled as agents. In 
particular, they are ‘economically rational agents’ who try to maximize the economic 
return of their action.  At each fishing expedition the vessels choose where to fish 
among Z available zones (a vessel has to choose one and only one zone at each 
expedition). In each zone a certain amount of S targeted species is 
available SsZzFish sz ..1,..1,, == . This amount changes in time and from zone to zone 
as a function of fishing as well as of trophic relations.  
 
The amount of fish caught in a fishing zone is calculated via Eq A-15. This is shared 
equally among all the vessels which chose to operate in that specific zone, that is, we 
assume that all vessels have the same fishing capacity. Also, the fishing capacity of 
each vessel is constrained by the quota, which depends on the targeted species and is 
the same for each vessel and each fishing zone. Consequently, the catch of each vessel 
depends on the action of all other vessels: the larger the number of vessels which 
access an area, the more likely their individual catch will be small. This results in each 
vessels trying to avoid crowded fishing zones, that is trying to avoid the zones which 
most other vessels target. In the game-theoretical literature this setting is known as 
‘minority game’ and is able to generate fairly complex dynamics (Savit et al., 1999; 
Zhang, 1999). For a discussion of the application of the minority game to fishery 
problems see (Boschetti, 2007; Brede et al., 2008) 
 
The fishers’ decision making model can be summarised as follows: 
 

1) Initialisation: assign a random strategy ( zW ) to each vessel.  zW  represents the 
expectation of what catch may be obtained at zone z.  

2) At each iteration t and for each vessel, update the value of zW based on the 
catches in the last T steps. This simulates the effort in analysing catch records 
in order to plan the fishing operation at t+1. The value of T can be seen as a 
measure of the length of the history available in the record, or the ‘memory’ of 
the vessel crew, or the effort which is employed in the planning. In particular 
we set ∑
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where 1=t
zδ if the vessel fished in zone z at time t in the past, and 0=t

zδ  
otherwise 
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3) Each vessel randomly chooses which zone to fish next, with zz WP ∝ , 
where zP  is the probability of choosing zone z. Obviously, ∑ =

z
zP 1 . 

4) Calculate the number of vessels which aims towards each zone. 
5) Calculate the catch for each vessel according to Eq A-15.  
6) Go back to point 2 

 
This process can be seen as within an optimisation framework in which each vessels 
tries to optimise its own catch. It allows for a balance between exploration and 
exploitation. Exploitation is represented by zW : the more a vessel expects a specific 
zone to provide a good catch, the more likely the zone will be chosen. Exploration is 
represented by the random pick which allows non optimal zones to be chosen with 
lower probability.  
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Figures captions 
 
Figure 5 – Diagram of ScenarioLab workflow: ovals represent algorithms, rectangles 
input and output data, think arrows data transfer and dashed arrows user evaluation. 
The use controls every iteration through the process: after the Simulation Model has 
generate the output, the user evaluates the environmental effect (label 1 in the figure) 
and either chooses what further management option to test (2) or passes a subjective 
evaluation of the environmental effect to a optimisation routine (3) which then calls a 
further simulation.   
 
Figure 6 - The studied area and the current management zoning within the Ningaloo 
Marine Park. 
 
Figure 7 - ScenarioLab initialisation GUI containing the management parameters for 
the Simulation Model. 
 
Figure 8. ScenarioLab Evaluation GUI. 
 
Figure 5. Software flowchart; relation between the Graphical User Interfaces, the 
Simulation Model and the Genetic Algorithm. 
 
 


