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ABSTRACT 

 

It is easier to make one’s way in the world if one has some sort of expectation of the world’s 

future behaviour. Even when facing a very complex problem, we are rarely in a state of full 

ignorance: some expectation on system behaviour and on the level of risk arising from 

uncertainty is usually available and it is on this expectation that most decisions are taken. 

Humans use models, which are mental or formal representations of reality, to generate these 

expectations, employing an ability that is shared, more or less, by all forms of life. That is, 

whether it is a tree responding to shortening day length by dropping its leaves and preparing 

its metabolism for winter – in advance of winter – or a naked Pleistocene ape storing food in 

advance of winter for the same reasons, both are using models. This view leads to two 

outcomes. First, predictions, seen as an expectation of ranges of future behaviours, are not just 

desirable, but necessary for decision making; the often- asked question ‘do models provide 

reliable predictions?’ then shifts to ‘given a certain problem, what type of models provides the 

most useful and reliable prediction?’ Second, modelling is no longer a scientist’s activity, 

rather a social process and different types of models can be employed in order to ensure that 

all available information is included in model building and that model results are understood, 

trusted and acted upon.  
 

INTRODUCTION 

 

For a discussion of models, we begin from what may seem an unusual point: a definition of 

life. Rosen (1) introduced the concept of anticipatory systems, suggesting that a defining 

distinction between living and non-living systems lies in the need for the living to anticipate 

the future behaviour of their environment and the likely outcome of their interaction with it. 

Loosely speaking, a ball rolling towards a wall is bound to hit the wall, while a living being 

provided with perception can detect the presence of the wall, anticipate the impact and, if 

convenient, plan for its avoidance.   

 

This idea is at the core of much work in Artificial Intelligence as well as in Complex System 

Science as formalised in the Computational Mechanics literature (2-5): agents store 

information from the past and from it extract regularities. These regularities are a ‘model’ of 

the environment, which is used to anticipate (‘predict’) its future behaviour. The number and 

sophistication of the regularities the agent is able to store and process is a measure of a 

model’s complexity. Forms of life at different levels of the evolutionary tree are able to use 

models of higher and higher complexity. At one extreme, bacteria hardwire simple models in 

their biological structure, while at the other extreme humans employ conscious mental 

processes and store formal mathematical tools in books and computers. Nonetheless, they 

both ‘model’ and ‘predict’. 

 

From this perspective, a computational earth-system model running on a super-computer is 

‘just’ a sophisticated solution humans have evolved to address their need to interact with their 
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environment. More important for our discussion, according to this approach, modelling 

(including computational modelling) is not only a natural, but also an essential activity. 

 

This view of the role and purpose of models may not match our intuition according to which 

highly complex processes are extremely hard to understand. Also, our experience tells us that 

complex dynamics often appears to be controlled by surprises, rather than regularities.  This 

has led many authors to claim that the use of computer modelling to study and predict 

complex processes is unwarranted.  This criticism takes many forms, which for the sake of 

conciseness we summarize in three points:  a) computational models have a very poor 

prediction track record (6, 7); b) most model predictions are not testable because of their 

conditional nature (8-11) and c) behind an appearance of objectivity, model outcomes reflect 

the subjective beliefs and assumptions of model users (12, 13).  According to this criticism 

the benefit of modelling is limited to one or more of these activities: explanation of past 

events, understanding of natural processes, learning (14) or simply providing an avenue for 

communications (14, 15).   

 

This criticism is very important. However, it is based on a crucial assumption and a 

misunderstanding. The assumption is that a prediction is desirable, but not necessary; that is, 

a prediction is an ideal or discretionary input to, not a requirement for, decision making. Our 

discussion above suggests the opposite: if we accept that a prediction is essential to any 

decision making, then the question would shift from ‘can model predictions be trusted?’ to 

‘how do models compare to other approaches to prediction?’.  We thus need to address this 

crucial question: ‘is prediction desirable or necessary for planning and decision making?’ 

 

The misunderstanding has to do with the habit of scientists to use whatever is available – in 

this case, models – to do science. While prediction as we are describing it requires models, 

models can be used for more than prediction – they can be used for exploration and 

understanding and even control (16). Prediction need not necessarily be ‘scientific’ – although 

we argue that, at its best, it is. 

ABOUT PREDICTION 

 

Three concepts are fundamental to our discussion. First, for prediction we do not intend the 

anticipation of an exact behaviour or event, rather an estimation of its likely limits. In other 

words, a prediction should not be understood as a prophecy (11).  For example, while it is 

widely known that weather forecasts are not reliable past 5-6 days, no one would believe that 

the temperature in Darwin in summer could be 40○C or -40○C with equal probability; as a 

result no one would travel to Darwin in January with a ski jumper. The limited predictability 

past 5-6 days still has allowed a certain level of effective planning, by avoiding carrying 

unnecessary clothing.  Second, predictions are conditional: any prediction is carried out 

within a context and is valid only within that context. In the above example, the conditioning 

is given by our understanding of tropical climate; should this change, the prediction would no 

longer hold and would require updating (16). Finally, the effectiveness of a prediction is 

scale-dependent (17). For example, while the geophysical community is today sceptical about 

its ability to provide accurate prediction on where and when large earthquakes can occur, they 

are nevertheless able to predict the broad geographical areas in which large earthquakes can 

be expected. While this kind of predictability seems to offer little to planning (18), it still has 

considerable practical impact in deciding, for example, in which geographical areas expensive 

anti-seismic constructions methods are necessary and where they are not.  Once understood in 
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these terms, prediction becomes an integral part of any decision making process: formulating 

a plan implies choosing among potential alternatives and envisaging (= predicting) which one 

is more likely to deliver desired outcomes (19).  

 

If we accept that prediction is necessary for planning and decision making, then the important 

question is what tools provide the most reliable prediction given the problem at hand. Notice 

that this question is problem dependent, not only because different problems may require 

different approaches, but also because the most accurate prediction is not necessarily the most 

reliable. Together with using numerical models or other computational tools, predictions can 

be provided by experts, local knowledge or participatory settings. It is thus important to 

compare the predictive performance of computational models against alternative approaches 

on the core items of criticisms discussed above: a) prediction track record; b) lack of 

testability due to their conditional nature and c) inherent subjectivity.  

 

We are not aware of any large scale comparisons of predictive accuracy of model vs 

alternative methods. However, the available literature on the logical and attitudinal fallacies 

which even experts display for simple dynamical problems should warn us that it is probably 

unwarranted to expect humans to mentally predict the behaviour of highly complex systems 

in a consistent and reliable manner (20-28).  Predictions provided by experts, local knowledge 

and participatory settings will also be dependent on both explicit conditioning as well as 

implicit ones, including tacit information and hidden assumptions. A discussion of different 

forms of conditioning and its impact on modelling can be found in (29). As nicely argued in 

(30), modelling offers an avenue for making such conditioning and assumptions explicit by 

coding and documenting the model, which may be sidestepped or not considered necessary in 

alternative approaches. Naturally, the same reasoning applies to the subjective nature of 

predictions. 

 

So we arrive at a more expansive view of prediction for humans than just ‘expectation of the 

future’. We need to include the human knowledge of the past (culture), the human need to 

explore and understand (science) and the human bias to act (policy and intervention). 

Together these colour our approach to prediction and the sorts of models we tend to use. 
      

TYPES OF MODELS 

 

Accepting that models are a necessary component of a decision making process does not 

imply believing that a) modeling reduces to running a single sophisticated computational 

model, b) that modeling is something only scientists do and c) that the outcome of a model 

should be trusted uncritically. In fact, much of our work has been based on preaching and 

practicing the opposite: a) models needs to be built by teams including scientists and model 

recipients, because much of the information needed to implement a model is implicit or tacitly 

held, b) model results need to be carefully explained and understood in order to be trusted and 

acted upon by decision makers and c) information about uncertainty in the model outcome is 

crucial to formulate an effective plan.  

 

As a result, our approach to modelling focuses on treating ‘building a model’ as the catalyst, 

rather than the final aim, of the process. In other words, extensive interactions between 

scientist, decision makers and model recipients in order to introduce, showcase, discuss and 

tune the model used for final decision making become both a requirement and an opportunity 

to ensure model relevance and acceptance and increase the broader understanding of the 
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system’s function. To fulfil these roles we develop five broad classes of models: conceptual 

models, toy-models, single-system models, shuttle-models and full-system models.  

 

In conceptual models the main drivers of a system are highlighted for subsequent 

representation as components of the model. This first kind of model is usually expressed as a 

conceptual diagram summarising our understanding of system function. In toy-models a 

problem is simplified in such a way that only a handful of components are included. The 

purpose of these models is mostly educational: we want to understand how each component 

affects the problem and in order to achieve this we temporarily renounce a satisfactory 

understanding of the overall problem.  In single-system models we include a fairly detailed 

representation of a single component of the system. These models can be used to introduce 

stakeholders to modelling, provide results from the study of a single activity (addressing 

sector-specific issues) and can feed into the development of a final full-system (multi-sector) 

model. In shuttle-models (31) (or “minimum realistic” models), we include the minimum 

number of processes we believe are crucial for a basic understanding of the overall problem. 

We know these models are simpler than what is needed for full system description, but they 

provide a sufficient understanding to enable us to contemplate many questions with existing 

(often incomplete) datasets. These models can also be a useful stepping stone to building, 

using and correctly interpreting the more complex models needed to check for unexpected 

outcomes resulting for feedbacks buried in a full problem description. The term ‘shuttle’ 

refers to taking us from a minimum to a full description of the problem, a journey which is 

necessary both to developers in model definition and parameterisation and to stakeholders in 

the interpretation of the final full-system model results. Finally, the full-system model 

includes all information collected for a region and addresses all scenarios of stakeholders 

concern, whose definition has been greatly eased by using the ‘simpler’ models.  

 

As an example, a conceptual model may identify population growth and industrialization as 

one of the main drivers for climate change; a toy-model may describe how emissions affect 

peak temperature; a single-system model may include the effect of regulations on national 

emissions; a shuttle-model may include a simplified representation of the interaction between 

economic growth, population dynamics and warming; this will gradually ‘take’ us to 

comprehend the ‘full’ model which may include trade, financial market dynamics, 

sequestration, geo-engineering, etc. Figure 1 summarises the stages at which different model 

types are employed, the role they play and how they can support the development and use of a 

full-system model.  

 

All of the model types have their own value and the full set need not always be employed – in 

some cases enough is learnt from conceptual models to improve predictions, in other cases the 

feedbacks captured in shuttle models are effective means of refining predictions, while in 

other cases the system of interacting pressures and actors is sufficiently complex that only a 

full system exposition can guide decision makers through the complex network of feedbacks 

and unexpected outcomes of interactions.  

 

For the complex issues that demand the use of ‘full models’, these may represent the crucial 

component of the ‘anticipatory system’ according to Rosen’s definition: it is the tool that the 

decision-making team, as a unified agent, employs in order to explore and evaluate options 

for actions. The other model types allow for engagement of different parties involved in the 

decision-making team, including researchers, formal decision-makers and stakeholders at 

large: in other words they help the decision-making team work as a team.  In particular they 

can: a) allow a less biased interpretation of available information; b) allow for learning of 
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specific skills and attitudes needed when facing complex problems and c) provide an avenue 

for communication and collaboration. 

 

Allowing a less biased interpretation of available information is important because people 

with different worldviews may interpret and draw very different conclusions from the same 

information (32-40). Research on attitudes to climate change, nanotechnology and 

vaccination, among other issues, show how worldviews affect policy support more than 

available information, because they filter how such information is processed.  Accounting for 

such biases in a model (by parameterising the model according to different worldviews, (41)) 

may be a way to highlight the issue and the potential inconsistencies which may arise from it 

and to move the discussion from perspectives to mechanisms, in the hope that this may reduce 

the influence of biased information interpretation. 
 

Figure 1. Relation between a) a modelling project (top dark rectangle) b) different types of models 

(coloured ovals) and c) stakeholders engagement phases (yellow rectangles). The arrow at the bottom 

suggests an approximate chronological order.   

 

CONCLUSION 

 

So we think that prediction is what living things do, and that they do it through models. But 

we also think that the relationships between models and predictions are varied, and – 

importantly in the case of humans – dependent on the context. And we think that rather than 

diminishing or muddying the matter of prediction, it enriches it and places it in a very human 

context. 

 

Models can be better used and their result more trusted if this was better understood. Thus we 

argue that training on specific skills and attitudes is needed to face complex problems. This is 

important because scientific insights risk being lost unless they are understood by those 

making and supporting decisions: recent studies have shown that human cognition and 

psychology affects decision-making at least as much as the complexity of the problem at hand 

(21, 23, 25, 26, 42). Worse still, these difficulties are not necessarily obvious and may be 

confused as purposeful decision making (22). Computer models, resembling flight simulators, 

can be designed to train individuals to better understand the basic processes of real world 

significance for decision making, including management of limited resources and unexpected 

feedbacks. The belief underneath this approach is that managing and predicting complex 
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behaviours can be learned and that models can represent systems in a manner appropriate for 

learning and training.  
 

Not only cognitive skills, but also cognitive attitudes are crucial to effective decision making 

in complex problems (24, 43, 44): the behavioural attributes and habits we bring into a 

problem; the way we formulate goals, interpret outcomes against expectations, balance 

emotional responses like humility, curiosity, frustration and blame-shifting have a significant 

influence on how effectively we deal with complex situations (43). Tangible, constructive 

means to improving problem-solving in complex settings can be identified and trained via 

computer models (43, 45). Interestingly, some of the most effective cognitive approaches 

(including tolerating high levels of uncertainty, acknowledging mistakes, searching for 

counter evidence, self-reflection, etc) can be in direct opposition to behaviours rewarded in 

political and management roles. More widespread awareness of what makes an effective 

decision maker, possibly leading to improvements in training programs, may have an 

immense impact on a wide variety of real world issues.    
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