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Abstract 
 

We propose to define the complexity of an ecological model as the statistical 
complexity of the output it produces. This allows for a direct comparison between 
data and model complexity. Working with univariate time series, we show that this 
measure ‘blindly’ discriminates among the different dynamical behaviours a model 
can exhibit. We then search a model parameter space in order to segment it into areas 
of different dynamical behaviour and calculate the maximum complexity a model can 
generate. Given a time series, and the problem of choosing among a number of 
ecological models to study it, we suggest that models whose maximum complexity is 
lower that the time series complexity should be disregarded because unable to 
reconstruct some of the structures contained in the data. Similar reasoning could be 
used to disregard models’ subdomains as well as areas of unnecessary high 
complexity. We suggest that model complexity so defined better captures the 
difficulty faced by a user in managing and understanding the behaviour of an 
ecological model than measures based on a model ‘size’.       
  

Introduction 
 
The increasing complexity of ecological models is a growing concern in the 
modelling community. Ecological models are used to integrate process knowledge 
from different parts of the system, and in doing so allow us to test system 
understanding and generate hypotheses about how the system will respond to 
particular actions via virtual experiments. However, as we strive to make our models 
more ‘realistic’, the more parameters and processes we include. With increased model 
complexity we are less able to manage and understand model behaviour. As a result, 
the ability of a model to simulate complex dynamics is no more an absolute value in 
itself, rather a relative one: we need enough complexity to realistically model a 
process, but not so much that we ourselves can not handle. From a practitioner’s 
perspective, this can be rephrased as: “how complex a model do I need to use in order 
to study this problem with this data set?”. In this work we propose some steps that 
begin to address this issue. 
 
Clearly, an answer to the above question requires a definition and a measure of 
complexity. Importantly, it also requires the measure to be equally applicable to the 
model and to the data, since some sort of comparison is necessary. Often in the 
modelling community (both inside and outside ecological studies) complexity is seen 
as somehow related to a model architecture, that is, there is a notion of some sort of 
monotonic relation between complexity and model ‘size’, where size accounts 
roughly for dimensionality, connectiveness, number of interacting processes, etc. It is 
indeed reasonable to expect that an extra factor/dimension may potentially increase 
the effective space available to the model’s state space trajectory. Similarly, it is 
reasonable to expect that an extra link between model components may potentially 
increase the level of feedback loops in the dynamics. Nevertheless, the relation 



between complexity and model ‘size’ needs to be considered carefully since we may 
expect a model to behave very differently in different areas of its parameter space; 
this clearly defies the idea of relating complexity to model ‘size’ as well as to assign a 
single measure of complexity to a model. 
 
These considerations lead us to focus on a view of complexity which is more related 
to a model’s dynamical properties, rather than its architecture. Ideally, we would like 
to develop a tool which answers the following two questions:  

• what is the maximal dynamical complexity a given model can generate?  
• what kind of different dynamical behaviours can a given model generate?     

 
To help clarify and set upfront the thread of this work, let us suppose we did have 
such tool and describe how we would use it. The scenario we consider is one in which 
we measured a time series T of a component of an ecological process E and we need 
to choose among three different models M1, M2 and M3, which model E at different 
levels of sophistication/realism. We seek the best compromise between complexity 
and manageability in order to answer the practitioner’s question “how can I check if 
this model is appropriate to study this problem with this data set?”. We envisage the 
following approach: 
 

1) we calculate the maximum complexity M1, M2 and M3 can generate, (call 
it max

1MC , max
2MC and max

3MC ); 
2) we calculate the complexity of the time series ( TC ); 
3) suppose TM CC <max

1 ; then we can deduce that there are some structures in the 
time series T which model M1 is not able to reproduce. This does not 
necessarily refer to specific values in T, as much as to some of its dynamical 
properties; we thus disregard model M1; 

4) suppose max
3

max
2 MMT CCC <<< ; then both models M2 and M3 are able to reproduce 

the dynamics in the time series. However, M3 seems to be unnecessarily 
complex, since it is much more complex that M2, whose maximum complexity 
is already sufficient to analyse T. The extra complexity in M3 does not seem 
necessary for this modelling exercise, and, depending on our purpose, we may 
or may not decide to disregard M3; 

5) further, suppose model M2 behaves differently in different areas of its 
parameter space, with f

M
c
M

b
M

a
M CCCC 2222 ..... <<<  where a, b, c …f are different 

domains.  Finally, suppose f
M

c
MT

b
M

a
M CCCCC 2222 ..... <<<< . Then we may limit 

our analysis to the areas c..f since the dynamical properties of subdomains a 
and b do not allow us to capture all the structures in T. 

6) we thus have been able to restrict our analysis to one (or two) model, and, 
within this model, to a subdomain of its entire parameter space.   

 
Our approach to develop the tool to enable such analysis is the following:  
 

• first, among the many different measures of complexity available in the 
literature, we adopt the statistical complexity defined in Crutchfield and 
Young (1994), which is commonly applied to time series analysis. Then, we 
define the complexity of a model as the complexity of the time series it can 
generate. In the first part of the paper we give a rationale for a) choosing this 
particular measure of complexity, b) for associating model complexity to time 



series complexity and c) for using this idea as a measure of the ‘difficulty’ a 
user may encounter in employing and managing a specific model. 

• Second, we show that this measure is able to detect areas in the model 
parameter space with different dynamical behaviours. Also, we show that this 
can be achieved in a sort of ‘black box’ approach, in which we do not need to 
specify what feature of the dynamics we wish to detect. We test the potential 
of this method against a number of analytical results.  

• Finally, we search the model parameters space in order to establish the 
maximum statistical complexity a model can generate. As a by-product of this 
search, we visualise the extensive sampling of the parameter space in order to 
roughly partition it into areas of different dynamical behaviour.  

 
We conclude with a careful discussion of the limitations of the current method and 
with a sketch for future developments. 
 
This approach combines the use of several algorithms and tools, a detailed description 
of which would not only result in a very long paper but also obscure the overall thread 
of the method. Consequently, we make extensive use of appendices to briefly describe 
some of the algorithms while we refer the reader to the related literature for more 
details.  
 

Statistical complexity 
 
In the information theory literature the concept of complexity is closely related to 
predictability and in particular to the amount of information required (difficulty) to 
achieve optimal prediction. One of the first and most popular attempts to characterise 
this idea is Kolmogorov’s algorithmic complexity (also called Kolmogorov-Chaitin 
complexity, see Li and Vitányi, 1997 and Chaitin, 1969). Given a time series, this is 
defined as the length (in bits of information) of the minimal program which can 
reproduce the time series. According to this definition, a fully periodic time series has 
low complexity since very short program (which stores 1 period and outputs it 
indefinitely) can reproduce the entire time series exactly.  Departures from periodic 
behaviour towards randomness would require programs of increasing length and 
consequently display increasing algorithmic complexity.  
 
In relation to our work it is important to notice the following: first, a time series and a 
model (minimal program) which can reconstruct it are used interchangeably in the 
definition of complexity. On this very idea we base our definition of ecological model 
complexity. Second, according to Kolmogorov’s definition, a fully random time series 
has maximum complexity, since the only program which can reproduce it is a 
program which stores and outputs the time series itself (a random time series is, by 
definition, not predictable and consequently not compressible). This somehow 
contradicts our intuition about complexity, which is usually seen as something in 
between order and randomness. Finally, this definition does not come with a tool for 
its computation, since we can never ensure the model of a time series is of minimal 
length (see Chaitin, 1982 for a formal proof). 
 
To circumvent some of these problems, Crutchfield and Young (1994) propose that 
complexity is characterised by the amount of information needed to perform useful 
“statistical” prediction. In other words, they seek to achieve a prediction which 



captures the statistical properties of the time series, rather that the exact time series 
itself. As in the case of Kolmogorov’s complexity, little information is needed to 
capture the statistical properties of a simple periodic function.  Unlike Kolmogorov’s 
definition though, very little information is needed to statistically reproduce a random 
time series. Since the time series is random, and it can not be predicted, no amount of 
memory (effort) can help improving our predictive ability, i.e., an ‘optimal’ prediction 
can be performed with zero memory (there is no point in storing the outcomes of 
roulette draws to bet on the next draw).  So we have a definition of complexity which 
captures our intuition that very simple, as well as fully random time series, have low 
complexity and that processes in between (‘at the edge of chaos’) have high 
complexity. The main strength of this definition is that it also comes with a procedure 
to calculate it numerically. This results from an algorithm (Causal State Splitting 
Reconstruction, CSSR, Shalizi et al 2004) which can provably reconstruct the minimal 
model able to capture the statistical properties of the time series (Shalizi et al, 2003).  
The approach is summarized in the following: 
 

1) take a symbolized time series (that is a time series whose values are restricted 
to a finite alphabet (in the Discussions we will address the implications of this 
limitation); 

2) run the CSSR algorithm to reconstruct the causal states of the process and their 
transitions (usually called an ε-machine); this represents the minimal model 
able to reproduce the time series statistically; 

3) calculate the entropy of the causal states, which measures the uncertainty in 
predicting the next state of the system, given the information on its past 
behaviour and can be seen as a measure of the amount of memory in the 
system (in bits) which does a useful job in prediction; this entropy is the 
statistical complexity of the time series (or, equivalently, of the minimal model 
which reconstructs it). 

 
In appendix A we give a brief summary of the CSSR algorithm, while we refer the 
reader to Shalizi et al (2004) for further details.   
 

Statistical complexity of ecological models 
 
There are examples in the ecological literature of the application of information 
theory measures to time series. For example, Fath et al (2003) and Mayer et al (2006) 
use Fisher Information to infer regime changes in dynamical behaviour. Similarly, 
there are pieces of work aimed at inferring relative roles of determinism and 
stochasticity in ecological time series (e.g.  Hsieh et al, 2005, Ellner and Turchin, 
2005). The Statistical Complexity we employ in this work accounts for both of the 
above measures and allows us to more readily assess whether models capture the 
dynamic characteristics of data and to investigate the sensitivity of model dynamical 
behaviour to changes in model assumptions. 
 
The work by Crutchfield and Young (1994) and Shalizi et al (2003, 2004) is focussed 
on a rigorous analysis of stationary univariate stochastic time series of symbols drawn 
from a finite alphabet. Ecological models are approximating continuous times series 
of real numbers. The CSSR algorithm and associated information theory measures 
have not been extended to deal with time series of this kind. If CSSR and associated 



measures are to be applied to these time series, a set of assumptions and steps are 
required to convert the time series to a string of symbols (see Appendix B). 
 
In this section we propose a way of extending the concept of statistical complexity to 
ecological models by employing the CSSR algorithm. The idea is summarized in 
Figure 1: 
 

1) take a point P in the model parameter space and run the ecological model with 
initial conditions and parameters defined by P in order to obtain a time series 
T of interest (step a in Figure 1);  

2) employ the CSSR algorithm to reconstruct the ε-machine from the time series 
(i.e. the minimal model able to reproduce the time series statistically) (step b); 

3) calculate the entropy of the ε-machine in order to define the statistical 
complexity of the time series/epsilon machine (step c); and 

4) assign the value of the statistical complexity to the ecological model parameter 
space at point P (step d). 

 
The rationale for this approach is illustrated in Figure 2. We can define an informal 
equivalence between the ecological model at point P and the ε-machine so 
reconstructed, since they both (statistically) reconstruct the time series T. Here a few 
considerations are appropriate. First, the ability of the CSSR algorithm to reconstruct 
the ‘correct’ ε-machine depends on the information contained in the time series. This, 
like most time series analysis techniques, is a data hungry process.  We comment 
briefly on this issue below and we refer the reader to Bertello et al (2005) for more 
details. Second, as mentioned above, the reconstruction is ‘stochastic’, not exact. That 
is, the ε-machine can reproduce a time series with the same dynamical features rather 
than the exact time evolution. 
 
Does the complexity of the ecological model so defined capture our intuition of model 
complexity? The statistical complexity measures the amount of information needed in 
order to make a useful prediction of the future time series behaviour given 
information about its past. This is a measure of how difficult it is to predict or model 
the time series. With a slight abuse of terminology, a rough analogy would be as 
follows. Consider the difficulty encountered by a modeller attempting to predict/guess 
the model behaviour at a particular point in the parameter space.  For a very complex 
model, a user will find it difficult to guess how the model will behave at a certain 
point in the parameter space even given expert knowledge of the model itself, since 
the dynamical evolution of the actual time series is complex (i.e. difficult to predict 
stochastically). In our opinion, this is a better view of model complexity than ‘size’, 
though in some cases the two may be related.   
 
Under this view of model complexity, it is clear that the complexity of the model may 
vary depending on the parameters chosen. Ideally, we would like to achieve the 
scenario illustrated in Figure 3. Given a set of time series produced by model runs 
generated from different parts of parameter space (thick lines in Figure 3), we’d like 
to detect regions of similar dynamical behaviour (regions a, b and c in Figure 3), 
using estimates of statistical complexity as our measure of similarity (estimated from 
ε-machines for each time series).   
 



In order to see whether this approach is feasible we first need to answer two 
questions: 
 

1) can the statistical complexity discriminate between areas of different 
dynamical behaviour?  

2) can this discriminatory power define a rough partition into areas of different 
dynamical behaviour?  

 
We address these two questions in the following sections. 
 

 
Detecting different dynamical behaviours 

 
In this section we explore whether the approach described above can be used to 
discriminate between the different dynamical behaviours displayed by an ecological 
model. Because our ultimate intent is to apply the method to very different models, 
we would like to achieve a ‘blind’ (black-box like) discrimination, without needing to 
specify what features of the dynamics we are interested in.  
 
In the previous section we have established an informal equivalence between an 
ecological model with specific initial conditions, the time series it can generate and, 
via this time series, with the ε-machine reconstructed via the CSSR algorithm. This 
suggests that in order to detect different dynamical behaviours, we may work on 
either the ecological model, the time series or the ε-machine. Because of its 
minimality properties, it seems convenient to focus on the ε-machine. We thus say 
that the dynamical behaviour of the ecological model at two different locations in the 
parameter space is similar if the corresponding ε-machines are ‘similar’. This 
rationale is simple: if two ε-machines are similar, the process’ states and transition 
probabilities are similar and so are the dynamical behaviours. 
 
We thus need a criterion to determine the similarity of two ε-machines. The most 
obvious approach would be to design a metric based on the ε-machine’s causal states 
and the transition probabilities themselves. Unfortunately this is not a trivial task, 
since different ε-machine may have different numbers of causal states and it may be 
hard to establish a relation between similar states in different machines. Also 
equivalent causal states in the two machines may include slightly different features 
due to errors either in the measurements or in the symbolisation. This not only makes 
comparing the states difficult, but also makes particularly challenging tracking which 
state transition in one machine corresponds to which state in the other machine (we 
refer the reader to Ray (2004) for more details). Consequently, in the rest of the paper 
we employ the difference in statistical complexity as an approximate measure of 
similarity between two ε-machines.  
 
The Test Case. We test the idea against known theoretical results. We employ an 
NPZ model as described in Edwards & Brindley (1999) (EB99 in the following). A 
brief description of the specific equations used, the list of parameters and their ranges 
can be found in Appendix E. Edwards & Brindley studied the dynamical behaviour of 
this NPZ both analytically and numerically. They aimed to analyse how the 
trajectories in state space vary for different values of the control parameters. In 
particular they showed the existence of bifurcations at locations where the orbits 



change abruptly from a stable steady state to a unstable limit circle, implying an 
oscillatory behaviour in N, P and Z. They analyse the location Hopf and fold 
bifurcations in a set of 2D plots in which the effect of varying a number of parameters 
versus variation in the predation on Z is studied (EB99, Figure 4).  
 
The method. Here we ask whether the statistical complexity is able to detect such 
bifurcations. The ε-machine of a time series with a stable fix point limit has a single 
state and consequently its statistical complexity (the entropy of the causal state) is 
zero. The ε-machine of a time series with a limit cycle, or more complex dynamics, 
has more states and consequently a higher statistical complexity. This suggests a 
computational method to detect bifurcations in cases these can not be detected 
analytically: 
 

1) Choose a subset of K ecological model input parameters, Kkpk ...1, = . Vary 
smoothly each of the parameter within suitable ranges, kkk iip maxmin, ≤≤= .  

2) For each value of kp calculate the statistical complexity 
ikp

SC
=ε  where ipk =ε  is 

the ε-machine of the time series for ipk = . 
3) Detect where the Statistical Complexity differs from zero.   

 
The result can be seen in Figure 4, in which we reproduce Figure 4 in EB99 and we 
compare each plate to the bifurcation detected via the statistical complexity. As can be 
seen, a good match is found for each plot. 
 
As a further direction of enquiry, we may ask how the statistical complexity behaves 
inside the bifurcation areas. For several of these plots the statistical complexity within 
the bifurcation area is constant, which results in a binary map as seen in Figure 5. 
Here, we display the plot of the predation rate on Z (X axis) versus the respiration rate 
of Z (Y axis), which is a gray scale version of plate e in Figure 4 (white maps high 
values). The binary nature of the image is clear; the statistical complexity is equal to 
zero everywhere on the plot, except inside the bifurcation area, where its value is one. 
The 3D delayed coordinate representations of the time series corresponding to seven 
points on the plot are also shown, from which the difference between fixed point 
steady state (corresponding to zero statistical complexity) and limit cycle 
(corresponding to the statistical complexity value of one) is evident. The statistical 
complexity value of one is typical of dynamics characterised by 2 states which 
alternate at each step and consequently have the same probability of occurrence. As 
mentioned above, the statistical complexity is measured in bits of information. A 
statistical complexity equal to one means that we need only one bit of information to 
optimally predict the next state in the dynamics; in other words, if we know what 
symbol the time series is at the current time, we know that, due to the oscillation, at 
the next time step the time series will display the different symbol. 
 
The next question we ask is whether other dynamical behaviours are possible in the 
model under study.  Our approach to answering this question is the following:  
  

4) select a ‘default’ set of input parameters and define this as ‘baseline’ 
behaviour; in this test, such a baseline corresponds to a predation rate on Z 
equal to zero and all other default values in Table 1. 



5) Run the ecological model with the default parameters, generate a time series of 
Phytoplankton behaviour and calculate a default value for the statistical 
complexity. Call this ε

0
SMM  (baseline Statistical Modelling Measure for the ε-

machine). 
6) Choose a subset of K ecological model input parameters, Kkpk ...1, = . Vary 

smoothly each of the parameter within suitable ranges, kkk iip maxmin, ≤≤= .  
7) For each value of kp calculate an Anomaly Measure (AM) as 

0

0

0
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SMMSMMipAM

ikpk

k

ip

ipk

−=−

=−==

==

=
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ε
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   (2) 

where εAM is the anomaly measure for ecological model parameters ipk = , SC 
is the statistical complexity, ipk =ε  are the ε-machines for ipk = , and 0ε is the 
ε-machine for the default setting. Clearly, AM measures the departure of the 
dynamical behaviour of the ecological model from the “default” dynamics for 
different input parameters. 
 

Figure 6 shows an application of this approach to a simple case in which we study 
K=2 parameters; in particular we analyse the maximum P growth rate represented as 
the ratio a/b (between 0 and 3, Y axis) versus the respiration rate of Z (X axis), which 
is a colour version of plate a in Figure 4. In this case, since the default baseline value 
for the statistical complexity ε

0
SMM  is zero, we have 

ikp
SCipAM k =

== ε
ε )( . 

 
Unlike Figure 5, the plot in Figure 6 is not binary, rather more than 2 values of the 
statistical complexity are found, as displayed by the different levels of gray in the 
image. Even in this case, we show the 3D delayed coordinate representations of the 
time series corresponding to seven points on the plot. The time series corresponding 
to the grey areas in the plot are very similar to the limit cycles in Figure 5 and indeed 
have statistical complexity equal to 1. However, we can see a small area in the centre 
of the plot (in white) which displays higher statistical complexity. Notice that this area 
of high complexity is outside the rage of plate a in EB99 Figure 4. The 3D delayed 
coordinate representations corresponding to this location also indicate a limit cycle, 
however in this case more than 2 states are responsible for this cycle. This is due to 
the fact that the oscillations in the time series are not as regular as in the previous case 
and consequently more than 2 states are present in the ε-machines. In this case the 
statistical complexity is approximately 4, which means that 4 bits of information are 
needed to carry out an optimum prediction; knowing the binary value of the time 
series at a location is not enough to predict the next state. 
 
Before proceeding with our enquiry, it is worth noticing that the 3D delayed 
coordinate representations in Figures 5 and 6 have a markedly different ‘spread’. 
Steady state plots, obviously, are characterised by a single point, while statistical 
complexity equal to one corresponds to limit cycles of larger amplitude than those for 
higher statistical complexity. We may thus ask whether some simpler statistical 
measure, like variance of the time series for example, would be able to achieve a 
similar classification. The first problem we would encounter, should we decide to test 
a discriminator based on variance, is that this would require fine tuning; for example 
we would need to decide, a priori, what threshold differentiates the different limit 
cycles. More importantly, the statistical complexity extracts more information from a 



time series than the simple variance, since it analyses the way the samples follow one 
another in the time series, that is their dynamical evolution, rather than a mere 
departure from a mean, in which time information is lost. The importance of this 
difference is clarified with the help of Figure 7. On the left hand side, we see the 
delayed coordinate plot of a steady state time series to which has been added white 
noise with maximum amplitude of 0.15 units. On the right hand side, we see a limit 
cycle time series, with statistical complexity equal to 1, to which we imposed external 
forcing and added white noise with maximum amplitude of 0.05 units. As a result, the 
2 time series are characterised by the same variance, as shown by the spread of points 
in the delayed coordinate plots. However, their statistical complexity varies 
considerably, being zero for the left hand size time series (which is obviously random) 
and 5.5 for the time series on the right hand side. 
 
To summarise this section, we can say that the εAM can detect the locations of main 
bifurcations in the EB99 model under different initial conditions and parameters, and 
that it is not necessary to specify a priori which dynamical features should be analysed 
in order to detect changes in dynamical behaviour. This suggests a positive answer to 
the first question at the end of the section “Statistical complexity of ecological 
models”. We now turn to the second question: “Can this discriminatory power define 
a rough partition into areas of different dynamical behaviour?” 
  
 

Complexity Map 
 
The plots in Figures 5 and 6 represent fairly dense samplings of two 2D sections of 
the NPZ model parameter space. Ideally, we would like to sample the entire high 
dimensional space in a similar fashion. The ‘curse of dimensionality’ makes this 
approach computationally infeasible even for relatively low dimension models. In 
Boschetti (2004) and Boschetti et al (2002) we have explored the use of the stochastic 
sampling inherent in some numerical optimisation techniques in order to visualise a 
rough mapping of a dynamical problem parameter space. Here we propose a similar 
approach: 
 

1) we cast the calculation of the maximum statistical complexity of a model M 
( max

MC ) into a numerical optimisation problem in which we seek to maximise 
the measure in equation 2 (see also Appendix C). 

2) We do this by using a number of stochastic search algorithms (Genetic 
Algorithm, Swarm Optimisation, Direct Method, see Appendix C for details) 
and multiple runs for each algorithm.  

3) Each of the stochastic search algorithms needs to run the ecological model and 
CSSR iteratively (see Appendix C). For a single call k of the ecological 
modelling, we store the point kP  and the statistical complexity kSC , for 

Kk ...1= , where K in the total number of function calls. Notice that kP  is a 
vector of dimension pD , where pD  is the dimensionality of the ecological 
model parameter space. 

4) After all searches are completed, we combine the results. The maximum value 
of statistical complexity so found defines max

MC . 



5) We also obtain a matrix P of dimensions KDp * , which represents our 
sampling of the model parameter space. 

6) We visualise the sampling of the pD dimensional model space P via a Self 
Organised Map (SOM, see Kohonen, 2001). A SOM maps vectors in a high-
dimension space into a lower dimensional space (2D in our case) by respecting 
the vector neighbourhood topology, that is, by plotting along side points which 
are close in the original high-dimension space. A SOM gives a rough idea of 
the high dimension space structure as well as of the clusters in the data (see 
Appendix D for details). 

7) By analysing the SOM we attempt to determine, visually, whether domains of 
different dynamical behaviour are present in the parameter space and which 
parameters affect the different dynamical behaviours the most. 

 
We use the same NPZ ecological model employed in the previous tests. We limit our 
parameter space to 6 dimensions by analysing the parameters marked with an asterisk 
in Table 1. After running a number of numerical inversions as described above and 
combining the results, we obtain K=25000 samples of the parameter space. The 
highest value of the statistical complexity found is 3.67 bits; this is the value we 
assign to max

MC . We thus feed the 6*25000 matrix P to the SOM to obtain a rough map 
of the parameter space. Figure 8 displays the SOM u-matrix which is a measure of the 
average distance between grid points in the 2D SOM. It is important to understand 
that the X and Y axis of the SOM do not carry any physical meaning. The 2D image 
should merely be seen as an area over which we map the points from the original 6D 
space, ordering them in such a way that topological relations are maintained as well as 
possible (Kohonen, 2001). In the SOM u-matrix, blue maps small distances, which 
should be interpreted as mapping points which lay close to one another in the original 
6 dimension parameter space. They thus correspond to clusters in the original data set. 
Red maps large distances, that is, points far away from one another in the original 6D 
space. These represent ‘ridges’ dividing clusters.  Figure 8 suggests the presence of 
roughly 4 clusters: 
 

1) cluster 4 is divided from the rest of the map by a main, almost vertical, ridge; 
2) clusters 1 and 2, which are the main clusters found by the SOM, are 

characterised by a fairly large and almost flat surface; 
3) and a group of clusters which, for convenience of description, we grouped as 

cluster 3, roughly parallel to the main ridge. 
 
In the following we limit our discussion to these 4 main features. The inaccuracies 
and distortions inherent in mapping a high dimensional space to 2D, in our opinion, 
do not allow reliable analysis of finer details in the SOM.  
 
The samples used to build the SOM come from our parameter space search. The 
purpose of the search was to find areas of high complexity values, so our search was 
inherently biased towards areas of high complexity. Since it is reasonable to expect 
that clusters correspond to densely sampled areas, we may also suspect that clusters 
correspond to areas of high complexity. Similarly, we may suspect that ridges 
correspond to areas of low complexity. This is confirmed by Figure 9. Here we can 



see the statistical complexity values mapped over the SOM1. The 4 clusters discussed 
above are clearly characterised by high value of statistical complexity (red) and are 
separated by areas of low statistical complexity (blue). The areas of low statistical 
complexity appear more irregular and scattered, but this is most likely the result in the 
bias in the parameter space sample, as explained above. This bias needs to be kept in 
mind when we analyse all SOM maps. Indeed, the predominance of red areas in 
Figure 9 may erroneously suggest that the vast majority of the NPZ parameter space is 
characterised by high statistical complexity. This is probably incorrect: the 
predominance of high statistical complexity is the result of the (necessary) bias in the 
search. Were we able to sample the parameter space more uniformly, we would obtain 
a more reliable picture of the extent of high statistical complexity areas in the 
problem.  
 
Nevertheless, a number of important conclusions can be drawn. Figure 10 shows the 
values of each of the 6 parameters at each location over the SOM map. For each plate, 
blue and red map the minimum and maximum allowed values, respectively, as per 
Table 1. They show how each dimension has been distorted in order to accommodate 
the point in 2D. They tell us what contribution each dimension gives to the clusters 
under analysis and thus to the NPZ model statistical complexity. Of note are the 
following observations: 
 

1) parameters k and alpha (plates a and f) appear to peak roughly where the 
ridges are located in Figure 8 and where some of the low statistical complexity 
areas are located in Figure 9. It is thus reasonable to suggest that low values 
for k and alpha generate high statistical complexity and high values generate 
low statistical complexity. This seems to be party confirmed by the plots in 
Figure 4. 

2) Parameters r and s (plates c and d) show wide range of variation in 
correspondence to the high statistical complexity areas. This suggests that high 
statistical complexity values can be obtained for very different values of these 
parameters. This is also confirmed by the plots in Figure 4. However, this does 
not mean that statistical complexity is insensitive to r and s. Not all values of r 
and s result in high statistical complexity, rather suitable combinations of these 
values and of values of other parameters are necessary. Notice the high 
correlation between areas of roughly constant values for r and s and the 
clusters in Figure 8.  

3) Parameter N0 (plate e) seems to be mostly responsible for the presence of the 
large pseudo perpendicular ridge in Figure 8. Indeed all high values of N0 are 
placed at the right hand side of the ridge (in correspondence with cluster 4) 
and medium and low values corresponding to the other clusters.  

4) Finally, plate b shows that large areas of high statistical complexity can be 
obtained mostly for medium or medium-high values of parameter d and that 
high statistical complexity for extreme values of d are very rare. Notice also 
how its trend is roughly perpendicular2 to the main ridge and to cluster 4 in 
Figure 8, which probably is the reason why cluster 4 is much smaller in size.   

                                                 
1 Notice that the statistical complexity has not been used to build the SOM. Here we simple map its 
values over the topology reconstructed by SOM by using information on the sample of the 6D 
parameter space. 
2  Although the term perpendicular in a SOM needs to be treated with care because of the high 
distortions in the map. 



 
 
   

Discussion 
 

Complexity is not currently a well defined concept, either in the ecological modelling 
or in computer science or mathematics. Several definitions are available (extensive 
references can be found on line at 
http://cscs.umich.edu/~crshalizi/notebooks/complexity-measures.html and 
http://bruce.edmonds.name/combib) and different users may perceive complexity 
differently, depending on the problem at hand. The method we propose is based on a 
fairly rough sampling of a potentially very high-dimension space, with the use of 
models which may require heavy computation. Also, we use a set of tools/algorithms 
(ecological model, CSSR, search algorithms, symbolisation procedure, SOM) most of 
which are still at a research stage, which implies that the overall procedure can not be 
stronger that the weakest of these tools. It is thus clear that the approach we propose 
needs to be seen as a first step towards a definition of complexity of ecological 
models and further work is necessary to improve and assess its potential. Some of the 
most relevant issues are: 
 

1) The characterisation of the complexity of an ecological model should not be 
seen strictly as a criterion to choose which model to use, but rather as a 
criterion to disregard unsuitable models. This difference is important. We do 
not suggest that matching the value of the complexity between model and data 
would indicate a correct fit. In the procedure we describe, both the measured 
and modelled data go through a chain of processes (symbolisation, CSSR, 
entropy calculation) and the resulting statistical complexity should be seen as 
the collapse of the combination of these non-linear operators (acting on high 
dimensional vectors) into a single (0D) number. As with other simple 
statistical measures (fractal dimension, Lyapunov exponent, etc) we can not 
expect to fully capture complex information into a single number. What we are 
suggesting is that a model which is not able to generate sufficient complexity 
will not be able to capture complex structures in the data. Conversely, a model 
which is able to produce enough complexity may or may not be able to 
reproduce the structures we are interested in and consequently may or may not 
be appropriate for studying a specific data set. 

2) Models of completely different physical/ecological processes (a chaotic 
oscillator, human heart pulsation and fish population fluctuations) may very 
well have similar complexity, but clearly are not equally suited to analysing 
the same data set. Our analysis assumes that the user has chosen an ecological 
model which is realistic and suitable for studying the process at hand.  

3) It could be argued that some delay-coordinate embedding technique (Takens, 
1981, Kantz and Schreiber, 1999) could be used to establish the 
dimensionality of a time series and somehow relate this to the optimal model 
dimensionality. This could enable us to find a measure of complexity which is 
applicable to both data and model and which may appear to be more closely 
related to model ‘size’; the technique we discussed here does belong to the 
delay-coordinate embedding family and can be seen as an attempt to discretise 
the state space in order to simplify the detection of the state transitions (for a 
nice discussion see Ray, 2004, p. 1118). However, no simple relation exists 



between the dimensionality of a model (determined by the ecological control 
parameters) and the embedding dimension of a time series. It could be quite 
difficult, therefore, to derive a criterion that helps reduce the number of input 
parameters as a function of the embedding dimensions.     

4) Reliably sampling a high dimensional space is beyond current computational 
tools. Models controlled by thousands input parameters may simply not be 
suited to the analysis we propose. For smaller size problems, we are less 
pessimistic for a number of reasons. First, the parameter space of ‘real world’ 
problems is generally fairly smooth, or at least much smoother than the 
perversely complex surfaces often employed for search algorithms benchmark 
tests (More et al, 1981, see also http://www.geatbx.com/docu/index.html). An 
interesting analysis of this subject can be found in (Cheeseman et al., 1991) 
and our fairly extensive experience seems to confirm this (Boschetti and 
Moresi, 2001, Wijns et al, 2003). Second, including the user in the evaluation 
of the model output can further simplify the solution surface (Boschetti, 2005, 
Takagi, personal communication). The pattern analysis capability of the 
human brain is able to detect and process far more detail and many more 
structures than can be collapsed into the single fitness value that search 
algorithms use, whereby providing them with more information to improve the 
search.  Also, search algorithms can be designed in such a way as to employ 
higher dimension measures of fitness and so perform reverse mapping 
between data space and model space, which also speeds up the parameter 
space exploration considerably (Boschetti, 2005b). Finally, we should consider 
that the characterisation of a model complexity map needs to be done only 
once and then stored for future use. In practise, an ecological model could be 
set up in such a way that every time it runs (for whatever purpose), the 
location of the point P in the parameter space and the statistical complexity are 
stored in an ever increasing data base, thereby potentially improving our 
parameter space sampling and the resulting understanding of the model 
complexity over time.  

5) A Self Organised Map is not the only available method to visualise the high 
dimensional complexity space. Of particular interest are mapping methods 
such as LLE (Roweis and Saul, 2000) and HLLE (Donoho and Grimes, 2003), 
which allow both for forward and inverse mapping between spaces of different 
dimensionality and for a more accurate projection of the 2D complexity maps 
back into the original parameter space. In the present paper the SOM has been 
used because of its better numerical stability but alternative avenues are worth 
exploring. 

6) The SOM is basically a clustering algorithm and in principle the analysis in 
Figures 8-10 could be performed automatically in order to recover a partition 
of the parameter space into clusters. We prefer to include the user into this 
step; first, because the most delicate component of every clustering algorithm 
is the detection of the suitable number of clusters; and second because we 
believe that the familiarisation of the user with the complexity map is probably 
the single most important outcome of the overall process. In our view, the 
ultimate aim of a modelling exercise is the user’s understanding of the 
problem at hand and the development of a conceptual model of the problem 
which can be communicated to others (the numerical algorithms simply being 
tools needed to simplify this process). We believe that the complexity map 
may be of great help to this understanding. 



7) At present the CSSR algorithm works on time series with fairly strict 
requirements: a) it must be symbolised b) the symbolisation should involve a 
fairly small alphabet (coarse discretisation) for computational reasons, c) it 
must be sampled at regular time intervals, d) it needs to be fully sampled 
(missing data need to be processed prior to the analysis). Also (as for all time 
series analysis tools) long time series are needed (the length depends on the 
data at hand, but, roughly, in the order of thousands of points). This currently 
imposes limits on the applicability of the method. However, time series 
analysis is a field in rapid development and we can envisage further 
improvements in the near future. Further work to address the specific 
requirements of ecological data may also be needed. Among these, we can 
envisage the parallel use of different data sets. This, in principle, is already 
possible, by employing some clever symbolisation schemes, but improvement 
in this area would also be beneficial. 

8) A natural question is whether this technique could be extended to spatial data. 
The definition of statistical complexity we use, as well as the method 
employed in the CSSR algorithm, are based on the concept of causal states 
and causality implicitly involves the existence of a time progression (here the 
word causal is taken from automata theory and we circumvent deeper 
philosophical implications). Shalizi and Shalizi (2003a,b) show how the 
statistical complexity of a time series of 2D spatial data can be calculated 
(basically a 3D data set in which one dimension is time). For static 2D data, 
some conceptual modifications are required as discussed in Feldman and 
Crutchfield (2003) where a possible approach is proposed. 

9) Is a measure of information (in bits) representative of ecological complexity? 
Would other measures, somehow related to model ‘size’, be more 
‘ecologically’ intuitive? These are reasonable questions to ask, especially 
since our ultimate aim (as discussed above) is to involve the user in the 
process and we envisage the complexity maps in Figures 8-10 as a tool helping 
the user to better understand a model. We avoid overarching philosophical 
views according to which information is Nature’s fundamental currency and 
that information processing is what life is about. However, we do subscribe to 
the view that predicting environmental behaviour, and consequently building a 
model of it, is an essential feature of all living agents (for a nice discussion see 
Crutchfield, 1994). A model’s complexity defined in terms of information 
processing is thus somehow related to the way a living being deals with the 
very same processes that the model is intended to mimic and is thus less 
abstract than may seem at first. For a related discussion of the role of 
complexity in evolving agents see Adami (2002). 

10) Irrespective of the rationale of the previous point, it is important to notice that 
effectively the measures we employ in the present paper are relative, not 
absolute. For a pragmatic application of the method, it matters not whether the 
statistical complexity accurately measures the amount of memory required to 
make a optimal prediction, rather it matters how the time series complexity 
compares to the model complexity, and how different is the complexity of the 
model in different areas of the parameter space. It is this difference, rather than 
the exact value of the statical complexity, which we believe has relevance in 
the study of ecological model complexity.     

 
Conclusions 



 
We have outlined an approach to mapping the complexity of the behaviour of 
ecological models. We have applied this approach to a simple, well-known ecological 
model for which there are published results, against which we have compared our 
calculations. For such a system, conventional bifurcation analysis techniques are 
sufficient to map the range of dynamical behaviours of the model (eg. Edwards & 
Brindley used LOCBIF and Auto, and other packages include MATCONT, Dhooge et 
al 2003) while the method we presented has the potential to deal with more difficult 
modelling scenarios.  In testing this approach on the NPZ model, we have confirmed 
that the technique is capable of mapping the dynamic behaviour possible in the model.  
 
Our approach is different from conventional bifurcation analysis in the following 
ways: 
 

1. there’s no need to prescribe criteria for distinguishing dynamic regimes; 
2. the estimated values of statistical complexity can be compared with values 

estimated from different models or from data;  
3. it holds the promise of being applicable to systems influenced by both 

randomness and deterministic dynamics; and 
4. the techniques making up the approach can be applied to observations, as well 

as model output. 
 
Ecologists have long wrestled with the question of how to interpret and model 
variability in their time series. A key question is “what are the relative roles of 
randomness, external forcing and nonlinear internal deterministic interactions?” 
Statistical complexity is a powerful measure that offers the hope of bringing further 
insights to this and related questions. We argue that if it could be applied to ecological 
time series from observations and ecosystem models, we’d have the opportunity to 
better judge model-data consistency, to more effectively explore sensitivity of model 
dynamic behaviour to underlying assumptions and to be better able to detect possible 
regime shifts in observed ecological time series. 
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Appendix A 

 
Causal-State Splitting Reconstruction (CSSR) algorithm. Here we summarise the 
CSSR algorithm. More details about the algorithm implementation, together with 
examples of simple binary processes can be found in Shalizi et al (2004a), while a 
theoretical analysis, containing proof of several theorems related to the minimum 
properties of the reconstruction can be found in Shalizi and Crutchfield (2001). 
 
Let’s suppose we want to analyse a sequence of N discrete values NiSi ...1, = , where 

iS can take any of k values in an alphabet A, representing measurements taken at 
discrete time steps from a stochastic process. At any time i, we can divide the series S 
into two ‘half’-series,  S

s
 and S

r
, where iii SSSS 12.. −−=

s
, stepping backward in time, 

represents the ‘past’ and ...321 +++= iii SSSS
r

, progressing forward in time, represents the 

‘future’. Following the same notation as in Shalizi et al (2004a), we call LS
s

 and 
LS
r

histories of length L symbols in the past and in the future, respectively. Also, we 
call s (and Ls ) specific instances of histories belonging to S. Now, let’s suppose we 
scan the series S, looking for occurrences of the history ss , and we store the symbol 

1S
r

 seen as ‘future’ in each instance. We can calculate )( 1 sSP sr
, that is, the 

probabilities of occurrence of any of the k symbols in the alphabet A, given the history 
s, and we call the vector containing these probabilities the morph of ss . We can then 
define a causal state as the collection of all histories ss  with the same morph (i.e., 
histories which share the same probabilistic future). More formally, histories 1s

s  and 

2ss  belong to the same causal state if )()( 2
1

1
1 sSPsSP srsr

= .  
 
Given the above definition, the purpose of the CSSR algorithm is to reconstruct the 
set of the causal states of the process and the transition probabilities between the 
causal states. Following the nomenclature used in Shalizi et al (2004a), the 
combination of causal states and their transition probabilities is called a ε-machine.  
 
The CSSR algorithm can be divided into a number of steps: 
 

1) we start from the null hypothesis that the process is independent and 
identically distributed. In this case each of the k symbols Aa∈  is equally 
likely at each time step and only one causal state is necessary to model the 
process: the morph of the state is the k-length vector of components 1/k. 

2) we select a maximum history length max_L for our analysis. This is the length 
of the longest history with which we scan the series S. For histories of length = 
1… max_L, we scan the series S, storing both the histories found and their 
futures. Given an history ss , its morph is trivially obtained by calculating 

)(),()( svsavsaP sss
= ,  for each Aa∈ , where )(sv s  is the number of 

occurrences of the history ss and ),( sav s  is the number of occurrences of the 
symbol a given the history ss . 



3) We group histories with similar morphs into the same causal states. This 
involves three steps: a) first, we need a measure for morph similarity. Real 
time series are characterised by both the presence of noise and by finite data 
extent. Consequently we need to relax the requirement of exactly matching 
morphs )()( 2

1
1

1 sSPsSP srsr
=  to an approximation )()( 2

1
1

1 sSPsSP srsr
≈ . In 

particular we accept ε<− )()( 2
1

1
1 sSPsSP srsr

 , where ε  is a user defined 

parameter; b) Second, we define the morph for a state as the average of the 
morph of all histories in that state; c) finally, in order to ensure the 
reconstruction of a minimum number of states, new states are created only 
when a history is found which can not match any existent causal state. That is, 
for each history, we look for an existent state with similar morph and we 
create a new state only when we can not find any. After these steps, we have a 
collection of states, grouping all histories found in the time series S according 
to the similarity between their morphs.  
4)  As a last step, we want to make sure that transitions between states, on a 
given symbol, are unique. That is, we want to make sure that, given any 
history in a state, and a next symbol Aa∈ , the next state is uniquely 
determined. Notice the difference between the occurrence of the next symbol, 
which is stochastic and measured by the morph, and the transition to the next 
state, given a next symbol, which we want to be deterministic. In order to do 
this, for each state, we store the next state transitions for each history, that is, 
we store into what state a history goes after seeing a certain symbol. This is 
also represented by a vector of length k, containing, as elements, the next state 
on each symbol. If a state has two histories whose next state transition vectors 
are different, we split the state and create a new one.  

 
Once the ε-machine is reconstructed, we can use an approach proposed by Crutchfield 
and Young (1989) and define as statistical complexity of the process the entropy of 
the ε-machine itself.   
 
 

Appendix B 
 
Symbolisation. As we have seen, the CSSR algorithm requires symbolized data, that 
is, each datum has to take one of k values in an finite alphabet A. However, many 
ecological measurements, ideally, represent values on a continuous range. Even 
accounting for finite resolution, the number for values allowed by most ecological 
models defies the concept of a limited alphabet (most symbolic time series analysis 
applies to binary series). A means to discretise the real valued measurements is thus 
needed. This requires two decisions: first, how many symbols to use, and, second, 
how to assign symbols to numerical ranges in the data.  No standard method is 
available in the literature to tackle either problem. For a nice review of symbolisation 
methods and their application we refer the reader to Daw et al, (2003). By far, the 
most widespread approach in the literature is to use a binary alphabet. The simplest 
avenue to assign the symbol to each datum (and also the most widely used) is to 
ensure that the k symbols occur evenly in the symbolised time series. For a binary 
discretisation, this amounts to choosing the median on the data as the separation 
criterion and to bin the data accordingly. However Bollt et al (2001) have shown that 
non optimal symbolisations can b obtained as result of this approach. A more 



sophisticated approach has been proposed in Kennel and Buhl (2003), whereby 
consistency in the delayed coordinate representations of the original and the 
symbolised series is sought. In this work we have tested both Kennel and Buhl (2003) 
approach and the simple histogram discretisation, with no noticeable difference in 
outcome. Because Kennel and Buhl’s method involve a considerable computational 
effort (it performs a stochastic search in a non-linear high dimensional space), the 
histogram discretisation was used in all the tests discussed below. 
 
 

Appendix C 
 
Numerical optimisation and Search Algorithms. Our aim for searching a model 
parameter space is twofold: first we would like to determine the maximum statistical 
complexity a model can generate; second, we would like to sample the parameter 
space as uniformly as possible in order to detect areas of different dynamical 
behaviour. These two different aims are usually defined as exploration and 
exploitation in the numerical optimisation literature, where exploration refers to 
coarsely sampling ever new areas of the parameter space to ensure no crucial features 
are missed, and exploitation refers to finely sample the areas where the current best 
solution lies in order to further improve it. Local search algorithms focus only on the 
exploitation and are likely to succeed only in problems with single global solution. 
Non linear problems, like the ones we address, often are characterised by multiple 
local minima and global searches with balance exploration and exploitation are 
needed. In this work we employed three search algorithms: 
 

1) a real coded Genetic Algorithm (GA) (see Davis, 1991 for general 
introduction to real coded GAs and Boschetti et al, 1996 for the specific GA 
implementation used in this work),which performs a stochastic sampling of the 
parameter space by mimicking the behaviour of biological evolution; 

2) A Particle Swarm Optimisation algorithms (PSO), (see Mouser and Dunn, 
2004, for details about the specific PSO implementation used here) which also 
performs a stochastic sampling of the parameter space, this time by mimicking 
the strategies employed by insect colonies to search for food; and 

3) The Direct method (Jones et al, 1993); which performs a deterministic 
sampling by subdividing the parameter space into hypercubes of ever 
decreasing sizes depending on the local characteristic of the solution surface.  

 
All the above methods are today commonly used in the optimisation of different 
numerical problems and have been widely tested on real world problems. The 
rationale for employing three different algorithms is that no algorithm is known to 
outperform all other algorithms on general problems (for an extreme discussion of this 
issue see Wolpert and Macready, 1997). Here we ran each algorithm several times 
independently. For each run we store the points where we sampled the parameter 
space as well as the statistical complexity.  We then combined all this information into 
a single data file.  
 

Appendix D 
 
Self Organised Map (SOM). A self-organised map is a transformation of high-
dimensional (n_ D) data into a lower-dimensional (usually 2D) plot. It is a classification 



algorithm which separates all the input data into clusters according to similarity. 
Topology is preserved, i.e. two points lying close to one another in the higher 
dimensional space also do so in the 2D space. All SOM visualization is based on the 
u-matrix (Figure 8), which is composed of two different types of nodes: data nodes 
and distance nodes. The data nodes represent the high dimensional data points. 
Adjacent data nodes reflect points in nD space which are similar. The distance nodes 
connect the data nodes, and give an indication of the relative distance between them. 
The SOM algorithm assigns the input data vectors to particular data nodes; the 
distance nodes are then coloured or shaded according to the magnitude of the distance 
between adjacent nodes. Data nodes are also shaded, according to the average of the 
surrounding distance nodes, to produce a more continuous map. All parameter values 
are usually normalised before any calculations are made. 
 
SOM has been extensively employed in recent years in both scientific and engineering 
applications in order to visualise high dimensional data and highlight data structure 
and clustering. Its full potential can probably be best appreciated after acknowledging 
the difficulties inherent in the visualisation of high dimensional data. The SOM plots 
we show in this work have been obtained with the use of the MatlabTM SOM Toolbox, 
written by Juha Vesanto. More details about SOM, as well as the specific SOM 
implementation used in this work, can be obtained at 
http://www.cis.hut.fi/projects/somtoolbox. We also refer the reader to a SOM web 
tutorial at http://scitec.uwichill.edu.bb/cmp/online/p21h/lecture11/lect11a.htm. 
 

Appendix E 
 
NPZ model. Here we briefly describe the nutrient-phytoplankton-zooplankton (NPZ) 
model used in this study. For more details we refer the reader to Edwards and 
Brindley (1999). The specific equations used are: 
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where N, P and Z are nutrient, phytoplankton and zooplankton respectively, with units 
of  3−gCm . The model parameters, units and ranges are described in Table 1. The 
parameter ranges have been selected by Edwards and Brindley after extensive 
literature review (see Edwards and Brindley, 1996, pp 351-353). 
 

Table 1. The parameters, units, default values and ranges used in the NPZ model. The 
asterisks refer to the 6 parameters used in the 6D parameter space search. 
Parameter Symbol Default value  Reported range 
a/b gives maximum P growth rate a 0.2 m−1 day−1 0.07–0.28 
Light attenuation by water b 0.2 m−1 0.04–0.2 
P self-shading coefficient c 0.4 m2 (g C)−1 0.3–1.2 
Half-saturation constant for N uptake e 0.03 g C m−3 0.02–0.15 
Cross-thermocline exchange rate* k 0.05 day−1 0.0008–0.13 



Higher predation on Z* q 0.075 day−1 0.015–0.150 
P respiration rate* r 0.15 day−1 0.05–0.15 
P sinking loss rate* s 0.04 day−1 0.032–0.08 
N concentration below mixed layer* N0 0.6 g C m−3 0.1–2.0 
Z growth efficiency* ά 0.25 0.2–0.5 
Z excretion fraction β 0.33 0.33–0.8 
Regeneration of Z predation excretion γ   0.5 0.5–0.9 
Maximum Z grazing rate λ 0.6 day−1 0.6–1.4 
Z grazing half-saturation coefficient μ 0.035 g C m−3 0.02–0.1 
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Figure 1. Graphic representation of the method we employ to define the statistical 
complexity of an ecological model at a point P in the parameter space.  (a) We 
generate a time series by running the ecological model with initial conditions and 
parameters defined by P; (b) we reconstruct the ε-machine from the time series via the 
CSSR algorithm; (c) we calculate the statistical complexity of the ε-machine; (d) we 
define this as the statistical complexity of the ecological model at point P. 
 

 
Figure 2. Visual representation of the informal equivalence between the ecological 
model at point P and the ε-machine reconstructed from the time series it generates. 
Both the ε-machine and the model at point P are able to (statistically) reconstruct the 
time series.  
 



 
Figure 3. Schematic representation of the method we employ to discriminate between 
areas in the parameter space characterised by different dynamical behaviour. The 
parameter space is sampled extensively and a value of statistical complexity is 
assigned to each sample point via the method described in Figure 1. A clustering 
algorithm is then used to segment the space is areas of similar dynamical properties.  
 

     

    
 



Figure 4. Reproduction of the entire EB99 Figure 4. In all plots, the X axis represents 
parameter d (predation on Z, in the range between 0 and 1.5). In different plots the Y 
axis represents the other model parameters listed in Table 1. The bifurcations detected 
by the statistical complexity (right hand side of each plate) coincide with those 
estimated analytically in EB99 (left hand side of each plate).  
 

 
Figure 5. Statistical complexity as a function of the predation rate on Z (X axis) 
versus the respiration rate of Z (Y axis); white maps high values. The statistical 
complexity is equal to zero everywhere on the plot, except inside the bifurcation area, 
where its value is one. For different locations on the map we show the 3D delayed 
coordinate plots of the corresponding time series. Notice the different dynamics in the 
delayed coordinate plots for areas of different statistical complexity. 
 

 
Figure 6. Statistical complexity as a function of the predation rate on Z (X axis) 
versus the maximum P growth rate represented as the ratio a/b (Y axis); white maps 
high values. More than 2 values of the statistical complexity are found, as displayed 
by the different levels of gray in the image. For different locations on the map we 
show the 3D delayed coordinate plots of the corresponding time series. Notice the 



different dynamics in the delayed coordinate plots for areas of different statistical 
complexity.  
 

 
 
Figure 7. Left: delayed coordinate plot of a steady state time series to which white 
noise with maximum amplitude of 0.15 units has been added. Right: limit cycle time 
series, with statistical complexity equal to 1, to which we imposed external forcing 
and added white noise with maximum amplitude of 0.05 units. The 2 time series have 
the same variance but their statistical complexity differs, being zero for the left hand 
time series and 5.5 for the time series on the right hand side. 
  
 

 
Figure 8. Self Organised Map U-Matrix representing the topology of the sampling of 
the parameter space as obtained by our search algorithms. Blue maps small distances, 
corresponding to clusters in the original data set. Red maps large distances, that is 
ridges separating the clusters. 
 



 
Figure 9. The statistical complexity mapped over the SOM. Red and blue map high 
and low statistical complexity, respectively. The 4 clusters in Figure 8 are clearly 
characterised by high values of statistical complexity. 
 

 
Figure 10. Values of the 6 parameters in the SOM map. Each dimension has been 
distorted in order to accommodate the points in 2D. These plates can be used to 
discriminate the contribution each dimension gives to the clusters in Figure 8. 


