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Interactive inversion in geosciences

F. Boschetti and L. Moresi∗

ABSTRACT

Inversion algorithms numerically evaluate the mis-
match between model and data to guide the search for
minima in parameter spaces. In an alternative approach,
the numerical evaluation of data misfit can be replaced
by subjectively judging the solution’s quality. This widens
the class of problems that can be treated within the
framework of formal inverse theory—in particular, var-
ious geophysical/geological/geodynamic applications in
which structural similarity between model and data de-
termines the quality of the fit. In this situation, prior
knowledge, experience, and even personal intuition are
crucial. This approach also provides a simple way to in-
clude such expertise in more traditional numeric appli-
cations, e.g., to treat ambiguous problems and disregard
geologically unfeasible solutions from the inverse search.

INTRODUCTION

Inversion is an important tool when interpreting geophys-
ical data. It attempts to reconstruct rock property distribu-
tions from measurements of their physical responses. This is
achieved by a more-or-less structured search into a parameter
(rock properties) space using physical forward modeling.

In the early stages of development, such searches were per-
formed manually by a human operator adjusting some guess
about the geological setting. The search would proceed in a
trial-and-error fashion, matching measured data and recon-
structing a reasonable geological model. This method is often
called forward modeling. Much research in the last two decades
has been concentrated on automating this sort of process us-
ing sophisticated inversion procedures. Automation appears to
eliminate most of the subjective judgment involved in repeated
forward modeling by removing operator input.

In reality, however, the subjectivity is not removed; it is sim-
ply hidden because the presence of a priori (purely subjective)
assumptions is still crucial for the successful outcome of auto-
matic inversion procedures—although in a much more subtle
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way. The inherent nonuniqueness underlying all geophysical in-
verse problems requires additional information to select a sin-
gle solution among the ensemble of infinite rock-property dis-
tributions able to fit measured data. Such information may be
provided in the form of (1) a specific starting model for the in-
verse run, (2) a specific parameterization restricting the search
to predetermined geometrical shapes, or (3) an extra mathe-
matical requirement for the solution, as maximum smoothness
or sharp boundaries, at times chosen more for mathematical
convenience than for geologic reason. Since such assumptions
are often hidden deep in the inverse algorithm. The black-box
use of such tools leaves the average user unaware of the pre-
cise nature of these assumptions and hence unable to judge
whether the assumptions themselves are suited to a particular
case.

In recent years fast computers have allowed the develop-
ment of quite sophisticated forward modeling of geodynamic
processes. Plate tectonics, faulting and folding, mantle con-
vection, and fluid flow could, in principle, be treated in an
inverse process, much as in traditional seismic/potential field
problems. The potential of such applications would be tremen-
dous, given that, broadly speaking, reconstructing initial geo-
logical configurations from their geological responses (deter-
mining the stress field that generated a certain folding pat-
tern, for example) is very much what geology is about and is
an implicit inverse problem tackled daily in every geologist’s
brain.

At present, geodynamic modeling is almost exclusively con-
fined to the forward modeling stage. The physical intuition of
the modeller is very important in this field because the data
are usually extremely sparse and may only provide constraints
on some integral property of the system. The quality of a so-
lution is often judged according to its resemblance to patterns
seen in the field, to the fact that it does not contradict basic
geological principles, or simply to the modeler’s expectations.
Fit to data can be used as a further criterion when available,
but this is rarely possible in a formal mathematical way. Even
when extensive data are available, the choice of a proper cost
function is not straightforward. A way to measure geological
similarity and equivalence of geological structures is still very
much a research topic.
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For the time being, at least, subjectivity, knowledge, ex-
perience, and intuition still play a major role in geophysi-
cal/geological modeling. The implementation of fully auto-
mated systems for data analysis and artificial intelligence
approaches have been attempted with only limited success. In
modern high-tech geological exploration it is still the geosci-
entist, not the tool, who discovers mineral/oil deposits.

Recently, research in artificial intelligence (AI) developed
systems to support artistic creativity (Takagi, 1998a,b). These
systems have been used, for example, in graphic design and
music composition. The systems take advantage of fast compu-
tation to generate a suite of images or music sequences. Then,
an artist looks at the different images or listens to pieces of mu-
sic and ranks them according to personal tastes. An inversion
strategy takes into account such judgment in a formal mathe-
matical way to generate a new set of images/music sequences,
iteratively converging toward the artist’s tastes/inspiration.

We propose extending such techniques to geophysical/
geological applications in which subjective judgment is nec-
essary either to discriminate between ambiguous solutions or
to evaluate geological models in the absence of sufficient con-
straints. In doing so we present the first step in the development
of a system for interactive inversion of geophysical/geological
processes. The system offers three main useful features: (1) it al-
lows a more systematic application of forward modeling codes
as an advance on the time-consuming trial-and-error approach,
(2) it provides a formal role for relevant geological experience
and knowledge in inversion that often is extremely difficult to
translate into mathematically rigorous constraints, and (3) it
may suggest valid solutions falling outside the range of orig-
inal expectation by facilitating a brainstorm process between
the geoscientist and the inversion procedure.

We show the potential of the technique in two applications.
In the first case we compare the interactive, subjectively driven
inversion to a traditional numerical inversion for a synthetic
mantle convection problem. The results show that user experi-
ence may in some cases replace lack of accurate data. Such com-
parison with purely numeric inversion, to our knowledge, has
never been presented in the interactive inversion literature. In
a second test we use the interactive inversion to seek a particu-
lar configuration of extensional features in a mechanical model
of a stretched, brittle layer. This example comes from a prac-
tical case: the search for a specific yet mechanically consistent
initial condition for a basin-inversion simulation. The interac-
tive inversion proved very capable in this instance, whereas
the solution had been difficult to isolate using a trial-and-error
approach.

INTERACTIVE INVERSION

Interactive inversion allows the user to direct the parame-
ter space search according to one’s subjective judgment. To
do so, the traditional numeric measure of data mismatch is
replaced by the user’s evaluation. Humans find it hard to ex-
press subjective judgment with absolute values; they generally
find it much easier to compare different instances of the same
process and rank them accordingly to certain criteria. Con-
sequently, interactive inversion works by producing different
possible solutions and presenting them to the user for evalua-
tion and ranking. Genetic inversion (genetic algorithm, genetic
programming, etc.) works by optimizing an ensemble of solu-

tions, unlike other inverse strategies that search the solution
space following a single path. Accordingly, they are an obvious
choice for interactive inversion applications.

Here we describe the genetic algorithm used in the study, as
well as the modification necessary to make it work interactively.

Genetic algorithm

Genetic algorithms (GAs) are a search method suitable
for the global optimization of irregular multimodal functions.
Starting with a set of initial solutions, these algorithms pro-
gressively modify the solution set by mimicking the evolution-
ary behavior of biological systems until an acceptable result is
achieved. Because of their initially random and progressively
more deterministic sampling of the function domain, they of-
fer the possibility of locating the most promising areas of the
solution space with relative efficiency. They are able to solve
nonlinear, nonlocal optimization problems without the need
for curvature information and, consequently, without the need
for derivatives. This feature is particularly important for our
application, since no derivative information for the subjective
judgment is available.

The literature on GAs is extremely vast, and many subtle
variations in the implementation of the basic concept under-
lying genetic search have been proposed. We refer the reader
to Davis (1991) and Goldberg (1989) for a basic description of
GAs and to Sen and Stoffa (1995) for some examples of apply-
ing GAs to geophysical problems. Here we briefly summarize
the main features of the GA implementation we used; a more
detailed description can be found in Boschetti et al. (1996).

In a GA a potential solution is represented in the form of
a chromosome. Each parameter to be determined can be in-
terpreted as a gene, and the concatenation of the parameters
resembles the chain in a chromosome. Early GAs represented
each gene in binary form, but further research (Davis, 1991;
Wright, 1991) showed that a straightforward representation as
real numbers can be more effective in high-dimensional spaces.
Basically, a chromosome reduces to an array of real numbers in
this implementation (the unknown parameters of the inverse
problem). A GA works by applying three basic operators, cor-
responding to the biological processes of selection, crossover,
and mutation, to a population (ensemble) of chromosomes.

Selection works by first assigning a measure of fitness to a
chromosome, according to the value of the objective function
(in numeric inversions) or subjective judgment (in interactive
inversion) at the corresponding point in the parameter space.
Then some criteria are applied to select the individuals used
to generate the next generation of chromosomes. Among dif-
ferent criteria available in the literature, we chose linear nor-
malization selection (Goldberg, 1989; Davis, 1991), in which
a chromosome is ranked according to its fitness and is then
allowed to generate a number of offspring proportional to its
rank position. Using the rank position instead of the actual fit-
ness value avoids problems that occur when fitness values are
too close to each other (in which case no individual is favored)
or too far from one another (in which case only one or two
individuals only would be selected).

Once selection has been performed, new chromosomes are
generated by crossover, i.e., by swapping genes among indi-
viduals, the number and location of the genes to be swapped
being chosen randomly, in what is called uniform crossover
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(Davis, 1991). Eventually, mutation is applied by randomly
changing some genes at each generation.

Interactive GA

Formally, the modifications required for a GA to work inter-
actively are minimal. Once a set of chromosomes is generated,
it is fed to a forward code. Then a set of outputs (in the form of
images of animations) is produced. The images (or animations)
are visualized, and the user ranks them according to his subjec-
tive judgment. The ranking is input to the GA, which uses it to
produce the next generation of chromosomes. Since ranking is
used implicitly in linear normalization selection, effectively no
formal algorithmic change in the code is imposed by replacing
a measure of fitness with the subjective evaluation.

From an implementation point of view, some work needs
to be done to make the subjective ranking input user friendly
and to spare the user from tedious file editing. A user interface
needs to be built that allows the user to view simultaneously
all the different solutions generated by the GA, rank them
easily, and proceed with the GA operations, possibly within
a few mouse clicks. There is also an issue in avoiding human
fatigue when examining numerous solutions for many gener-
ations; lack of attention and accuracy could result. These is-
sues are dealt in the interactive inversion literature (Kishi and
Takagi, 1999). Regarding our application, the description of the
specific human interface is given as we lead the reader through
the first experiment.

Some comments may be useful regarding the dimensionality
and accuracy allowed by interactive inversion. To our knowl-
edge, interactive inversion in real-world application has been
attempted in problems ranging to a few tens of dimensions.
In principle, no formal modification in the GA process is im-
posed by the interactive approach. Consequently, the same lim-
itations valid for generic GA should apply here. We should
consider, though, that ranking a large number of individuals
becomes increasingly hard for a human operator; accordingly,
small population sizes are recommended. Standard applica-
tions range between 10 and 20 individuals. Also, fatigue should
be considered, so the run is often limited to a few tens of iter-
ations. While in the GA literature there is no formal study on
the relation between population size, number of function eval-
uations, and dimensionality of search space, problems of large
dimension generally are tackled with larger populations. This
may limit the applicability of this approach to very large prob-
lems. Should a user need to attempt an interactive inversion
to large problems, some effort should be made to reduce the
number of parameters to the minimum (a strategy that should
be seriously considered but is often overlooked—for any style
of inversion).

Particularly interesting is the effect of the subjective judg-
ment on the accuracy of the inverse problem. In traditional
inversions the shape of the search landscape is determined by
the choice of cost function. This is fixed during the inversion
and may or may not fit all the user’s requirement; in geophysics,
it rarely does. In an interactive inversion the human subjective
judgment focuses directly on the desired features, implicitly
shaping the search landscape according to the need of the in-
version. This explains why results are often obtained with very
few function evaluations. Also, the user may tune the search
criteria during the inversion, depending on the knowledge

accumulated during the process, providing another layer of
interactivity to the approach.

Interactive inversion at work: Synthetic example

In this experiment we attempt to reconstruct the parameters
(e.g., material properties) that produce a certain 2-D geological
section as the result of an animation of thermal convection in
the earth’s mantle.

This kind of problem has implications for deep crust–mantle
studies. A crucial parameter for understanding deep crust–
mantle heat convection is the geotherm, i.e., the (increasing)
temperature profile in the earth as a function of depth. The con-
tinental geotherm determines whether magmas can be gener-
ated and the extent to which rocks undergo metamorphosis and
geochemical modification. The geotherm can be measured di-
rectly only in the shallowest few kilometers of the crust and in-
directly at greater depth through mineralogical methods when
small samples are ejected in volcanic eruptions.

This is a classical coupled heat-flow problem, and the for-
ward model is, in principle, very simple to solve using a finite-
element fluid flow code. However, in the practical case, it is ex-
tremely difficult to know the parameters of the forward model
(radiogenic heat production of deep crust and mantle, thermal
conductivity of the lower crustal rocks, viscosity of the man-
tle, and global partitioning of heat flow between oceans and
continents).

These uncertainties lead to an inverse problem where the
parameters to be determined include the physical properties
of the crust and mantle. As already mentioned, in geology such
problems are usually tackled by repeated forward modeling
and a good deal of intuition based upon simple 1-D scaling
laws. Such intuition can usually come from a user with high
expertise in the field.

From the inversion point of view, this is a useful test prob-
lem for three main reasons. First, the fit to the geotherm for
any given forward problem is quantitative so that, in principle,
a genuine, traditional automatic inversion can be performed.
Second, the practical limitations of the data can be simulated
easily in the experiment. In the earth, only the uppermost part
of the geotherm can be measured, with the remaining con-
straints coming from assumptions based on the physical pro-
cesses involved in the system. Third, the problem retains signif-
icant complexity, so that ambiguous solutions are possible and
must be eliminated by recourse to estimates of geological likeli-
hood based on experience and physical intuition. This is hard to
code directly in a mathematical sense because we would need
to consider such features as the shape of typical boundary-layer
instabilities or the ways in which the flow patterns evolve over
time—highly difficult to formulate in a pixel-by-pixel compar-
ison of animations.

There is also the possibility that the additional information
available in evolving the animation in two dimensions will allow
an expert operator to speed up the inversion as well as discard
models of little geological meaning. The extent to which these
assumptions are helpful in constraining the inversion can be
tested explicitly.

Experimental setup

The user is provided with a single image representing a 2-D
geological vertical section (see Figure 1). The purpose of the



Interactive Inversion in Geosciences 1229

experiment is to deduce the parameters (e.g., material proper-
ties) of the simulation that produce this geological section after
the system has evolved for a specified time. In particular, the
parameters to be determined are the thicknesses and thermal
diffusivities of two crustal layers, the viscosity of the underlying
mantle layer, and the strengths of the radiogenic heat sources
in each layer. This results in an eight-dimensional search space.

At the beginning the user is presented with ten animations
(see Figure 2). This number was selected because ranking more

FIG. 1. Target section for the synthetic test. The section has
been obtained using the same forward code as in the inversion.
The model assumes upper-mantle convection underneath two
crustal layers. In the inversion, the total thickness of the crust
may vary, but the total depth of the system is assumed fixed.

FIG. 2. First generation of the interactive GA run. The sections are the final stages of animations initialized randomly. At the top,
the target image is reproduced.

animations becomes increasingly difficult for a human opera-
tor (normal GA runs usually involve a much larger popula-
tion). Each animation has been generated by the GA through
its standard stochastic behavior, coupled with the physical for-
ward model. The user then views the animations and ranks
them according to (1) how close the final configuration is to the
target section, (2) how geologically feasible the overall anima-
tion (i.e., the geological evolution) is, and (3) the user’s general
experience and knowledge of the area under analysis. The user
interface has been build in such a way that each animation is
viewed by clicking the mouse on a specific section (final frame).
The final stages of each animation are viewed together to fa-
cilitate the ranking operation. The ranking is input by a mouse
click in small windows underneath each animation. These may
appear as minor details, but they are quite important in prac-
tical applications to prevent fatigue and focus the user on the
problem by eliminating tedious manual operations. After the
ranking is done, the GA starts its usual process and generates
a new set of animations for the next evaluation. The process
continues until the user is satisfied with the result, i.e., has an
animation that looks geologically reasonable and produces a
final result close to the target image.

Figure 3 is the result of the inversion at the third generation.
Together with the ten new individuals, at the bottom we see
the best individual from the previous generation. Keeping the
best individual in a GA run is a standard operation; it provides
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a way to rank the new generation according to previous results.
The kink in the mantle (dark hook), that is, the typical feature
of the target image, starts to appear in the eighth individual.
This animation is selected as the best individual.

Figure 4 shows the eighth and last generation. The choice to
stop at the eighth generation was purely coincidental. In a real
test we would have stopped as soon as a satisfactory match had
been found. In this case we were interested in exploring the
solution space and testing the GA behaviors. As we see, many
solutions close to the target were found and show a good fit to
the modeled geotherm.

The solutions also reproduce the structural features of the
convection processes in the layer. These features are merely
second-order signatures of the physics of the system. However,
such small clues which hint at how a process was initiated are
vital in geology, and it is reassuring to see that this information
can be captured by the appropriate ranking choices.

The best results from the subjective inversion have elimi-
nated one of the crustal layers. This highlights the fact that,
for this simulation, some parameters produce first-order dif-
ferences in the outcome, while others fine-tune the result. The
total crustal thickness has a first-order effect, but it was param-
eterized as a sum of two internal layers whose relative thick-

FIG. 3. Third generation of the interactive GA run. The eighth individual starts to show strong similarities to the target section.
Notice also that the best individual from the previous generation (eleventh individual) is used in the ranking stage.

nesses had a second-order effect on the simulation. In the GA,
this is not an ideal situation because the relative thicknesses
cannot be constrained. Parameters should be selected more
carefully. The first pass of the inversion does, however, serve
as a way to analyze the parameter space to help ensure the
parameters are chosen to be as independent as possible.

A second test was run on the same model. This consisted
of a traditional numeric optimization. The misfit used was the
squared error between the target temperature profile and the
one generated as the final result of the animation. The numeric
inversion was run with exactly the same GA parameteriza-
tion, number of individuals, and number of generations. The
result from both the interactive and numeric inversion is seen
in Figure 5. Both the quality of the result and the computation
cost of the two inversions are comparable.

A number of interesting conclusions can be drawn from
this experiment. First the similarity between the numeric and
human-driven inversions is a very important result for geo-
logical applications, in which reliable data are rare and often
sparse. For this specific application, reliable temperature data
can be obtained only close to the earth’s surface, and measure-
ments at depth can only be extrapolated from other data. In this
test, the numeric inversion was given an unrealistic advantage
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in assuming error-free temperature measurements along the
entire profile. In real applications, reliable temperature data
at depth would be rare, inaccurate, and at times absent. The
ability of the geoscientist to direct the inversion to a successful
solution without such data looks very promising.

Second, during the human-driven inversion, solutions char-
acterized by specific features judged of particular relevance
to the problem were selected even if their global similarity to
the target image was relatively poor. Basically, the users had
used their knowledge and experience to select the crucial di-
rections of the search. This process is completely impossible in
a traditional GA run, in which only data misfit with no extra
information is used.

Third, the geoscientist was also using his knowledge of the
inner mechanics of GA inversion in his choices, paying atten-
tion to leave certain good features in the GA population even
if belonging to low-quality individuals. This is again impossible
for a GA that is unaware of its own mechanics.

These last two strategies carry both advantages and disad-
vantages. The disadvantage lies in directing the GA run too
much, with the risk of preventing its main feature, that is, the
global search. The advantages are the possibility of speeding
up the search and using a priori information. In this case there
would be a double use of the information: first, in the sub-
jective judgment, and second, in the ability to interfere with

FIG. 4. Last generation (eight) of the interactive GA run. Many individuals now show similarities to the target section.

the standard GA run. Also, this provides the option of inter-
actively controlling some GA parameters, such as population
size and rate of mutation, depending on the convergence speed
and variability in the population. This offers a completely new
avenue to explore.

Finally, while numerical inversion is sensitive only to the tem-
perature profile, human-driven inversion is particularly sensi-
tive to geological structures and dynamic evolution. Both are
modeled as color images in the animation. Specific choices of
colors will allow the discrimination of certain features at the
expenses of others. This confirms previous results on interac-
tive inversions: the selection of a proper visualization and user
interface becomes a crucial part of the inverse problem.

Experiment on realistic problem.

While the first experiment was a sort of proof of concept and
helped us to understand the potential of this approach and to
compare it to purely numeric inversion, here we present a case
more relevant to geological/geophysical exploration modeling.

This experiment was conducted to verify the usefulness
of the technique in the real working environment of geody-
namic modelers. A numeric model was being developed to test
whether a particular interpretation of a geological cross-section
was mechanically self-consistent. The model to be run required
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reactivating a sequence of three existing extensional basins dur-
ing a compression phase of deformation. The difficult part of
this computation was to obtain a mechanically self-consistent
initial condition for the reactivation (i.e., the three extensional
faults). Trial-and-error modeling of an extended, layered sys-
tem found a suitable starting point after numerous iterations
which took 90% of the time for the entire modeling exercise
(in this case, two weeks).

It was interesting to test whether the interactive inversion
could produce the desired initial condition more rapidly than
the trial-and-error approach. A rough sketch of the desired
result was given to an operator who had not participated in
the trial-and-error exercise, along with a suitable model with a
number of free parameters.

The pattern seen in the field is summarized in Figure 6. The
main feature of the section is the three extensional faults with
approximately regular spacing. The aim of the analysis is to de-

FIG. 5. Best result from the interactive inversion (left) and the
numeric inversion (right).

FIG. 6. A sketch of a geological section, containing the three
extensional faults as seen in the field. This was the target for
the real-case experiment.

FIG. 7. Result of the manual forward modeling to reconstruct the sketched section in Figure 6.

FIG. 8. Result of the interactive inversion on the real fault pattern.

duce what kind of stress and material properties can allow the
formation of such a faulting pattern. To reduce user bias about
the proper layer thicknesses, the colors of all the materials were
set to black, with brittle structures shown in red.

Figure 7 shows the best model generated by the trial-and-
error process. Figure 8 shows the solution found at the first
attempt with the interactive inversion. The three-fault pattern
has been reconstructed successfully. The interactive inversion
needed eight GA generations to find the target section, requir-
ing a few minutes of human time to rank the generations and
2 hours of computer time to produce the animations for each
generation. The computer time could be reduced greatly by
implementing the procedure in parallel (each model is entirely
independent of the other, so this operation is relatively trivial).

There is an additional benefit to the interactive inversion:
the process of selecting the best model also maps out much
of the local parameter space. Post analysis of the parameters for
the better models reveals which are important for the desired
behavior and which are not. Further, since the GA provides
models closely related to the best one, the influence of the
controlling parameters on the outcome can be discerned (i.e.,
within the subjective context, we are obtaining information
about the local derivatives).

Figure 9 shows the ten sections of the last GA iteration.
Model G is most like the cartoon. From the exact placement
of the brittle structures, this is the only useful model; however,
geologically similar results C and D also have nearly periodic
brittle structures in the uppermost layer. Analysis of the pa-
rameters for these models shows that models C, D, and G are
identical except for the upper layer thickness; clearly, the spac-
ing of the brittle structures is controlled most strongly by this
parameter. We learn, therefore, not just how to produce a par-
ticular model but also the controlling physical variables we can
use in related models.

DISCUSSION

We have presented two quite different applications, but a
few more words should be added on the technique itself.

The main feature of the method is that it offers a way to
include prior geological knowledge and experience into the
inverse process. This is extremely hard to achieve in a rig-
orous mathematical formalism. As mentioned above, tradi-
tional inverse techniques include prior constraints which can
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be specified easily in purely mathematical terms—for example,
imposing smoothness or sharp boundaries, or simplified geo-
logical shapes. These assumptions are generated from math-
ematical convenience in the first instance and geological rel-
evance in the second. As a result, they rarely allow proper
modeling of the complex geology. Alternative approaches have
been attempted where the complexity of geological structures
is captured by statistical means (see, for example, Torres-
Verdin et al., 1999), but such techniques are useful only where
exhaustive geological data are available.

This is largely at the core of the difficulty in communication
often experienced between geophysicists and geologists which
results in a lack of common ground between the two camps.
Geologists may perceive geophysicists as being lost in an ab-
straction far removed from real geology; geophysicists often
see geologists as hopelessly resistant to mathematical rigor.

The technique we have developed tries to build a bridge
between the two views—by providing an obvious and simple
way to include geological knowledge into the inversion with no
need for complex mathematical modeling. It allows the user to
watch the inversion as it proceeds through the parameter space
and so removes much of the black-box nature of the automatic
inversion. The insights that may be obtained from seeing the

FIG. 9. Final generation of the interactive GA for the real test.

progress of the inversion as it runs range from a better un-
derstanding of the parameter space to a better understanding
of the range of variability of geological processes. This is very
important since often experience and strong preconceptions
may hinder possible alternative geological interpretations. The
stochastic sampling of the solution space typical of GAs may
develop unexpected solutions able to suggest alternative geo-
logical scenarios not considered before. In a typical automatic,
black-box inverse run, such alternative solutions would be most
likely discarded and lost. This method offers an opportunity for
brainstorming between inversion and user. Such brainstorming
could go one step further because there is no reason to limit the
subjective judgment to a single user. More users could rank the
solutions, and the final ranking could be obtained as a combi-
nation of the individual ones. Different geologists might work
on the same inversion; even better, geologists and geophysi-
cists could cooperate in the inversion, providing two different
classes of knowledge and experience to the problem.

While the interactive approach is a necessity for processes
where only a subjective ranking exists, the methodology may
also be of use in traditional inversions where ambiguities are
present (e.g., inverting potential field data to determine buried
structures). In this case, the judgment of the experienced user
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is required to discriminate between models which have the
same objective fit to the data but which might be quite distinct
in terms of geological probability. Thus, the numerical mis-
match would guarantee data fitting, and the subjective judg-
ment would disregard ungeological scenarios.

The use of the GA also provides the ability to explore the pa-
rameter space of the problem in various ways for both the tra-
ditional inversion and the interactive approach. We discussed
how the final ranked set of models produces a sensitivity study
in the parameter space surrounding the preferred model. Ear-
lier in the inversion process, the parameter space is sampled
more broadly. This allows us to extract some further informa-
tion about the system we have chosen to model. For example,
“How likely is a given scenario?” An analysis of the size of
the region in parameter space where models are (subjectively)
similar gives an indication of whether the preferred model is
produced by a rare combination of parameters unlikely to be
found in nature. One might also ask, “How many different
classes of behavior are possible for a given model?” The an-
swer here is again subjective because it relies on the classifica-
tion skills (and preferences) of the user, but it is nonetheless
instructive. On a similar note, given two different behaviours of
a system, what are the significant parameter changes that differ-
entiate the two? Clearly, a directed inversion does not provide
the necessary sampling of the parameter space to answer such
questions definitively, but the fact that the user is exposed to a
range of different models at least raises this possibility.

We saw that the proper design of the experiment also be-
comes significant in achieving an effective result. As is true in
general for any kind of inversion, the parameterization should
be chosen in such a way that the physical properties we attempt
to reconstruct are as orthogonal to one another as possible. For
interactive inversion, however, other factors become relevant,
such as the manner in which the information is presented to
emphasize the importance of one parameter over another. This
is not something that the average expert in inverse methods is
familiar with and suggests the need to involve human-interface
specialists in the practical implementation of this algorithm.

CONCLUSIONS

In geosciences, measurements rarely supply sufficient con-
straints on a problem to allow for a unique and stable solu-

tion from inversion. Additional external constraints are used
in these cases but are often constructed more for mathematical
convenience than for strict geological appropriateness. This is
because it is often hard to code analytically or numerically geo-
logical a priori information. We have presented a simple way in
which an inverse run can be driven entirely by subjective judg-
ment from users with reasonable geological knowledge and ex-
perience. While this approach does not remove nonuniqueness
from the solution, it allows for the reconstruction of solutions
satisfying basic criteria of geological reliability. The method
has proven to be successful in both a synthetic and a
real application, and it compared well to traditional nu-
merical approaches. It requires only minimal time and ef-
fort from the user; most computational time has been ab-
sorbed by computer forward modeling (as in any inverse
application). We believe this technique can greatly widen
the range of geological problems admissible for inversion
and can be used for many applications in geosciences, ei-
ther alone or in conjunction with traditional numeric tech-
niques.
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