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Abstract 

Population persistence in the marine environment is driven by patterns of ocean circulation, larval 

dispersal, ecological interactions, and demographic rates. For habitat forming organisms in 

particular, understanding the relationship between larval connectivity and meta-population 

dynamics aids in planning for marine spatial management. Here, we estimate networks of 

connectivity between fringing coral reefs in the North West Shelf of Australia by combining a 

particle tracking model based on shelf circulation with models of sub-population dynamics of 

individual reefs. Coral cover data were used as a proxy for overall habitat quality, which can change 

as a result of natural processes, human-driven impacts, and management initiatives.  

 

We obtain three major results of conservation significance. First, the dynamics of the ecological 

network result from the interplay between network connectivity and ecological processes on 

individual reefs.  The maximum coral cover a zone can sustain imposes a significant non-linearity 

on the role an individual reef plays within the dynamics of the network, and thus on the impact of 

conservation interventions on specific reefs. Second, the role of an individual reef within these 

network dynamics changes considerably depending on the overall state of the system: a reef’s role 

in sustaining the system’s state can be different from the same reef’s role in helping the system 

recover following major disturbance. Third, patterns of network connectivity change significantly 

as a function of yearly shelf circulation trends, and non-linearity in network dynamics make mean 

connectivity a poor representation of yearly variations.  

 

From a management perspective, the priority list of reefs that are targets for management 

interventions depends crucially on what type of stressors (system-wide vs localised) need 

addressing. This choice also depends not only on the ultimate purpose of management, but also  on 

future oceanographic, climate change and development scenarios that will determine the network 

connectivity and habitat quality.  

 

Key-words: ecological modelling, meta-population, dispersal, network analysis, ecological 

uncertainty, resilience, persistence, coral reef  

mailto:Fabio.Boschetti@csiro.au


Introduction 

Connectivity has major consequences for the 

ability of populations to persist and sustain 

themselves as a network, or regional meta-

population. A network’s ability to maintain its 

functioning under variable local conditions and 

to contribute to larger scale recovery from 

occasional network-wide regional 

disturbances, both key components of 

resilience, relies on the input and exchange of 

new individuals from remnant neighbouring 

populations (Cowen et al. 2006, Treml et al. 

2008). Connectivity is particularly important 

for marine organisms that generally display bi-

partite life histories, with a dispersive larval 

phase following reproduction before 

transitioning to a more sedentary benthic 

phase. Ocean currents are a major driver of 

larval transport, and larvae can disperse 

distances ranging from meters to thousands of 

kilometres from their natal reef (Cowen and 

Sponaugle 2009, Jones et al. 2009). Thus, 

understanding connectivity is a particularly 

important consideration in the management of 

marine natural resources (Gaines et al. 2010).   

 

The consideration of connectivity in 

management is especially prominent in the 

conservation of coral reefs and marine reserves 

(e.g. Almany et al. 2009, Krueck et al. 2016). 

Both are usually somewhat isolated and 

discrete areas of habitat that are connected by 

larval transport over ecological and 

evolutionary timescales. Coral reefs are 

subject to a number of threats from 

anthropogenic sources, both local and global. 

These include but are not limited to 

overfishing, habitat destruction, coastal 

development, sedimentation, eutrophication 

and tropical storms, as well as the global 

impacts of climate change (Harborne et al. 

2017). Given this array of disturbances and the 

fragmented geography of coral reef habitats 

there is a clear need for active efforts to ensure 

the persistence of coral reef ecosystems.   

 

Spatial management approaches are a common 

tool employed to protect the resilience and 

persistence of coral reefs at a regional scale, 

and the idea of networks of marine reserves is 

being applied globally (Mora et al. 2006). Yet, 

because coral reefs support the livelihoods of 

millions, decisions regarding which reefs to 

protect and how to balance conservation with 

more immediate human needs, are difficult 

(Klein et al. 2008, Halpern et al. 2013). 

Consequently, connectivity based approaches 

to prioritising reefs and optimising 

conservation outcomes are increasingly 

common and include studies of larval 

behaviour, genetics and numerical 

hydrodynamic modelling (Ovaskainen and 

Hanski 2003, Werner et al. 2007a, Figueira 

2009, Jones et al. 2009, Jacobi and Jonsson 

2011a). To understand the implications of this 

knowledge however, they should also be 

combined and viewed in a network or meta-

population context.  

 

Modelling approaches including the use of 

connectivity matrices and network analysis 

have increasingly been used for conservation 

prioritization (e.g. Ovaskainen and Hanski 

2003, Figueira 2009, Jacobi and Jonsson 

2011a, Kininmonth et al. 2011, Treml and 

Halpin 2012, Hock et al. 2014). These uses 

include marine reserves, but network analysis 

can also be used to prioritize reefs for the 

eradication of undesirable species such as 

crown-of-thorns starfish (Hock et al. 2014). 

While consideration of single reefs would 

suggest that larval retention is key to their 

persistence, there is a further need to include 

networks of populations in order to manage 

marine populations at appropriate scales. Such 

analyses have highlighted that prioritising 

areas on the basis of either sink or source 

characteristics alone is relatively ineffective 

(Jacobi and Jonsson 2011b) and that the key 

components of a network, in terms of its ability 

to recover from disturbances and ultimately to 

persist, include those nodes of the network that 

both supply and receive substantial numbers of 

larvae. Such nodes have been variously termed 

gateway reefs (Bode et al. 2006) or 

superspreaders (Hock et al. 2014).   

 

Representations of connectivity such as 

‘betweenness centrality’ (Holstein et al. 2014) 

have been used to rank habitat components in 

terms of their input to persistence, and it is 

increasingly recognised that such 

prioritizations need to incorporate 



multigenerational and dynamic aspects of 

populations at each node in order to include 

realistic representations of habitat quality. 

Variations in habitat quality or population 

parameters have been shown to have strong 

influences on the relative ranking of high 

priority sites, potentially altering priorities that 

might be made based on connectivity alone. 

For example, local demography becomes 

increasingly important under conditions of 

high larval retention where demographic 

variability can turn sources into sinks (Figueira 

2009), and spatial variations in habitat quality 

can change network dynamics (Watson et al. 

2011). These variations find their fullest 

expressions in the contrasting network 

characteristics of different species within the 

same region (Watson et al. 2011, Holstein et al. 

2014). Hydrodynamic variability can 

potentially also have important influences on 

network properties (Bode et al. 2006, Golbuu 

et al. 2012).  

 

Here we focus on a regional network of coastal 

reefs on the Pilbara Coast of north-west 

Australia with a view to informing 

management approaches in the region to 

address multiple stake-holder use. The region 

is the focus of significant industrial activity 

(oil, gas) and major port developments (Hanley 

2011), well-established conservation 

initiatives including several large multiple-use 

marine parks and a World Heritage Area at 

Ningaloo Reef (CALM and MPRA 2005), as 

well as recreational and commercial fishing 

(Fletcher and Santoro 2009). Using a 6-year 

time series of hydrodynamic models we have 

estimated connectivity among coral reefs in the 

region. We then used a meta-population 

model, based on regional measurements of 

coral populations, to study the interplay 

between local population dynamics and 

regional connectivity.  

 

In setting up a regional management plan for 

the conservation of marine resources, a 

manager needs to address a number of 

stakeholder aspirations, but also to ensure that 

the system is resilient to three types of 

disturbances: i) local, relatively frequent 

natural and anthropogenic disturbances 

leading to variable local conditions which can 

be balanced by larvae supplied from other 

areas (we term this ‘system maintenance’ from 

hereon); ii) occasional major and potentially 

catastrophic regional disturbances affecting a 

significant section of the region (we term this 

‘system recovery’) and iii) larger scale 

biophysical processes or climate change, 

which may lead to yearly or decadal variability 

in climatic and ecological regimes. The main 

result of this study is to show that zones which 

offer larger contributions to system 

maintenance do not necessarily have the same 

level of importance for system recovery or 

under different disturbance regimes. This 

finding is of both regional importance and 

general significance and represents robust 

advice across a range of management sectors. 

 

Materials and methods  

Methodological overview 

We firstly describe the study region, data 

collection, and analysis which provide the 

estimated current coral cover and maximum 

sustainable coral cover used in the meta-

population model. We then describe the 

hydrodynamic model which provides the 

connectivity data and meta-population model 

used to study changes in coral cover as a 

function of both connectivity and local 

population dynamics. Next, we describe the 

modelling approach used to study the three 

types of disturbances. First, we employ an 

impact analysis to assess how much each zone 

contributes to system maintenance – i.e., 

preserving coral biomass in the overall region. 

Second, we explore the role each zone plays in 

system recovery following regional system 

collapse. Finally, we describe how yearly 

variability in network connectivity is analysed 

and its role on impact and recovery.   

 

Study area 

The Pilbara consists of over 300 low islands 

(<6m above sea-level) with most having well 

developed fringing coral reefs. The region is 

characterised by a large tidal range (3m spring 

tides) and a wide, gently sloping continental 

shelf, resulting in strong tidal flows 

throughout the region (0.4knts). Average 

annual rainfall is low (mean = 306 mm), 

however during the austral summer months 



(November to March) cyclones are common 

(mean 0.6 per year; BOM 

http://www.bom.gov.au/climate/maps/average

s/tropical-cyclones/) and have resulted in 

large declines of coral cover within Acropora 

dominated assemblages (Marsh and Marsh 

2000). Most fringing coral reefs in the region 

are dominated by macroalgae (Sargassum, 

Turbinaria, Padina), however diverse 

assemblages of hard corals and invertebrates 

are common throughout (Richards and Rosser 

2012, Pitcher et al. 2016).  

 

Benthic communities were surveyed using 

50m photo-transects (English et al. 1997). A 

total of over 1200 transects, distributed evenly 

throughout the model sub-regions, were 

completed between November 2013 and May 

2015. Sub-regions were defined based on 

clusters of adjacent and geomorphologically 

similar reefs. To quantify the current coral 

cover and the maximum sustainable coral 

cover for each sub-region, the mean percent 

cover of live and recently dead (Ridgway et al. 

2016, Lafratta et al. 2017) coral were obtained 

from photo-transects. Photos were captured at 

0.5m intervals along the transect and randomly 

selected for analysis with the genus of any 

scleractinian corals recorded for 6 fixed points 

per photograph using Transect Measure™ 

(i.e.180 pts per 50m transect). The coral cover 

was calculated as the mean coral cover of 

transects within that sub region (Figure 1). 

Estimated maximum sustainable coral cover 

was based on observed coral cover and 

recently dead coral cover, adjusted where data 

from other sources showed higher maximum 

cover, and where necessary by referring to 

estimates in adjacent zones. Recently dead 

coral cover is represented by dead coral 

colonies covered in sediment or early 

successional taxa such as turf algae. Patches of 

dead coral can be up to approximately 3 years 

old, after which time early successional taxa 

are replaced by late successional stage taxa 

including macroalgae, crustose coralline algae 

and/or new hard coral. As such, the sum of the 

observed coral cover and recently dead coral 

cover reliably represents the maximum coral 

cover at a location within the last 

approximately 3 years. 

 

 

Figure 1. West Pilbara model domain, zone 

locations and labels (as in Feng et al. 2016). 

Colours map coral cover, calculated as the 

mean coral cover of transects within each 

zone. The 10 zones with highest coral cover 

in decreasing order = 44, 40, 39, 3, 22, 31, 2, 

28, 41, 12   

 

Connectivity data 

Connectivity data were obtained by simulating 

larval release and diffusion by tracking particle 

movement on the studied area forced by 

oceanic data recorded in the years 2004 to 

2009. The full parameterisation and simulation 

of the larval connectivity model is described in 

Feng et al. (2016).  

In brief, the particle tracking is based on 

hydrodynamic model outputs from model 

simulations using Rutgers version of the 

Regional Ocean Modelling System (Feng et al. 

2016) and was run with ~1 km horizontal 

resolution. The bottom topography was taken 

from a collection of sources including 

GA2009, industry provided LIDAR and MNF 

multi beam data. Reef distribution was 

summarised by compiling benthic habitat maps 

from CSIRO, Western Australia Department 

of Parks and Wildlife, Western Australia 

Museum, and environmental impact statement 

documents from industrial developments in the 

region. Reefs were used as the seeding 

locations of coral larvae in the particle tracking 

model, and as settlement sites when evaluating 

retention and connectivity. A total of 3430 reef 

release sites were modelled within the domain, 

divided among 47 sub-regions to facilitate 

summation of the results (as shown in Figure 

1). The dominant austral summer-autumn coral 

mass spawning event was modelled by 

http://www.bom.gov.au/climate/maps/averages/tropical-cyclones/
http://www.bom.gov.au/climate/maps/averages/tropical-cyclones/


releasing particles 7-9 days after the full moon 

in March (Gilmour et al. 2016) for the 6 years 

(Feng et al. 2016). Once released, a larval 

competence ratio is derived from the product 

of larval mortality and competency functions 

(Feng et al. 2016), based on parameters 

published in (Connolly and Baird 2010). 

Larval competence relative to initial release 

takes the form of a log-normal function (Fig. 6 

in (Feng et al. 2016)), with a minimum 

competency period of 3.2 days and a peak 

competency period occurring at 8-12 days. 

Larvae are tracked for a total of 60 days, by 

which time no live and competent larvae 

remain. Competent particles located within a 

0.3 km radius of suitable reef habitat were 

regarded as settled on that reef to incorporate 

coral larvae sensory behaviour.  

 

Meta-population model 

The ecological model consists of a network of 

47 zones, each hosting a separate coral 

population and interacting with other 

populations via a connectivity matrix C. For 

two zones, zonei and zonej, Cij represents the 

ratio of larvae originating from zonei which 

settles on zonej  . The coral population state is 

here represented as percentage coral cover. 

The dynamical evolution of the percentage 

coral cover of zonei is modelled as: 

𝑏𝑖,𝑡+1 =  𝑏𝑖,𝑡 + 𝑟𝑏𝑖,𝑡 (1 −
𝑏𝑖,𝑡

𝐾𝑖,𝑡
) −

 𝑑𝑏𝑖,𝑡 + ∑ 𝐶𝑗𝑖𝑗 𝑏𝑗,𝑡𝑓 + 𝑒𝑖,𝑡 

(1) 

 

where 𝑏𝑖,𝑡 is the percentage coral cover in zonei 

at time t, r is intrinsic growth rate, d is 

mortality rate and f is fecundity, understood as 

the number of visible recruits per unit cover. 

𝐾𝑖,𝑡 𝑖s the maximum sustainable coral cover 

(see below for a description of this term) in 

zonei at time t, 𝐶𝑗𝑖 is the probability that a 

juvenile released at zonej may recruit at zonei 

and 𝑒𝑖,𝑡 is a process error term.  In all 

simulations described below, Eq. 1 is iterated 

for 50 years with a time-step of one year.  

 

This is a simple model since it does not 

explicitly account for interactions between 

corals and other species. Nevertheless, it 

allows us to analyse the interplay between 

three processes: i) the population dynamics 

acting locally at each zone, as represented by 

the second and third terms on the right-hand 

side on Eq 1, ii) maximum sustainable coral 

cover, as represented by the term (1 −
𝑏𝑖,𝑡 

𝐾𝑖,𝑡
) 

and iii) the network dynamics as a function of 

the connectivity matrix C. A discussion about 

this and alternative model formulations can be 

found in (Berryman et al. 1995). Values 

assigned to starting percentage coral cover 

(bi,t=0) and K are explained in Study area. 

Model parameterisation, example runs, 

sensitivity analysis, and model uncertainty and 

limitations are presented in Appendix S1. 

Notice that because b represents percentage 

coral cover it does not depend on zone size, 

while the connectivity matrix C, which 

represents the probability that a juvenile 

released at one zone may recruit at another 

zone, depends on the relative size of the 

originating and settling zones in addition to 

oceanic circulation.   

 

Uncertainty and yearly variability for these 

parameters is accounted for indirectly in the 

simulations via the process error term 𝑒𝑖
𝑡 which 

follows a normal distribution with zero mean 

and standard deviation = 1.5 % cover.  This 

values was chosen so that the error term has an 

impact on the model result comparable to 

~10% variation on the intrinsic growth r. To 

account for stochastic variability, all model 

results are obtained by performing ensemble 

runs of 500 independent model simulations, 

with random error terms, and averaging the 

results. 

 

Particularly relevant for our analysis is the role 

of the maximum sustainable coral cover 𝐾𝑖,𝑡 in 

Eq 1. Commonly, in logistic equations like Eq 

1, in place of 𝐾𝑖,𝑡 we would find a maximum 

sustainable coral cover K, interpreted as an 

intrinsic property of a region, and thus a 

constant across all zones and over time. Here, 

as in (Sainsbury 1991, Thébaud et al. 2015, 

Britten et al. 2017), 𝐾𝑖,𝑡 is  interpreted as a 

proxy for the quality of the habitat supporting 

the coral community, which determines the 

maximum coral cover the zone can sustain. As 

such, values of K can change across individual 

zones. In addition, K can change with time 

since it may be negatively impacted by 

development projects that can induce excess 



sedimentation and water turbidity (Pollock et 

al. 2014), or natural disturbance such as coral 

bleaching (Lukoschek et al. 2013), or may be 

positively impacted by habitat restoration 

initiatives or natural recovery (Depczynski et 

al. 2013). In this work, variations in 𝐾𝑖,𝑡 are 

used to model events that completely destroy 

the coral supporting habitat in a zone, to mimic 

the effects of climate change or local 

development (see section ‘Impact analysis’ 

below). 

 

Whether K is interpreted as a constant or 

variable maximum sustainable coral cover, the 

role of 𝐾𝑖,𝑡 is the same. When the coral cover 

is below the maximum sustainable (𝑏𝑖,𝑡  < 𝐾𝑖,𝑡 

), the growth term  𝑟𝑏𝑖,𝑡 (1 −
𝑏𝑖,𝑡

𝐾𝑖,𝑡
) > 0 and the 

coral cover increases. When the coral cover is 

above the maximum sustainable (𝑏𝑖,𝑡 > 𝐾𝑖,𝑡),  

the growth term 𝑟𝑏𝑖,𝑡 (1 −
𝑏𝑖,𝑡

𝐾𝑖,𝑡
) <

0 effectively turning into an additional 

mortality term due to competition for space, 

and the coral cover decreases. 

 

Yearly variations in connectivity 

Yearly variations in connectivity are analysed 

using three approaches. First, changes in the 

betweenness centrality of the different yearly 

connectivity networks are assessed. Second, 

we check how changes in connectivity affect 

the system maintenance and recovery analysis. 

Both analyses assume that a yearly 

connectivity matrix applies to each of the 50 

years of the simulation run. A third approach is 

designed to account for year to year variability 

in the simulation run itself.  

 

‘Betweenness centrality’ (BC) is commonly 

used in network theory to quantify the relative 

importance of a node in the overall network 

connectivity (Holstein et al. 2014). BC 

measures the number of shortest paths between 

any two zones in the ecological network that 

go through a specific zone. For example, a 

larva released from a zone can recruit into a 

different zone, grow into a full colony, and 

subsequently release new larvae that recruit 

into a third zone. Over several years, or model 

time-steps, zones are thus connected directly 

via a specific yearly connectivity matrix and 

indirectly via multi-step temporal transitions 

between multiple zones. BC represents the 

extent to which a zone is likely to be visited by 

these indirect links and how likely it is over a 

large number of generations that coral 

offspring transit through that specific zone.  

 

Accounting for year to year variability in the 

simulation run itself is complicated by the 

inherent stochasticity of simulation runs, a 

lack of knowledge of the probability 

distribution of connectivity patterns, and 

uncertainty relating to future oceanographic 

conditions under climate change. To address 

this challenge, we ran 500 simulations of the 

model in Eq 1, using the mean connectivity 

matrix. This procedure results in 500 coral 

cover values for each zone one for each of the 

simulation runs. We then repeated this 

process, only using a connectivity matrix for 

each year that was chosen at random among 

the years 2004-2009.  For each zone, we 

determined p-values for Kolmogorov-

Smirnov tests of differences between 

distributions of simulated coral cover created 

assuming mean and randomly assigned 

connectivity matrices.  This analysis 

indicates, for each zone, the degree to which 

the simulated distributions of coral cover are 

affected by annual variability in connectivity. 

 

Impact analysis 

The role a zone plays in system maintenance is 

the regional impact of perturbing that zone’s 

percentage coral cover and maximum 

sustainable coral cover. Impact is defined as 

the difference between the system in its 

baseline state and what the system would be 

had a specific perturbation occurred in a 

specific zone. This estimated impact 

constitutes a reasonable hypothesis of the 

effects of climate change and development on 

regional coral extent that is consistent with 

current understanding and which can be 

compared to future observations. Impact as 

described is an effective proxy for the analysis 

of system maintenance since the larger the 

number of zones with high global impact, the 

more the system may withstand minor local 

stressors and ecological variability. 

 



The overall regional impact of an event that 

completely destroys the coral supporting 

habitat in zonei is computed via the following 

steps.  We first calculated the projected overall 

coral cover after 50 years in the case of no 

perturbation. This value is defined as baseline.  

Then, for each zonei we modelled how the 

complete destruction of coral-supporting 

habitat from that zone influenced maximum 

sustainable coral cover all other zones. The 

change in coral cover over the regions (B-i) 

after 50 years in the case of Ki→0, is 

impacti=(baseline - 

bi - B-i) 

Eq 2 

Where the notation ‘–i’ refers to all zones 

except for i (1, 2, 3, …., i-1, i+1, i+2 …). 

Notice that because the coral cover of zonei (bi) 

is subtracted from the baseline coral cover in 

Eq 2, impacti represents the contribution of 

zonei to the coral cover in all other zones, 

separate from the coral cover loss in zonei 

itself. 

 

Recovery analysis 

While impact analysis simulates the regional 

impact of a perturbation in a single zone, 

recovery analysis addresses the opposite. All 

zones apart from zonei have coral cover 

removed and the time it takes for the overall 

region to recover its original coral cover solely 

from the contribution from zonei is quantified. 

Once again, projected overall coral cover after 

50 years in the case of no perturbation is 

calculated and defined as 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = ∑ 𝑏𝑖𝑖 .  
For each zone in succession, we presumed the 

destruction of coral cover in all other zones by 

setting b-i=0 (leaving K-i unchanged to allow 

for recovery of coral cover.  We then 

determined the projected overall coral cover at 

each subsequent time-step for each zone and 

summed these values across regions, 𝑆𝑡 =
∑ 𝑏𝑖,𝑡𝑖 .  The RecoverTimei was defined as the 

value of t at which 𝑆𝑡 ≥ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 

 

Sensitivity analysis 

The model response to changes in a parameter 

is a function of the parameter itself, of all other 

parameters and of the state variables. A full 

sensitivity analysis is thus computationally 

unfeasible. An approximate understanding of 

model sensitivity can however be achieved by 

studying how the model responds to changes in 

a few parameters at a time, using the 

simulations under standard conditions as 

baseline references. Some of these results are 

presented in Appendix S4 where the sensitivity 

of both the impact and recovery analyses to 

changes in intrinsic growth, mortality, 

fecundity and maximum sustainable coral 

cover are discussed. 

 

We used the results from the impact and 

recovery analyses described above as baseline 

references, and compared these to results using 

three alternative model parameterisations. If 

C0 and K0 are the connectivity and maximum 

sustainable coral cover values in Eq 1 (as 

described in the Meta-population model 

section above), the three alternative 

parameterisations were as follows. 

 

1. “Fixed K”; 𝐾𝑖 = 𝑚𝑒𝑎𝑛(𝐾𝑖
0) and C= C0. In 

this parametrisation, the connectivity 

matrix is unchanged and the maximum 

sustainable coral cover is the same in all 

zones and equal to the mean of the 

maximum sustainable coral cover used in 

the baseline simulations.   

2. “Fixed self-recruitment”; 𝐾𝑖 = 𝐾𝑖
0 and C= 

C1, where 𝐶𝑖≠𝑗
1 = 𝐶𝑖≠𝑗

0  and 𝐶𝑖=𝑗
1 =

𝑚𝑒𝑎𝑛(𝐶𝑖=𝑗
0 ). In this parametrisation, the 

maximum sustainable coral cover and 

external recruitment are unchanged and the 

self-recruitment (diagonal entries in the 

connectivity matrix) is the same in all 

zones and equal to the mean of self-

recruitment used in the baseline 

simulation.   

3. “Fixed external recruitment”; “𝐾𝑖 = 𝐾𝑖
0 

and C= C2, where 𝐶𝑖=𝑗
2 = 𝐶𝑖=𝑗

0  and 𝐶𝑖≠𝑗
2 =

𝑓(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒). In this parametrisation, the 

maximum sustainable coral cover and self-

recruitment are unchanged and the external 

recruitment (off-diagonal entries in the 

connectivity matrix) is an inverse square 

function of the distance between zones.    

 

The comparison between the baseline, “Fixed 

K”, “Fixed self-recruitment” and “Fixed 

external recruitment”   simulations gives an 

indication of how regional variability in 

maximum sustainable coral cover, self-

recruitment and external recruitment affect the 



sustainability of the reef system and thus the 

extent to which data collection to assess this 

variability can inform management as well as 

the extent to which focussing on the 

management of local variability vs regional 

averages can benefit long term conservation.  

 

 

Joint assessment of impact and recovery under 

variable connectivity patterns 

Finally, to account for variability in yearly 

connectivity patterns and to summarise our 

findings for decision making, we plot recovery 

time and impact analysis on the same figure 

under different types of connectivity matrices. 

Lacking information on the probability 

distribution of future ocean circulation 

patterns, and thus of future connectivity 

patterns, we represent yearly variability via 

two types of simulations. In the first, referred 

to as ‘random’, the connectivity matrix is 

chosen randomly at each year. In the second, 

referred to as ‘cycle’, we cycle through 2004-

2009 connectivity matrices, generating a 

regular sequence of connectivity with a period 

of six years.  

 

Results  

Yearly variations in connectivity 

Betweenness Centrality (BC) was generally 

highest in the central zones (zone 20 and 

surrounding; Figure 2) with most larvae 

passing through these zones during dispersal. 

However, BC of these zones changed 

significantly from very high values in 2005 to 

much lower values in 2008. Inter-annual 

variability was also high between consecutive 

years (e.g. compare 2004 to 2005). In addition, 

while the north-east end of the study area 

shows consistently lower values, some 

variability in BC at the south-west end of the 

study area is noticeable. This pattern is 

significant because we expect the BC at both 

ends of the study area to be low due to border 

effects. 

 

A quantitative assessment of the year to year 

variability was obtained by simulation runs in 

which the connectivity matrix is chosen 

randomly among the yearly connectivity 

matrices 2004-2009, at each time-step (Figure 

5). Thirty-four of the forty-seven zones in the 

model have highly significant p-values 

(<0.01), suggesting that local coral cover 

resulting from random yearly variations in 

connectivity are significantly different from 

the ones resulting from the mean connectivity. 

We further tested this following current 

recommendations about overreliance on p-

value significance (Halsey et al. 2015, Altman 

and Krzywinski 2017) by bootstrapping p-

values and comparing the above distribution 

against 200 different distributions, obtained by 

comparing 200 sets of 500 simulation runs that 

use the mean connectivity matrix and different 

random seeds for the error term. No 

comparison had a single p-value >0.01, 

showing that patterns of connectivity in any 

given year and for the mean connectivity lead 

to simulation results that are statistically 

different. Overall, this suggests that even over 

a 50-year simulation, using the mean 

connectivity matrix is not a good 

approximation of the yearly variability in 

connectivity.  

Yearly variability in connectivity was 

investigated further by examining the annual 

patterns for larval inflows (acting as a “sink”) 

and outflows (acting as a “source”). Similar to 

BC, reefs acting as sinks were often located in 

the centre of the study region (Appendix S2: 

Fig. S1)  but there was strong inter-annual 

variability in larval supply to surrounding 

regions in both the north-east and south-west. 

Sources of larval outflow were also dominated 

by reefs in the centre of the section  region 

(Appendix S2: Fig. S2). 

 

 

Impact analysis 

Impact analysis highlights three areas as 

having prominent effects on coral cover in the 

entire region (Figure 3). These zones are 

located the mid-south-west (14 and 15), 

followed by the offshore spatially central 

region (21 and 22) and then the south (6 and 

11). Thus, in contrast to indices related to 

connectivity, the zones that impact the coral 

cover of surrounding regions do not 

necessarily radiate from the centre of the 

study region. Yet, similar to the connectivity 

measures, there is considerable temporal 



variability in the impact a zone has on the 

overall state of the system – with the 

connectivity matrix from year 2004 having 

the highest impact– as well as among regions 

within a given year (Appendix S3: Fig. S1). 

 

 
Figure 2. Betweeness Centrality (BC) for 

the six yearly connectivity matrices and the 

mean connectivity matrix. 

 

The ranking of the zones in terms of overall 

regional impact differs from both the ranking 

of their coral cover and maximum sustainable 

coral cover (Appendix S1: Fig. S1). The 

potential for zonei to have an impact 

according to Eq 2 depends on its biomass at 

each time-step and its connectivity. The 

potential of any other zonej to be impacted 

depends on its connectivity to zonei but also 

on how far the biomass of zonej is from 

maximum sustainable coral cover at each time 

step. Impact is thus non-linear, because it 

depends on maximum sustainable coral cover, 

as well as path-dependent, because it depends 

on values of coral cover and maximum 

sustainable coral cover at the previous 

simulation step. The extent of non-linearity 

and path-dependence is evident wherein not 

only the magnitude but also the spatial pattern 

of the zones’ impact change with varying 

levels of perturbation imposed on each zone 

(Appendix S4: Fig. S4.).  Consequently a 

priority list of zones for conservation 

initiatives would change depending on the 

magnitude of the stressors the region is likely 

to experience.    

 

 

Figure 3. Impact analysis showing the 

change in coral cover in all remaining 

zones, as a result of a perturbation which 

destroys the coral supporting habitat in a 

given zone. Zones in red have higher 

regional impact. Zones of highest impact= 

14, 22,  21,  15,  6,  11,  38,  39,  17,  16. 

 

 

Recovery analysis 

Similar to the impact analysis, recovery time 

did not show any spatial aggregation towards 

the centre of the study region (Figure 4). In 

addition, the zones that provide for fast 

recovery were not included in the top 10 

rankings for coral cover, maximum 

sustainable coral cover or impact. Temporal 

variability was also high and followed a 

similar pattern to the impact analysis, with 

2004 having the highest influence on recovery 

time (Appendix S3: Fig. S2.). 

 

 
Figure 4. Recovery analysis showing the 

number of years needed for overall regional 

coral cover to recover when a single zone is 

unaffected and re-seeds neighbouring reefs. 

Blue and white colours map short to long 

recovery times, respectively. Listed are the 

10 zones leading to faster regional recovery 

in decreasing order (shorter to longer 



recovery time). Zones of quickest 

recovery= 24, 31,  42,  2,  12,  18,  37,  5,  

32,  40 

 

 

 

 
Figure 5. Comparison of model results 

between 500 simulation using the mean 

connectivity matrix vs using random yearly 

connectivity matrices. Colours map the p-

values of the Kolmogorov-Smirnov test of 

the two distributions for each zone.  

 

Sensitivity analysis 

From both a scientific and management 

perspective, a question of considerable 

relevance is the relative impact of scenarios 

with varying local population dynamics vs 

self-recruitment vs external recruitment in the 

sustainability of a meta-population. The 

patterns of departure from the baseline vary 

considerably in the three scenarios, showing 

how zones can react very differently to 

changes in maximum sustainable coral cover, 

self-recruitment and external recruitment. This 

result held for both removal impact and 

recovery time (Figure 6, Figure 7).  The main 

result from this analysis is that changes in self-

recruitment have the least effect on the impact 

analysis while changes in maximum 

sustainable coral cover have the least effect on 

the recovery analysis. In the Pilbara network, 

variability in self-recruitment has a smaller 

overall impact on the analysis than variability 

in external connectivity and maximum 

sustainable coral cover (Figure 6, Figure 7). 

Interestingly, a uniform maximum sustainable 

coral cover (top row) seemed to have an overall 

negative impact on recovery time in most of 

the region, while the effects of fixed self-

recruitment and external recruitment are more 

evenly distributed (Figure 7).  

Joint assessment of impact and recovery under 

variable connectivity patterns 

Yearly changes in connectivity strength result 

in profound differences to population impact 

and recovery that are lost when assessing mean 

connectivity trends. This result is obtained by 

accounting for variability in yearly 

connectivity patterns by using two types of 

simulations: ‘random’ (the connectivity matrix 

is chosen randomly at each year) and ‘cycle’ 

(we cycle through 2004-2009 connectivity 

matrices). To simplify comparison, we also 

include the set of simulations carried out with 

the mean connectivity matrix.  

 

One pattern that clearly emerges is that 

connectivity patterns affect recovery time 

more often than impact values, as shown by the 

clear horizontal layering of the three types of 

simulations (Figure 8). Clearly, recovery time 

is much quicker when yearly connectivity 

changes randomly. This variability results in 

an irregular spreading of larvae through the 

region and thus enables recruitment from the 

source zone to a larger number of zones in the 

first years of the simulation, kick-starting the 

process of recolonization to the entire region. 

Conversely, under static connectivity, few 

zones are likely to be reached in the first years 

of the simulation and further recolonization 

needs to proceed indirectly via these newly 

seeded zones, delaying the recovery process. 

Simulation with the periodic changes in 

connectivity displays an intermediate 

behaviour.  

 

Discussion 

We have described an approach useful for 

prioritising areas suitable for resilience-based 

management in a network relevant to marine 

spatial planning. The results of prioritisations 

made in this study have immediate relevance 

to contemporary management decisions 

(Doropoulos and Babcock 2018). For example, 

zones marked in red in Figure 8b appear to 

contribute most to both high impact and quick 

recovery, both key components of resilience. 

Some of these zones are located in the Dampier 

Archipelago region, currently under 

consideration for declaration as a multiple-use 

marine park area.  Zones in the central part of 



the region also appear frequently as both high 

impact and quick recovery. Given recent coral 

bleaching in the Pilbara (Ridgway et al. 2016, 

Lafratta et al. 2017) the importance of these 

zones for the recovery and resilience of the 

overall region assumes broader importance and 

potentially greater urgency. In contrast, zones 

marked in blue in Figure 8b showed low 

contributions to impact and recovery and 

appear to make relatively small contributions 

to system resilience so might receive lower 

priority for conservation measures, or higher 

priority as potential development sites, all 

other things being equal. That said, care is 

needed when assessing the contribution of 

zones 1-3 because they are located close to the 

domain border.   

 

 
Figure 6. Relative effect of variability in 

maximum sustainable coral cover (top), 

self-recruitment (middle) and external 

recruitment (bottom) on the outcome of the 

impact analysis. Results are shown as 

difference against the baseline impact 

analysis in Figure 3, with values ranging 

from green (negative) to red (positive). 

Variability in self-recruitment has a smaller 

overall impact on the analysis compared to 

external connectivity and maximum 

sustainable coral cover. The patterns of 

departure from the baseline vary 

considerably in the three plots showing how 

zones react very differently to changes in 

maximum sustainable coral cover, self-

recruitment and external recruitment.  

 

Somewhat surprisingly, our study has 

highlighted how a single reef can have 

differing contributions to habitat maintenance 

and recovery, both of which are key attributes 

of resilience (Mumby and Steneck 2008). We 

find zones that provide large contributions to 

system maintenance may not necessarily do so 

for system recovery. Some zones show high 

contributions for either maintenance or 

recovery, but not both. Moreover, the ranking 

of a zones’ impact can change as a function of 

the magnitude of the perturbation and its sign 

(Appendix S4: Fig. S4.). 

 

 
Figure 7. Relative effect of variability in 

maximum sustainable coral cover (top), 

self-recruitment (middle) and external 

recruitment (bottom) on the outcome of the 

recovery analysis. Results are shown as 

difference against the baseline impact 

analysis in Figure 4, with values ranging 

from green (negative) to blue (positive). 

Variability in external connectivity has the 

largest impact on the result.  

 

Our modelling approach differs from other 

approaches in the meta-population literature 

(Hanski 2001, Ovaskainen and Hanski 2001, 

2003, Figueira 2009, Jacobi and Jonsson 

2011a) in a number of ways. Among these, two 

are particularly significant. First, we model the 

dynamics of population abundance (rather than 

presence/absence as in traditional meta-

population studies) within each zone by using 

a variable maximum sustainable coral cover, 

rather than a constant carrying capacity as in 

(Jacobi and Jonsson 2011a). The maximum 



sustainable coral cover is estimated 

empirically and can vary during the simulation 

to mimic changes in the quality of the 

supporting habitat. Second, rather than 

calculating the contribution a zone provides to 

other zones in terms of exported larvae (as in 

(Figueira 2009)) we calculate its impact, that is 

the fraction of exported larvae which can 

actually recruit to other zones, as a function of 

the local biomass abundance and maximum 

sustainable coral cover at that time step in the 

simulation. For a more in depth discussion of 

the difference between contribution and impact 

within an ecological modelling framework we 

refer the reader to (Boschetti 2007). A similar 

idea is used in (Ovaskainen and Hanski 2003) 

who provide a closed form solution in the case 

in which the model dynamics is governed by 

colonisation and extinction processes only, and 

no population dynamics within each zone is 

included.  

 

The non-linearity and density dependence in 

our model prevent us from obtaining closed 

form solutions to the computation of impact 

and recovery analyses, which we carried out 

numerically as described in Sections Impact 

analysis and Recovery analysis. Our study has 

highlighted the importance of incorporating 

yearly variability when investigating dynamic 

systems, rather than simply investigating 

averages, as also noticed in other regions 

around the world (Rice et al. 1999, Werner et 

al. 2007b). When considering source-sink 

dynamics and spatial planning, stochastic 

events can be important drivers of rare 

connectivity events rather than simply outliers 

(e.g. Golbuu et al. 2012). In our study system, 

variability in oceanic transport and its 

interactions with the annual lunar progression 

in the timing of coral mass spawning (Gilmour 

et al. 2016) also drives dynamic patterns of 

ecological connectivity. Connectivity patterns 

changed considerably among the years 2004-

2009, significantly affecting coral connectivity 

in different parts of the region, subsequently 

affecting the role they play in overall regional 

coral cover. Thus, average connectivity values 

can overlook key components of dynamic 

systems. 

 

 
Figure 8. (left) Impact and recovery time for 

each zone for a connectivity matrix changing 

randomly every year (red), periodically 

cycling thorough the 2004-2009 

connectivity matrices (green) and static 

mean connectivity (blue). X-axis represents 

the impact values as % coral cover and the 

y-axis shows the recovery time. (right) 

Zones with high impact value and fast 

recovery time (red) and zones with low 

impact value and slower recovery time (dark 

blue). 

 

Differing hydrodynamic conditions emerge as 

a strong driver of the properties of the overall 

system if it were to experience long-term 

change into conditions represented by the 

regime of a particular year (Appendix S3: Fig. 

S1). For example, persistent conditions typical 

of year 2005 would produce the quickest 

recovery times, with such results being 

possible with recovery sourced from multiple 

reefs (Appendix S3: Fig. S2). Conditions in 

2005 were characterised by north to south flow 

yet relatively low connectivity between areas 

around Dampier in the north and the rest of the 

system (Feng et al. 2016).  In contrast, 

recovery times appeared to be almost twice as 

long under conditions representative of 2004, 

when currents flowed mainly south to north.   

 

Broad scale changes to coastal and oceanic 

circulation and seasonality in the eastern 

Indian Ocean may be experienced under 

changing climate and are likely to influence 

hydrodynamic regimes and therefore overall 

network dynamics. Random variation in 

hydrodynamic connectivity appears to 

promote the most rapid recovery of the system 

(Fig. 6), with longer recovery times when 

hydrodynamic regimes cycle – such a 

phenomenon may be experienced under 

increased frequency of ENSO conditions in the 

south-east Indian Ocean (Cai et al. 2015, Zinke 

et al. 2015). These changes may also impact 



rates of coral bleaching and other disturbances. 

Therefore, changing climate will have multiple 

paths to impact the resilience of Pilbara coral 

reefs.  

 

The role of coral population dynamics in each 

zone was also evident, wherein contributions 

to system resilience were influenced not only 

by levels of connectivity but also by differing 

carrying capacities. For the same system, 

assessments of system resilience based on 

connectivity alone (i.e., rank contribution of a 

zone as a source and/or sink) produced a list of 

zones potentially important to resilience that 

was quite different (Feng et al. 2016) to those 

developed in the current analysis. Broad scale 

data on maximum sustainable coral cover and 

dynamic aspects of populations is highly 

valuable in this context and given apparent 

sensitivity of the system to properties such as 

growth and mortality continued efforts to 

obtain relevant demographic data across 

appropriate spatial scales should be a high 

priority for management. 

 

Conclusions 

The presented approach can provide valuable 

input to management decision-making in 

ranking the relative values of discrete areas 

based on agreed sets of prioritised attributes. 

Importantly, conclusions based on this 

approach can differ from those based on 

connectivity alone (Feng et al. 2016).  By 

showing that even a single species logistic 

equation can lead to extremely complex 

behaviour when embedded in a network of 47 

interacting nodes as described in this work, we 

also highlight that different purposes of 

conservation initiatives (system maintenance 

and system recovery) can result in very 

different management recommendations. This 

brings attention to how a careful specification 

of management questions can lead to more 

informative analyses, modelling and field 

work. In addition, we show that yearly 

variability in connectivity is poorly captured 

by time-averaged mean connectivity, even for 

a simulation spanning five decades. In this 

case, developing conservation initiative at the 

regional level can be extremely challenging 

especially under large ecological uncertainty. 

In these situations, field work spanning long 

time series as well as more realistic modelling 

could be carried out with foresight aimed at 

identifying possible regional scenarios and 

conservation priorities that can in turn inform 

further field work and modelling in an iterative 

and adaptive manner.  
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