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Abstract 

 
A Collective Intelligence (COIN) can improve the exploitation of a limited renewable 
resource compared to fully cooperative or fully competitive approaches. The main 
strength of a COIN lies in approximating the impact of an agent on the short-term 
behaviour of a Complex Adaptive System. By penalising behaviours which lead to no 
measurable impact, COIN simplifies the implementation of an appropriate cost function 
which each agent needs to optimize in order to reach a global, community-wide goal.  On 
a number of virtual experiments mimicking a fishing fleet operating in areas of different 
fishing capacity, a COIN provides optimal catches for the fleet while at the same time 
each individual vessel also maximizes its own profit: no individual sacrifice is required to 
achieve the common goal. In the view of possible application by real human agents, I 
propose a simplified implementation of a COIN, which involves only elementary 
numerical operations and minimum bookkeeping and can thereby be carried out simply 
by ‘pen and paper’, with no help of electronic devices.  
 
 

Introduction 
 
In a world of limited resources and ever expanding demands, the contribution that 
scientific research can offer to resource exploitation and management is not limited to the 
study of the dynamics of the resource itself, but, at least as important, includes 
understanding how humans interact with the resource and compete to access it. Today, 
for a large section of the scientific community, understanding and modelling are 
synonymous; it is via comparing modelling results to reality that we check whether our 
assumptions about a problem are correct. A ‘good’ model, which includes satisfactory 
approximation of main factors, dynamics and causal relations, encloses our understanding 
of a problem and our (currently best) hope for prediction.  Within the framework of 
natural resource exploitation, this implies that we need to model the drivers which lead 
humans towards a resource, the way they compete, the way they obtain and process 
information about the resource and eventually the way they take decisions on how to act 
upon it. I address this problem by simplifying and porting to ecological modelling ideas 
taken from the Collective Intelligence literature (Wolpert and Tumer 1999) and linking 
them to more established agent-based and game-theoretical tools. 
 
The Collective Intelligence (COIN) main strength lies in approximating the impact of an 
agent’s action on the dynamics of the overall population. This may be more or less 
difficult depending on the management style. Under a strong top-down management 
scenario, simulating a community of agents is fairly simple, since the action of each agent 
is strongly rule-based and thus fairly predictable. If however the management style 



allows for competition and adaptation, then the agents’ behaviour is far less constrained 
and the resulting dynamics much more complicated. In this scenario, local interactions 
among agents may result in large scale community-wide behaviour whose dynamics is 
difficult to predict (at least without modelling) from the knowledge of each agent’s 
action. The arising of large scale dynamics from fundamentally different small scale 
dynamics is often defined as emergence1 (Boschetti et al, 2005). Emergence is thus 
crucial to both the manager and the agent; the manager needs to ‘engineer’ policies in 
order to achieve resource-wide or community-wide outcomes with the understanding that 
the relation between the policies (which act at the small scale of the agent) and the aimed 
outcomes (at the scale of a community and resource) is not trivial. Each agent also needs 
to understand this emergent process in order to choose how, where and when is best to 
access a resource, depending on the behaviour of the other agents and the resource itself. 
Thus, the question of how an agent’s action affects the community behaviour is crucial to 
both the manager and the agent. Here is where COIN plays a role.  
 
COIN’s crucial insight lies in discriminating between the agent’s contribution to the 
community outcome and its impact on it. Here the contribution is the part the agent plays 
in the final outcome. The impact is how the agent directly affects the outcome or, said 
differently, what the outcome would be without the agent’s intervention. An example 
clarifies the difference. Two agents, Paul and Mary, wish to collect apples from an 
orchard. Each can carry at most 2 bags of apples, one per hand. In the first scenario the 
orchard produces 2 bags of apples. Paul and Mary collect one bag each. Paul contribution 
is one bag. His impact however is zero, since had Paul not been there, Mary would have 
been able to collect both bags. In the second scenario the orchard produces 4 bags of 
apples. Now Paul and Mary collect two bags each.  Paul’s contribution is two bags. His 
impact now is also 2 bags, since had Paul not been there, Mary would have been able to 
carry only 2 bags, and 2 bags would have been left uncollected.  
 
Previous work in COIN (Wolpert et al., 2000, Wolpert and Tumer, 2001) shows that the 
apparently minor difference between contribution and impact plays a major role in 
simplifying optimisation problems in which agents need to take local decisions in order 
to solve a global problem. This is particularly relevant to this work since the management 
of a limited resource can indeed be seen as an optimisation problem in which the 
manager aims to optimise (or at least improve) global exploitation and sustainability and 
the agents aim to optimise (or at least improve) their local return and long term gain. A 
vast literature (Hardin, 1968; Batten, 2005) and an even vaster set of real world examples 
suggest that these two aims are in direct conflict: the selfish (local) interest of each agent 
often goes against the public (global) good.  
 
The main result in this work is to show that this is not necessarily the case if the 
difference between contribution and impact is accounted for; via modelling a fishery 
exploitation problem, I show that the use of COIN leads to improved resource 
exploitation not only for the overall community but also for each individual (on average); 
that is, no personal sacrifice is required for the good of the community.  This has the 
                                                 
1 Emergence is a hardly debated term in the physical and philosophical community. In this work I use it in 
the weak sense described in the text (see also Bedau, 1997). 



potential to offer a radical shift in the way communal resources are managed and is worth 
an in-depth investigation, of which this work represents a first step. 
 
Apart for porting COIN to ecological modelling, this work provides two further 
contributions. First, despite the simplicity of underlying idea, COIN literature is fairly 
cryptic and rich of terminology not easily accessible to ecological modellers; here I strive 
to describe the COIN algorithm in the simplest possible fashion. Second, COIN was not 
designed with human agents in mind; I present a simplified COIN which could 
potentially be employed by real people with no need of computer aid, by simply 
performing elementary calculation with pen and paper. The results could naturally be 
extended to the exploitation of resources other than fisheries.  
 
The paper is organised in the following way. First, I cast the management of a limited 
renewable resource within a game-theoretical framework by describing the Minority 
Game and its self-referential and self-defeating nature. I then describe the agent-based 
model employed and how this can simulate four different virtual fishing fleets; a fully 
competitive one, a fully cooperative one,  one which follows COIN ideas and one which 
takes fully random actions. After testing the four approaches on a number of fishing 
scenarios, I conclude by discussing the current limitations of the method and some 
directions for future study. 
 

1. COMPETITION FOR LIMITED RESOURCES IN THE VIRTUAL FISHERY - THE 
MINORITY GAME 

 
In the last few years a considerable body of work has been published on the study of the 
Minority Game (Zhang, 1998; see also the pioneering work by Arthur (1994) on the 
related El Farol Bar Problem and http://www.unifr.ch/econophysics/minority/ for an 
exhaustive collection of papers on the subject).  Despite employing largely unrealistic 
simplifications in the behaviour of the agents, this tool has allowed scientists (mostly 
physicists) to highlight the unexpected and often counterintuitive dynamics displayed by 
the community of competitive agents as a whole, and how this changes dramatically as a 
function of the agents’ behaviours (Savit et al, 1999). 
 
The fundamental reason for the complexity of the Minority Game (and of the competition 
for limited resource in general) is its self-referential and self-defeating nature (Batten, 
2005; Batten and Boschetti, 2006). Imagine a group of individuals who routinely choose 
where to access a limited resource. The amount of the resource an individual can obtain 
depends on how many other individuals choose to access the resource at the same 
location (since the resource is limited and needs to be shared). How many individuals 
choose a specific location depends in turn by the expectation that the location will be 
more or less exploited. Such expectation will guide the individuals’ choice and 
consequently its final level of exploitation. Consequently, the expectation actually 
determines the outcome: this is the self-referential aspect. Also, the more people expect a 
location to be profitable, the more people will access it and the less profitable the location 
will result (since too many individuals have to share the limited resource). The 
expectation actually determines the opposite outcome: this is the self-defeating aspect.  



 
A typical simulation of the Minority Game is shown in Figure 1. It shows a virtual 
community of 20 agents who access a resource distributed equally at two locations (A 
and B). Each agent strives to select the location with the lowest attendance, that is, the 
location chosen by the minority (from which the Minority Game name). If it guesses 
correctly, it will share the resource with the minority, rather than the majority, of agents 
and its return will be higher. Obviously, at each iteration, the majority of agents receives 
a lower return; the game by construction can satisfy only the minority of the players. 
 
Each agent chooses its strategy (at what location it will access the resource) as a function 
of past returns, which is the only available information to the agents.  Suppose location A 
was chosen by the minority of agents. These agents obtain a good return and will tend to 
stay in location A at the next iterations. The agents who chose location B (the majority) 
obtain bad returns and soon will tend to move to Location A. This will result in location 
A attracting the majority of agents and becoming unprofitable. Consequently, any 
winning strategy will soon turn into a losing strategy, which represents the self-referential 
and self-defeating nature of the game. The result, as shown in Figure 1, is that the number 
of agents at each location tends to fluctuate in a complex fashion, never settling to any 
fixed value, and in the long run the average of the attendance to each location will even 
out.  
 
So far we discussed the return for each agent, let’s now analyse the return for the entire 
community. At each iteration, the global return to the community is optimised by 
maximising the size of the minority2. This happens when the difference between the size 
of the majority and of the minority is lowest. Optimal resource exploitation is then 
obtained when the agents spread evenly among the available locations. Thus, the smaller 
the fluctuations in Figure 1, the larger the return to the overall community; the amplitude 
of the fluctuations is a measure of the resource waste in the community which results 
from agents behaving in a purely competitive fashion. 
 

2. PROBLEM SETTING 
 
The agent-based model employed in this work represents a generalisation of the Minority 
Game described in the previous section. A fishing fleet composed of competitive or 
cooperative vessels targets a limited renewable resource of a single fish species. The fleet 
includes N fishing vessels Nn ..1= (agents). At each iteration of the simulation, the vessels 
choose where to fish among Z available zones (a vessel has to choose one and only one 
zone at each iteration). In each zone a certain amount of fish ZzFishz ..1, = is available. 
This amount can change from zone to zone but, unless otherwise stated, is fixed in time. 
This means that we are not modelling the population dynamics of the fish species and we 
assume a constant amount of fish is present in the zones at each iteration, independently 
of how much has been caught in the past.  Clearly, this is an unrealistic simplification of 

                                                 
2 As explained below, in this work I assume that each agent has a maximum capacity, so that not all the 
resource available at one location can be exploited when only a few agents attend to it. In standard Minority 
Game, agents obtain a return only if they attend the minority choice and no return otherwise.  



the problem and was chosen in order to discriminate the effect of the vessels actions from 
the fish population dynamics. 
 
The amount of fish available at a particular zone is shared equally among all the vessels 
which chose to operate in that specific zone. Consequently, the catch of each vessel 
depends on the action of all other vessels (the larger the number of vessels which access 
an area, the smaller their individual catch). Also, each vessel has a maximum fishing 
capacity, that is, it is not able to catch more than a predetermined amount (the same for 
each vessel). Thus the catch for each vessel is given by:  
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where Min(a,b) is the smaller number between a and b, nCatch  is the amount of fish 
caught by vessel n, nzone is the fishing zone chosen by vessel n, 

nzoneFish is the amount of 
fish available in nzone , 

nzone
Crowd is the number of vessels which chose to fish in nzone  

and MaxCatch is the fishing capacity of each vessel. 
 
Naturally, the total catch of the fleet is given by the sum of each individual catch, 
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that is, the fleet can catch the maximum allowed amount of fish only provided the vessels 
spread their fishing effort strategically among the different available zones. As a simple 
example, if the entire fleet targets only zone 1, then 
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have the same fishing capacity and the amount of fish at each zone may differ, an optimal 
catch can be achieved only provided the vessels spread their effort proportionally to the 
amount of fish available in each fishing zone. The fleet has thus to reach this optimal 
spread with no a priori information about fish distribution. 
 

3. THE AGENT BASED MODEL 
 
The agent based model can be summarised as follows: 
 



1) Initialisation: a random strategy ( zW ) is assigned to each vessel3.   
2) At each iteration t and for each vessel, update the value of zW based on the catches 

in the last T steps. This simulates the effort in analysing catch records in order to 
plan the fishing operation at t+1. The value of T can be seen as a measure of the 
length of the history available in the record, or the ‘memory’ of the vessel crew, 
or the effort which is employed in the planning. In all our tests, we used T=20.  

3) Each vessel randomly chooses which zone to fish next, with zz WP ∝ , where zP  is 
the probability of choosing zone z. 

4) Calculate the number of vessels which aims towards each zone (Crowd). 
5) Calculate the catch for each vessel according to Equation 1 and the total catch 

according to Equation 2. 
6) Go back to point 2 and iterate for a predetermined number of steps. 

 
The crucial component of the algorithm is the criterion used to update the strategies zW  at 
point 2. In this work, a strategy is represented as a single set of weights, one for each 
fishing zone ZzWz ..1, = . zW  gives a measure of the expectation of obtaining a good catch 
at zone z. At each iteration, a vessel performs a random pick among the Z zones, with the 
probability of selecting zone z proportional to zW .  
 
Within an optimisation framework, this parameterization allows for a balance between 
exploration and exploitation. Exploitation is represented by zW : the more a vessel 
expects a specific zone to provide a good catch, the more likely the zone will be chosen. 
Exploration is represented by the random pick which allows non optimal zones to be 
chosen with lower probability. In the statistical physics parlance, this corresponds to a 
Boltzmann sampling with no temperature decay (Kirkpatrick et al, 1983). 
 
At each iteration t, each vessel evaluates the catches it obtained in the past T iterations 
and it uses this information to set zW (that is, to predict the most profitable fishing zone at 
time t+1). In order to account for non stationarity in the predictions, the past catches at 
times tTtt p ...1+−=  are discounted proportionally to pd ttt −= , that is, the longer ago the 
catch was taken the less it influences the prediction. This implementation can be seen as a 
simplification of the ones proposed in Wolpert and Tumer (1999) and Wolpert and 
Tumer (2001) as it will discussed in more details in Section 5.  
 
The difference between a fully competitive approach (as used in the standard Minority 
Game), a fully collaborative approach and the COIN lies in how past catches are analysed 
in order to determine zW , which is the topic of next section. 
 

                                                 
3 A random sequence of past catches is also selected. The purpose of this sequence is 
to provide a set over which the performance of the strategies can initially be 
evaluated. Sufficiently long runs of the algorithm are unaffected by this random 
initialization. 

 



4. OPTIMISING THE WORK OF A COMMUNITY 
 
In this paper we ask what strategy individual vessels should employ in order to achieve 
the best global exploitation of a resource (and possibly best individual return too). This 
can be cast as an optimization problem. Here the word optimization has a broader 
meaning that just maximizing an economic return. Rather we refer to the search, within 
the space of all possible vessels’ strategies for set(s) which results in a specific global 
outcome (in our case best global catches).  
 
There are several tools available to tackle optimization problems within the applied 
mathematics, engineering and computer science community. However, before choosing 
one among them, we need to appreciate the difficulty underlying this specific problem. 
 
One of the main challenges in numerical optimization is how to design a suitable ‘cost 
function’, that is a measure of how good a certain outcome is, compared to the outcome 
we wish to achieve. This measure is used by optimization algorithms to guide their search 
in the parameter space.  In our problem, one option for a ‘cost function’ could be to 
maximize the catch of each individual vessel. In this approach each individual vessel 
would try to maximize its return, without accounting for other vessels’ action. This is the 
approach used by agents in the standard Minority Game; as seen in Section 1, when each 
agent tries to optimise its own return, the return of the entire community (and as a result 
of each agent in average) is far from optimal. In optimization jargon, this is described by 
saying that the global goal and the individual goals are not aligned, that is, by improving 
the performance on a single individual goal we do not necessarily improve the 
performance of the global goal. In everyday jargon, we would say that the individuals act 
at cross purposes or “tread on each other toes”. In the rest of the paper I will call this 
approach MG, as short-hand for Minority Game.  
 
Another natural choice for a cost function could be to assign to each individual agent a 
share of the global catch (that is, the better the global catch, the more each vessel is 
rewarded). In game theory this is called a ‘team game’ and represents a fully cooperative 
approach. This solution would work well with small communities. When the number of 
agents increases, ‘team game’ performances tend to worsen quickly (Wolpert and Tumer, 
2001). The reason for this lies, once again, in the self-referential nature of the problem. 
When many agents are modelled, it is hard for an individual agent to determine how 
much its own action has affected the global catch. Agent n1 may have taken a very 
unprofitable action, but the actions of all other vessels may have compensated for it by 
still producing a good global catch. Agent n1 may thus ‘think’ its action was profitable 
and may adopt it again in the future, thereby preventing the community from improving 
its performance. In Wolpert et al. (2004) this problem is called lack of ‘intelligence’, and 
is referred to the inability of the vessels to obtain useful information (‘intelligence’) about 
the problem. In the rest of the paper I will call this approach TG, as short-hand for Team 
Game 
 
A third option for a ‘cost function’ could be for vessels to choose strategies in a 
completely random fashion. This represents a situation in which no information is 



available to the vessels in order to make an informative choice. In the rest of the paper I 
will call this approach RAND.  
 
Finally a fourth choice is represented by accounting for the difference between each 
agent’s contribution and impact as in the COIN approach.  
 

5. COIN IMPLEMENTATION 
 
COIN addresses the two problems describe in the previous section (‘greed’ and lack of 
‘intelligence’) and, remarkably, the solution it proposes is very simple. Here we illustrate 
briefly the method, while we refer the reader to Wolpert and Tumer (1999) for a detailed 
description of the mathematics, together with the theorems and their proof which give a 
solid base to the theory. 
 
COIN overcomes the ‘team game’ problem by attempting to estimate the impact of each 
individual vessel to the global catch. This can be achieved by calculating what the catch 
of the fleet would be if a specific vessel n1 (say) did not exist. In the rest of the paper we 
will use the superscript ‘-n’ to refer to values calculated for the fleet as if vessel n did not 
exist. For example 1nTotalCatch− is the (hypothetical) catch of the entire fleet in the 
absence of vessel n1. Notice that, as we explained in the Introduction via the example of 
Paul and Mary in the orchard, this is different from calculating a quantity for the entire 
fleet minus the same quantity for vessel n1: 1

1
n

n CatchTotalCatchTotalCatch −≠− . Rather, the 
imapct of vessel n1 to the total catch should be calculated as: 
 

1
1

n
n TotalCatchTotalCatchE −−=          (4) 

 
In Wolpert and Tumer (1999) it is proved that any difference function of the form of 
Equation 4 is aligned, that is, by increasing 1nE we can not decrease TotalCatch. It results 
that if we could optimize nE  for each individual vessel then we would automatically 
optimize the catch of the entire fleet. Furthermore, by construction, this would also 
optimise the catch of each vessel. 
 
In practice, this approach would be extremely complicated to implement, if not 
impossible. Because of the self-referential nature of the problem, it is very hard to 
calculate what the behaviour of the fleet would be if vessel n1 did not exist. This is 
because the behaviour of each vessel in the fleet is affected by the presence/action of n1. 
Basically, we would have to account for the dynamics of the game and rerun the entire 
simulation from the starting point.  
 
It turns out that a remarkable (computationally feasible) simplification is possible which 
allows for the general idea to be useful. In Wolpert and Tumer (1999) it is shown that the 
impact of an agent (in our case vessel) on the community can be approximated by simply 
replacing the result of its action (in our case its catch at the chosen fishing action) with a 
default value. Different options for such value are discussed in Wolpert and Tumer 
(2001). This means that we can circumvent the problem of accounting for the dynamics 



of the problem and still implement the idea with meaningful results. The simplest option 
for this approach (and the one which make more sense in our application) is to use 0 as 
default value. In our example (Equation 4), this corresponds to vessel n1 not going 
fishing and calculating the resulting 1nTotalCatch− . Notice that this calculation is 
fictional, because in our model vessel n1 can not choose not to go fishing. In the COIN 
literature this approximation is given the fanciful name of Wonderful Life Utility (WLO), 
in the name of a famous old movie.  
 
Since the WFO is aligned and avoids the ‘team game’ problem, both self-referentiality 
and self-defeatingness are circumvented. The Wonderful Life Utilities does indeed make 
Life ‘wonderfully’ easy. Equation (4) thus becomes 
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Notice that in order to implement Equation 5, a vessel only needs to know how many 
vessels shared its fishing zone (

1nzoneCrowd ) and their catch.  
 
Referring back to the agent based algorithm in Section 3, we can now describe the 4 
implementations we test, which differ according to how the strategies zW are updated:  
 

1) In the fully competitive approach (MG) zW is represented by z
nCatch 1 , that is, the 

catch of vessel n1 in zone Z during the last T steps, discounted by how far in the 
past the catch was taken. 

2) In fully cooperative approach (TG) zW  is N
TotalCatchz , that is, the global catch of 

the entire fleet shared equally by all vessels, discounted by the how far in the past 
the catch was taken. 



3) In the ‘blind’ approach (RAND) in which no information processing is available, 
zW  is a random set of numbers. This model is useful in our numerical test since it 

represent a sort of ‘null hypothesis’; 
4) In the COIN approach, zW  is given by 1nE  in equation 5. 

 
In order to appreciate the working of COIN it is important to understand the difference 
between 1nE and 1nCatch . If vessel n1 chooses a zone which is under exploited, that is a 
zone where vessels can fish at their maximum capacity (this is clearly a profitable action 
to take), 1nE in Equation 5 will be large, since vessel n1 will be able to catch its share 
without affecting the other vessels’ catch. In this case 11 nn CatchE = . If vessel n1 choose a 
zone which is over exploited, that is a zone where vessels can not fish to their maximum 
capacity (this is clearly an action to avoid), 11 nn CatchE < since all vessels need to share the 
limited amount of fish available and no extra catch is possible. Had the vessel not gone 
fishing, its catch 1nCatch  would have been collected by other the vessels which did not 
succeed in fishing to maximum capacity. It is possible that several zones could give a 
high return to vessel n1, since more than one zone may be underexploited. In this case 
several vessels, all choosing different zones, may all receive high return nE . This 
spreading of the fishing effort is exactly what we want to achieve. Conversely, a pure 
competitive scenario (like the one depicted in the MG) in which all vessels aim for the 
potentially most profitable zone, prevents such spreading and induces a ‘Tragedy of the 
Commons’-like outcome. 
 
Finally, notice that by trying to optimise nE , each individual vessel still tries to maximize 
its own return, since each vessel looks for underexploited zones. The vessels are still 
acting competitively, but this time their action does not impact negatively on the outcome 
of the community; the entire community obtains a larger catch, and consequently each 
vessel (on average) can obtain a larger individual catch. 
 
 

6. IMPLEMENTING COIN WITH PEN AND PAPER 

 
Conceptually, the core of the COIN approach lies in Equation 4, which implements the 
idea of evaluating the effect that vessel n1 has on the fleet by comparing the current catch 
to that of a hypothetical fleet without n1.  Computationally, the crucial step lies in 
mimicking the behaviour of the hypothetical fleet without vessel n1 by using the 
Wonderful Life Utility with default factor 0.  The fact that this (very rough) 
approximation works, immensely simplifies the approach and makes the conceptual idea 
behind COIN actually implementable. In this work, we simplified the COIN algorithm 
further by imposing some (albeit minor) modifications.  In particular: 
1) unlike in Wolpert et al. (2000), the weights zW  are not adjusted, but rather reset, at 

each iteration according to previous catches; 
2) in previous applications of COIN to the Minority Game (Wolpert et al., 2000, 

Wolpert and Tumer, 2001) the return R of each agent for attending a certain zone is 



given by )/exp(* cyyR −= , where R is nCatch  and y is zFish in our problem. In this 
equation, c plays the part of a pre-determined ‘ideal’ number of vessels attending 
each zone. The presence of the parameter c helps to guarantee a balanced allocation 
of the vessels among the zones. In order to simplify the calculation, as well as to 
avoid using a parameter which needs to be set a priori, we did not use this option; 

3) finally, in Wolpert et al. (2000) and Wolpert and Tumer (2001), in order to account 
for non stationarity in the predictions, the past catches are discounted by an 
exponential function while we used a simpler, linear one.  

 
 
The net result of these modifications is that all that is needed in order to implement a 
COIN strategy are some basic bookkeeping and a handful of elementary operations (+,-
,*,/). While this makes little difference when COIN is run on a computer, it may make a 
difference if real human agents want to test/use the procedure. Basically, the entire COIN 
approach could be performed with pen and paper by agents with only primary school 
training. This may not be relevant to modern fishing fleet in developed countries (which 
are geared with sophisticated equipment), but it could broaden the application to other 
resource management problems in the developing world.  In particular, here is the ‘pen 
and paper’ pseudo-algorithm which vessel n1’s crew needs to perform: 
 
1) keep a record of the day catch, and of how many other vessels fished in the same 

zone. 
2) Calculate 1nE via equation 5 and store it. 
3) Retrieve the values 1nE  from the last T fishing days/periods and call 

them TtEt
n ..1,1 = where t is day/period, with t=1 being the most recent day/period and 

t=T the least recent.  
4) Calculate the weights zW as ∑

=

+−
=

Tt

t
n

t
zz T

tTEW
..1

1
1δ ,   (6) 

where 1=t
zδ if the vessel fished in zone z at time t in the past, and 0=t

zδ  otherwise. 

5) Normalise the cumulative sum of the weights zW , ∑
=

=
z

i
iz WCumW

1
 and 

Z

z
z CumW

CumWCumWNorm =_ ; 

6) Pick a random number r between [0,1]. 
7) Find the smallest z for which rCumWNorm z ≥_ .  
8) Next iteration, fish in zone z. 

 

7. NUMERICAL RESULTS 
 
In this section we compare the performance of the different algorithms we introduced 
above.  
 



In the first test I aim to replicate the setting of a common Minority Game as described in 
Section 1. We model a fleet of 20 vessels (N=20) and 2 available fishing zones (Z=2) 
equally sharing resource of 50 units of fish ( 502,1 =Fish ). Each vessel can catch at most 5 
units (MaxCatch=5). Following Equation 3, we can estimate the maximum possible catch 
for the fleet: 

100)*,(
,1

=≤ ∑
= Kk

k MaxCatchNFishMinTotalCatch units.  

A summary of the results can be seen in Table 1. For each algorithm, we show the mean 
catch for the vessel which caught the largest amount of fish (column 1), the mean catch 
for the vessel which caught the smallest amount (column 2), the total mean catch of the 
entire fleet over the entire simulation (column 3) and the mean catch of the entire fleet at 
the last iteration step (column 4). In order to account for stochastic fluctuations inherent 
in the algorithms, all results are averaged over 10 different runs. 
 

Table 1. Summary of the comparison of the different algorithms in the test with N=20, 
Z=2, MaxCatch=5, 502,1 =Fish . In this and following table Max IC= Maximum Individual 
Catch, Min IC= Minimum Individual Catch, GMC=Global Mean Catch, FGC=Final 
Global Catch. All values are averaged over 10 runs. 

 Max IC Min IC GMC FGC 
COIN 4.97 4.96 99.29 99.50 
TG 4.75 4.75 95.07 97.00 
MG 4.91 4.72 96.27 97.00 
RAND 4.59 4.52 91.07 90.50 
 
 
We can notice that the COIN outperforms all other algorithms, with an average Global 
Mean Catch very close to the maximum allowed. The worst performing vessel under 
COIN performs better that the best performing vessel under any other algorithm. We also 
notice that the performance on the TG and MG are quite similar; under this scenario fully 
competitive and fully collaborative approaches result in similar outcomes. Finally, the 
performance of the randomly behaving fleet RAND is considerably worse than all other 
approaches, confirming that the information processing inherent in the COIN, MG and 
TG pays back in terms of catches. 
 
In the second test I aim at a more realistic fishery scenario. I model a fleet of 50 vessels 
(N=50) and 4 available fishing zones (Z=4). The resources available in each zone differ: 
zone 1, 3 and 4 can provide 50 units of fish ( 502 =≠zFish ), while zone 2 can offer 100 
( 1002 =Fish ). Each vessel can catch at most 5 units (MaxCatch=5)., which results in 

250)*,(
,1

=≤ ∑
= Kk

k MaxCatchNFishMinTotalCatch units.  

A summary of the results can be seen in Table 2. In this case, in columns 5 and 6 I also 
show the average number of vessels who fished at zones 1,3 and 4 ( 2≠zCrowd ) and the 
average number of vessels which fished at zone 2 ( 2Crowd ).   
 



 We can notice the following: 
1) COIN provides the best catch for the entire fleet as well as for the vast majority of 

individual vessels: the worst performing vessel obtains a catch only slightly worse 
than the best performing vessel for the MG. This suggests that no individual sacrifice 
is necessary in order to achieve good global catches when the COIN approach is used. 

2) COIN performs best because it achieves the best average spread of vessels among the 
available fishing zones (column 5 and 6). The ratio between the vessels fishing at the 
different zones matches almost exactly the ratio of available resource (which is 
unknown to the vessels).  

3) The second best catches are provided by the MG. However, with this approach the 
average difference between the catches of the best performing and the worst 
performing vessels is one order of magnitude larger than in the COIN approach. Fully 
competitive, selfish behaviour results in lower global catches, lower average catches 
for the worst performing vessels and larger disparity in performances.  

4) The vessels’ inability to obtain feedback about their contribution to the global 
performance in the TG results in global catches which are lower than two competitive 
approaches of the MG and COIN.  Also the difference in performance between the 
MG and TG is now larger than in the first test. This seems to confirm the fact that the 
team game approach’s performance decreases rapidly with increasing number of 
agents.  

 

Table 2. Summary of the comparison of the different algorithms in the test with N=50, 
Z=4, MaxCatch=5, 502 =≠zFish 1002 =Fish .In this and following table Max IC= maximum 
Individual catch, Min IC= minimum Individual catch, GMC=Global Mean Catch, 
FGC=Final Global Catch. All values are averaged over 10 runs. 

 Max IC Min IC GMC FGC 2≠zCrowd  2Crowd  
COIN 4.96 4.91 246.84 247.50 9.99 20.04 
TG 4.27 4.27 213.49 211.50 12.05 13.86 
MG 4.92 4.53 237.45 237.50 10.21 19.38 
RAND 4.23 4.07 207.39 199.50 12.52 12.45 
 
 
It is also worthwhile to analyze the time series of the Global Mean Catch (GMC) 
produced by the different algorithms (Figure 2): 
1) The RAND curve (thin dashed line) oscillates around a fixed exploitation baseline as 

expected from a random behaviour. 
2) The TG (thick dashed line) shows oscillations of lower magnitude and consequently 

better performance than RAND. At the beginning of the simulation the performance 
of RAND and TG are quite similar. After some 100 steps the TG performance 
improves to reach a sort of rough plateau characterised by both short range and long 
range departures, suggesting that continuous learning is not possible fir the TG 
because of the agents’ poor information processing.   

3) The MG (thin line) also reaches maximum performance within some 100 steps with 
oscillations of generally decreasing amplitude. This shows a reasonably good level of 
adaptation to the modelled conditions.  



4) The COIN’s performance is the worst during the very first iterations, when little 
information is provided for training, but within a few time steps it overtakes all other 
algorithms. It then keeps on improving, converging towards the maximum allowed 
catch (250) with small amplitude oscillations. 

  
In the third test I examine how the algorithms adapt to change in resource distribution. I 
use the same fishery scenario as in the first test (N=50, Z=4, MaxCatch=5). At the 
beginning of the run I set 502 =≠zFish  1002 =Fish . However, after 220 time steps, I impose 

502 =Fish  and 1003 =Fish , while zones 1 and 4 are unaltered. Basically, the larger stock 
moves from zone 2 to zone 3.  The time series of the Global Mean Catch can be seen in 
Figure 3. Obviously, the behaviour of the curves in the first 220 steps is similar to the one 
described in Figure 2. Also, the behaviour of RAND is unaffected by the stock migration 
because of its totally random nature. However, soon after time step 220 the catches of 
COIN, MG and TG decrease suddenly since their fleets had ‘trained’ themselves to 
exploit more heavily zone 2 and its drop in stock affects their catch negatively. All three 
approaches are able to adapt to the new resource distribution and adjust their fleet 
allocation to exploit it, but how they do so varies considerably. The TG drop at iteration 
220 is smaller than for MG and COIN since it had adapted itself less to the previous stock 
distribution, and recovers in roughly 80 time steps. The MG drop is much sharper since it 
had adapted itself better to the previous stock distribution. However, its recovery is very 
slow and by the end of the run it has not recovered its pre-migration catch level. The 
COIN drop is also very sharp as expected, since COIN also had adapted to stock 
distribution. However, the COIN fleet is much faster in retraining to the new scenario and 
its GMC recovers in less than 20 iterations. This different adaptability to changing 
conditions explains the final performance displayed in Table 3. 
 
Table 3. Summary of the comparison of the different algorithms in the test with N=50, 
Z=4, MaxCatch=5. At the beginning of the run we have 502 =≠zFish  and 1002 =Fish . After 
220 steps the fish stock distribution changes to 503 =≠zFish  1003 =Fish . All values are 
averaged over 10 runs. 
 Max IC  Min IC GMC FGC 
COIN 4.95 4.87 245.61 249.00
TG 4.19 4.19 209.75 209.50
MG 4.91 4.36 232.20 234.50
RAND 4.23 4.07 207.63 207.50
 
 
Finally, I test the algorithm under more challenging conditions. In the fourth test I model 
a larger fleet (N=200), a larger fishery (Z=16) and a random stock distribution. Also, 
every 100 time steps, the stock at 4 random locations migrates to 4 other random 
locations. The results can be seen in Figure 4. The larger fleet results in the TG 
performance to further worsen and almost match the fully random fleet (RAND). The 
continuous change in stock distribution does not allow the MG to ever reach maximum 
fishing capacity, while the speed in recovery of COIN allows its fleet to recover optimal 



catches in between each migration event. The exact numerical outcome of this simulation 
is reported in Table 4. 
 

Table 4. Summary of the comparison of the different algorithms in the test with N=200, 
Z=16, MaxCatch=5, random stock distribution and random migration every 100 time 
steps. All values are averaged over 10 runs. 
 Max IC  Min IC GMC FGC 
COIN 3.82 3.38 738.54 647.77
TG 2.99 2.99 598.93 598.12
MG 3.79 3.12 703.55 631.75
RAND 3.12 2.81 592.75 590.24
 

8. DISCUSSION, LIMITATIONS, AND DIRECTION FOR FURTHER WORK 
 
The results in the previous section are very encouraging. Nevertheless, before more 
expectations can be placed on this technique more detailed modelling needs to be done. 
Here we present a “high-priority” list of directions for further work, some of which I 
endeavour to address in my future research: 
 
1) the resource dynamics needs to be included into the simulations. How the fish 

population responds to the COIN exploitation, how the COIN can adapt to the 
population dynamics itself and how the management policies need to adapt to  
variable circumstances, are all factors which need to be carefully explored. 

2) Human behaviour also needs to be modelled more accurately. For example, we 
should explore what would happen if one or more vessels in the COIN behaved 
greedily (by following standard MG strategies), or communication between nearby 
vessels was disrupted (either purposely or accidentally). Basically, we should model a 
fleet consisting of vessels of mixed strategies, some adopting a COIN approach, some 
a purely competitive one, some fully cooperating within a smaller group. Vessels may 
also decide to change strategy during the run, depending on their returns. It is 
important to evaluate COIN’s robustness and within what limits it can still prove 
viable. 

3) In the current implementation we are not modelling the availability of public 
information or ‘a priori’ expectations of fish population behaviour. It is worthwhile to 
study how such information could alter the effect of COIN. This could be done by 
casting the calculation of the zW  within a Bayesian framework, thereby catches 
modify prior information or the new information which may become available during 
the run from external sources is accounted for. 

4) The potential receptivity of real communities to a COIN approach needs to be 
assessed. To our knowledge, no experience is reported in the literature on this subject. 
Planning to initially test this within a game theoretical setting in a lab with a number 
of volunteers is currently under way.  

5) It is important to stress, once again, that the strength of COIN lies in disentangling 
impact from contribution and in recognising and penalising contributions which do 
not lead to impact. This need not be limited to the agents’ behaviour, but could be 



extended to policies in a straightforward manner. This would lead to discriminating 
the impact from the mere contribution of management decisions like fishery closure, 
whether complete of partial, its timing, the setting of quotas, the selection of allowed 
gear, the establishment of penalties for infringements.  

6) Discriminating between contribution and impact is a first step towards the very 
difficult task on detecting causal relations within a Complex Adaptive System. 
Causality is a famously slippery concept in the philosophy of science. Pearl (2000) 
and Pattee (1997) propose an operative distinction between causality and mere 
correlation; causality, unlike correlation, involves control, that is, the possibility to 
affect a process by acting on the causal component. According to this definition, 
contribution which leads to impact has a direct causal effect on the global outcome of 
the community. A contribution which leads to no immediate impact might have a 
more subtle causal effect, which may or may not manifest itself in the longer run. 
COIN thus can provide a tool, albeit an approximate one, to detect the components 
with potentially highest causal power and act upon them. 
 

We conclude by discussing by far the most important concern: in this work we assumed 
that the resource is fully renewable. In many resource management scenarios, 
maximizing the exploitation of a limited resource is not what decision makers want, 
especially in environments under considerable ecological pressure. In a certain sense, this 
issue is not directly related to whether COIN is a valuable approach, unless a less 
effective fishing strategy is seen as a management tool for stocks control. What is 
important is that COIN is an optimization technique. This, as mentioned before, does not 
necessarily imply maximizing exploitation, rather finding a best strategy for a goal of our 
choice. From this perspective, the challenge is to formulate an ecologically responsible 
and economically valuable goal and see whether COIN can help achieving it by acting on 
all components which may influence on it, agents and managers alike. Technically, this 
means finding a WLU ‘cost function’ which would result, at the same time, in a 
sustainable behaviour for the entire fleet and an individual ‘selfish’ goal which is 
worthwhile for each vessel to pursue. The results I presented suggest that such combined 
aims are not necessarily contradictory, rather they may be implemented in a way which 
results in their being aligned and COIN can offer a valuable approach to finding such 
alignment. This is surely the single most important direction for future work I aim to 
address.  
 

9. CONCLUSIONS 
 
We propose a simplified version of the Collective Intelligence which can be easily 
employed by a community of human agents in order to plan the exploitation of a limited 
resource. We compared COIN against other game theoretical approaches on a number of 
virtual fishery scenarios. In all tests the COIN not only guaranteed optimal global catch 
but also maximised the catch of each individual vessel. Achieving this in a competitive 
environment may be a key factor in this method’s acceptance by real communities. In the 
view of actual implementations, we described a pseudo algorithm, which allows the 
COIN to be carried out by ‘pen and paper’, with minimum bookkeeping and only 
elementary calculations.  
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Figures 
 
 

 
Figure 1. Typical run of a standard Minority Game, with N=20 agents and resources 
spread equally among two locations. The X axis shows the iteration number and the Y 
axis shows the attendance (number of agents) at location A. The attendance fluctuates in 
an irregular fashion around N/2, which represents the average attendance at each location 
in the long run, despite the curve never converges to this value. 

 

Figure 2. Mean Global Catch for the different algorithms in the first test case, N=50, 
Z=4, MaxCatch=5,   and . The curves are averaged over 100 runs. 

 
 



 
Figure 3. Mean Global Catch for the different algorithms in the second test case, N=50, 
Z=4, MaxCatch=5. At the beginning of the run we have 502 =≠zFish  and 1002 =Fish . After 
220 steps the fish stock distribution changes to 503 =≠zFish  1003 =Fish . All values are 
averaged over 10 runs. 

 

 

Figure 4. Mean Global Catch for the different algorithms in the final test case, N=200, 
Z=15, MaxCatch=5, random stock distribution and random migration every 100 time 
steps.  The curves are averaged over 10 runs. 


