Chapter 7

Some observations on the role of
noise in the inversion of seismic

and gravity data

As it has already been pointed out in the rest of the document geophysical inverse
problem may be reduced to determining the set(s) of parameters that generate
the minimum misfit between some observed and calculated data. At least four
kind of errors may limit the accuracy of any inversion process: instrumental noise,
inappropriate parameterisation, inexact forward modelling and inability of the
inversion routine to detect the global minimum in the search space. While the
last point has been the object of a large amount of investigation both in the
literature and in this research, the effect of the first three sources of errors is
often overlooked. It is very difficult, and often impossible, to discriminate between
instrumental noise, inappropriate parameterisation and inexact forward modelling
but their overall effect is to prevent the forward model to accurately mimic the
physics of the problem under analysis and accordingly to reproduce the observed
data.

In this chapter I report on a series of computer experiments I carried out
to understand the effect of such errors in the overall inversion process in two
different geophysical problems, seismic refraction tomography and inversion of
gravity data. In order to have a clear control on the phenomena under analysis a

series of synthetic experiments have been performed. In such test random noise



is added to the synthetic data in order to create the mismatch between observed
and calculated data that would be present in a real experiment.

I found that in seismic refraction problems the effect of such errors is to pre-
vent the inversion routine obtaining the 'correct’ model parameter set. The phe-
nomenon does not depend on the ability of the inversion routine to detect the
global minimum in the solution space. This is due to the fact that under the effect
of noise the 'correct’ parameter set no longer corresponds to the global minimum.
Accordingly, this problem goes beyond the choice of the ’best’ inversion routine
and it deals directly with the limitation imposed by the physics under analysis.
Methods to identify the areas of the solution more sensitive to such errors are
proposed that can be practically used on field data to assess the reliability of a ge-
ological reconstruction. However, better results may be achieved only by including
further information in the problem addressed.

I also found that the effect of errors is much less marked in the inversion of
gravity data. Accordingly, information from gravity data sets may be added to the
inversion of seismic refraction data in order to limit the effect of noise. A method
to perform a staged joint inversion of seismic and gravity data is discussed which
proved to be successful in two inversion experiments characterised by different
refraction geometry. Also, it is shown that the computational effort of such joint
inversion involves only a small increase over the single inversion of seismic data.

The content of this chapter has been recently submitted to GEOPHYSICAL

JOURNAL INTERNATIONAL and it is currently under review.

7.1 Introduction

In order to introduce the ideas presented in this chapter is probably useful to first
briefly review the basic concepts in the inversion process. In a geophysical inverse
problem we are seeking to determine the main features of the subsurface geological
structure from measurements (seismic signals, gravity, magnetic, electrical data,
etc.) related to the physical properties of the earth. In this process the unknown
geological structure is usually modelled by a number of regularly shaped blocks

whose shape and/or position and/or physical properties are the model parameters



to be determined.

For most geophysical problems no method is currently available to directly
reconstruct the unknown geology from field measurements, i.e., no explicit math-
ematical formula is available to directly manipulate the observed data and give
information about the unknown geology as output. Rather, a geophysical problem
is solved by iteratively perturbing the model parameters in a trial and error fash-
ion, until a parameter set(s) satisfactorily reproduces the observed data. Such a
process is referred to as inversion. In order to perform inversion ways to calculate
the expected physical response of different parameter sets are needed. This ex-
pected physical response is then compared to the observed data. This is obtained
by the use of forward algorithms, whereby the physical process under analysis
(seismic wave propagation, generation of magnetic anomalies, etc..) is modelled
by the use of standard continuum equations.

Given these assumptions, the actual mathematical problem of reconstructing
the unknown geology becomes a search, in a multi-dimensional parameter or so-
lution space, for the set(s) of model parameters which give a global minimum to
some function of the difference between the model response and the observed data,
often referred to as solution surface.

Solving this problem is achieved by the use of inversion algorithms which ba-
sically direct the search of the solution space for the global minimum by iterative
use of the forward model, i.e. by iteratively sampling different areas of the solution
space.

We must be aware that errors are introduced at each stage of this process. At
least four sources of errors may be recognised. First, real data contain instrumental
noise due to the acquisition system. A source of errors closely connected with
this problem is the accurate detection of first arrivals in seismic traces that has
been addressed in Chapter 2. Secondly, the model parameterisation is inherently
inaccurate. This is because the complexity of a real geological structure can not be
reproduced by subdividing the region under analysis into a number of blocks for
which regular shapes and some kind of homogeneity are assumed. As an example
the behaviour of the real earth in a seismic experiment can only be modelled

approximately by homogeneous, isotropic and elastic solid over the dimension of a



model block. Also, we must remember that the earth is a 3-D body which in many
experiments is treated as a 2-D section. Similarly, approximations are present
in the equations employed in the forward modelling, from which a third source
of errors arise. For example, in the seismic refraction experiments described in
this study, the seismic energy is supposed to travel along paths approximated by
straight line segments. This often fails to model the more complex behaviour of
seismic wave propagation in complex media. The possible inability the inversion
routine to correctly find the global minimum in the search space represents the
fourth source of errors. This has been extensively addressed in Chapter 5 and
Chapter 6. Note that while this error is directly connected with the inversion
algorithm, the other three error sources directly affect the forward model and
their effect in the overall inversion process is more subtle.

While great effort is currently put into understanding the inner mechanics of
different inversion algorithms the key role played by the forward model in the over-
all inversion process is often overlooked. Firstly, the shape of the solution surface
depends, among other factors, on the physics of the problem, that is contained
in the forward model. Secondly, and most important, if the forward model is not
accurate (i.e., does not adequately model the physics of the problem, as discussed
above) the result of the inversion procedure will not reconstruct the correct pa-
rameter configuration and consequently will not accurately describe the unknown
geology.

Usually the efficiency of an inversion procedure is first tested with synthetic
data. In this case the same algorithm is used as data generator and as forward
routine in the inversion and errors are not present in the process. This can be
seen as if the inversion procedure was supplied with a forward routine able to
perfectly model the physics of the problem and accordingly to perform a perfect
mapping from the parameter space to the solution space (i.e., the correct parameter
configuration corresponds to the global minimum in the solution space and has zero
misfit). Afterwards, when sufficient mathematical insight into the problem has
been acquired, the inversion of real data is attempted. In this case all the sources
of errors listed above are present which affect the efficiency of the inversion process.

It is very difficult to discriminate between the effects of instrumental noise, in-



appropriate parameterisation and inexact forward modelling. Such discrimination
is beyond the scope of this chapter. In the rest of the discussion I will use the term
'noise’ for the overall combination of these errors, i.e., I define as 'noise’ everything
that is not modelled, or is not accurately modelled, by the forward model.

The aim of this chapter is threefold. The first goal is to obtain a better un-
derstanding of the effect of noise in the inversion process. This is attempted on
two different geophysical problems, seismic refraction tomography and inversion of
gravity data. The presence of inaccuracies in the process are modelled by adding
random noise to a set of synthetic data and their effect is discussed by analysing
the modification they impose on the solution shapes in both problems.

Since an exhaustive analysis of a solution space in a high-dimensional space in
beyond current computation possibilities, the second goal of this study is to pro-
pose practical tools to identify the areas of the solution more sensitive to ambiguity
and/or errors in the inversion process.

The last goal of this research is to propose a method to improve the results of
the inversion of seismic and/or gravity data in presence of noise. The two inverse
problems here presented show very different features. Gravity inverse problems are
characterised by large ambiguity (i.e., a large number of solutions can be found that
fit the data equally well) but are not very sensitive to the presence of noise in the
data. Seismic refraction inverse problems are less ambiguous but show a stronger
sensitivity to noise. These opposite behaviours suggest that improvements in the
inversion of such data sets could be obtained by combining the two processes. The
advantages of such joint inversion and its potentiality is shown on two synthetic
problems in which noise is included in order to model inaccuracies in the forward

modelling that could arise in real experiments.

7.2 Seismic refraction tomography

7.2.1 Previous analysis

Seismic refraction tomography experiments have been performed and extensively
described in Chapter 5. Here some of the results are summarised and further

analysed in order to obtain a better understanding of the problematic inherent in
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Figure 7.1: Synthetic test simulating a horzontally layered model with linearly
varying slowness in the vertical direction. The synthetic image used to generate
the data set is presented inFigure 7.1a. Figure 7.1b-f show the results from5 runs
with a Genetic Algorithm initialised with different random populations. Figure
7.1b-d show a satisfactory resemblance with the synthetic image. InFigure 7.1e-f

errors are present that are positive in sign.

such an inverse problem.

Figure 7.1 shows one of the test cases discussed in Chapter 5. Figure 7.1a
represents the horzontally layered model with linearly varying slowness inthe
vertical direction that was used to generate the synthetic data set to invert. As it
has already been shown in Chapter 5, from a geological perspective the results in
Figure 7.1b-d show a satisfactory resemblance with the synthetic image. The main
feature in the model, i.e. the horizontal layering, is well reconstructed. Departures
from the synthetic model are present only on the lateral areas of the domain, .e.
in areas badly sampled by raytracing routine. However, in Figure 7.1le-f errors

are present that are indicated by anomalously large values of slowness at some



grid nodes. In a geological interpretation these errors could suggest the presence
of small anomalous bodies in the domain. Clearly understanding the sources for
such erroneous reconstructions is crucial in assessing the method potential for ex-
ploration purposes. It can be noticed that when anomalous reconstructions are
contained in my Genetic Algorithm solutions, these are always located in the cen-
tral area of the domain just above the refractor. In Chapter 5 it was showed that by
improving the Genetic Algorithm solutions with the use of local optimisers (in par-
ticular the such errors are removed and solutions very close to the global minimum
are obtained. However, it has also been shown that improvements to the Genetic
Algorithm solution through the use of local optimisers can be obtained only by
a very small decrease in the error misfit. On noisy data sets the refinements on
the error misfit required by the local optimiser may fall well below the limitations
imposed by the presence of noise. In such circumstances the local optimisation
of the Genetic Algorithm solution will not be advantageous. Accordingly, under-
standing the reason behind the presence of such errors and their spatial location

in the solution is crucial for the following discussion. This will now be addressed.

7.2.2 Discussion on error sources

The accuracy with which the slowness value may be determined at a node position
depends on the ray coverage in that area. The more rays that cross a certain region
the more weight the value at such node has on the data misfit, the more sensitive
the inversion procedure is to slowness value at such a node. A numerical measure
of such weight may be represented by the amount of variation in the error misfit
as a function of a small perturbation in the slowness value at such node. Since
the actual derivative of the error misfit in regard with the slowness values can
not be analytically obtained with the use of the approximate ray-tracing routine
employed in this study, I calculated the variation of the error misfit for a small
slowness perturbation in both signs and averaged the two values at each node
location, e.g. at a particular node with slowness S I calculated the misfit for S+ €
and averaged the misfit. Thus a small average indicates the inversion is not very
sensitive to the errors in the slowness at this node. The averages so obtained are

then plotted at each node location and in the rest of the chapter I will refer to
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Figure 7.2: Sensitivity plot for the synthetic test in Figure 7.1a, i.e., the average
misfit error as a function of a small slowness perturbations in both sign is calculated
and plotted at each node location. As we can see a vast minimum is present in

correspondence with the lower-central area of the domain.

such diagram as ’sensitivity plot’.

The sensitivity plot for correct solution to the inversion problem presented in
Figure 7.1 is shown in Figure 7.2. Notice that the absolute values in the diagram
depend on a number of factors, such as the number of seismic rays modelled,
the physical dimensions of the calculation domain, the magnitude of the slowness
perturbation etc. However, it is not the absolute values but their relative variation
that is relevant to this discussion. The sensitivity plot presents a large low in the
central area of the picture, just above the refractor. This area is highlighted by
the rectangular box in the figure. The consequence of the presence of this low is
that an inaccurate reconstruction of slowness values at nodes in this part of the
image does not affect the error misfit to a large extent. This creates a flat area in
the solution space difficult to be resolved by the Genetic Algorithm. High values
in the sensitivity plot can be found close to the surface where rays run along the
surface or dive just below it between closely spaced source-receiver couples. The
large number of rays running along the refractor are responsible for the "high peak’
present at the bottom of the picture. Accordingly, the inversion procedure is very
sensitive to slowness values in these areas where correct values should appear very

early in the inversion.
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Figure 7.3: (a) Solution surface for the noise-free seismic data set in the 2 dimen-
sional subspace correspondent to the two nodes highlighted in Figure b. A curved
valley converging towards a single global minimum can be seen. Also notice the

different slope in the two flanks of the valley.

Also, as already mentioned in the previous section, the nodes in error in the
solutions in Figure 7.1 are always characterised by slowness values larger than
the corresponding values in the synthetic image. To understand why this occurs
consider the two nodes enclosed in the rectangle in Figure 7.3b. While the slowness
in the rest of the domain is kept fixed the slowness values at such nodes are varied.
The error misfit calculated as the sum of the squared errors between the synthetic
and the observed traveltimes due to such perturbed values is plotted in the 3-
D image in Figure 7.3a. This represents the solution surface for the small two

dimensional subspace corresponding to the nodes under analysis. Notice that the



two nodes are located inside the area delimited by the rectangular box in Figure
7.2. Such misfit is obviously zero at the global minimum, i.e., for slowness values
equal to the ones in the synthetic image. Such values are 0.17 s/km for the X axis
and 0.18 s/km for the Y axis. The surface numerical values may vary for different
nodes combinations but the pattern remains similar for the nodes corresponding
to central region in Figure 7.2.

Figure 7.3a shows the curved shape of the valley converging towards a single
global minimum. More important, it can be noticed that the valley flanks have
very different slope, i.e., for slowness values smaller that the correct ones the error
misfit varies sensibly, while an equivalent perturbation in the opposite direction
creates a much smaller error misfit. Accordingly, if a node assumes a slowness
values larger than the correct one the perturbation in the error misfit may not be

large enough to sensibly affect the inversion procedure.

7.2.3 Effect of the presence noise in the data

From the previous analysis we can expect the central area corresponding to the
low values in Figure 7.2 to be also the most sensitive to the presence of noise in the
data. Here the effect of such noise is analysed. A random noise whose maximum
amplitude is 2.5% of the traveltime was added to the same synthetic data set
used in the experiments shown in the paragraph "Previous analysis’. The resulting
noisy data set has been inverted with the use of the Genetic Algorithm with the
same implementation described above. Figure 7.4 shows the Genetic Algorithm
solution for such inversion. The quality is obviously poorer that the best one of
the previous noise-free example (Figure 7.1b), but the position of the refractor is
still well reconstructed and the errors are still located only in the middle part of
the picture.

Figure 7.6 shows the result from the local optimisation with the SIMPLEX al-
gorithm of this image. The reconstruction of the synthetic image is even poorer
than before, despite the reduction in the error misfit. We could suspect that the
local search has been attracted in a local minimum farther from the global one,
but further analysis shows that this is not the case. The table in Figure 7.5 shows

the error misfit for the Genetic Algorithm solution, the local optimiser solution
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Figure 7.4: Genetic Algorithm solution from the inversion of the seismic noisy
data set. The image should be compared with the ones inFigure 7.1. Errors are

present in the central part of the image and are positive in sign.

Image Synth. data  Noisy data

Synth. Model 0 48742
GAs sol. 2376 41897
SIMPLEX sol. 3143 39391

Figure 7.5: Error misfit for the Genetic Algorithm solution, the local optimiser
solution and for the correct image in respect both to the original synthetic data

set and to the noisy data set.

and the synthetic image in respect both to the synthetic noise-free data set and to
the noisy data set. For the synthetic noise-free data set the synthetic solution has
obviously zero misfit and the Genetic Algorithms solution has an error larger than
the local optimiser one. For the noisy data set, the Genetic Algorithm solution
has an error misfit larger than the local search output, as expected. However,
the synthetic image shows an error misfit larger than both the Genetic Algorithm
and local optimiser solutions. This suggests that the presence of noise in the data
created a distortion in the solution space: the correct image does not correspond
to the global minimum in the new solution space.

A further demonstration of this conjecture can be found in Figure 7.7. Here I

have repeated the calculation described in deriving Figure 7.3, this time using the
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Figure 7.6: Local optimisation of the Genetic Algorithm solution inFigure 7.4 with
the SIMPLEX algorithm. Despite the error misfit has been reduced, the resemblance
with the synthetic model inFigure 7.1a is worse than that of the Genetic Algorithm

solution. Errors are still located in the central part of the picture.

noisy data set. It can be noticed that the presence of noise has'covered’ the global

minimum valley shown in Figure 7.3a, and the low steep flanks corresponding to

the slowness values larger than the synthetic ones, and it has substituted them
with a flat region. Here the global minimum of Figure 7.3a is no longer present,

rather two minima in different locations can be seen. Clearly it is now impossible

for the search algorithm to recover the correct image in the domain, because it
no longer corresponds to the global minimum. Notice that this phenomenon is

independent of the inversion strategy employed, rather it is due to the physics of
the problem.

Also notice that this analysis is not dependent on the sources of errors simu
lated either; this may be due to errors in the acquisition systems and in the first
arrival picking stage as well as in the inadequate problem parameterisation and
inaccurate ray-tracing routine. Effort should be put into the accurate detection of
first arrivals, forward modelling and adequate parameterisation in order to limit
the level of inaccuracies in the process. However, none of these sources of errors
may be completely eliminated in field data inversions. When the level of such in
accuracies is estimated to sensibly affect thequality of the result another strategy

to invert noisy data sets must be adopted.
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Figure 7.7: Solution surface for the noisy seismic data set in the 2 dimensional
subspace correspondent to the two nodes in Figure 7.3b. It should be compared
with Figure 7.3a. The curved valley is no longer present and it has been substituted
by a flat region where two isolated minima are present. Such minima are in different

locations in respect with the global minimum in the noise-free case.

7.3 Inversion of gravity data

7.3.1 Problem description

A procedure to invert gravity profiles with the same model discretisation adopted
for the seismic refraction tomography test has been implemented. Accordingly, the
density field is approximated with the same 9 x 5 grid whose spacing is 1000 m in
the horizontal direction and 100 m in the vertical direction as used in the seismic
experiment. Synthetic gravity measurements have been modelled at 40 stations,

regularly spaced along the surface.
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7.3.2 Forward model

One of the aim of this chapter is to show that the joint inversion of seismic and
gravity data may improve the results obtained by the separate inversions of noisy
data sets. In order to show this a gravity forward algorithm able to employ the
same parameterisation as in the seismic experiment as well as a relationship to
convert the velocity values into densities are required. These two problems have
been already addressed in the literature. Some of the ideas presented in previous
studies have been used in this research and references to published works will be
given in the rest of the discussion. All that I need here is a process which generates
reasonable synthetic data sets. The formulae in equation 7.3.2 below constitute
such a process and form a known forward solution.

In this study the following relationship between seismic velocity and density
has been used:

0.5v —0.53 if v > 6.2k/m
0.18v +1.64 if v < 6.2k/m

where p is the density and v in the seismic velocity.

The relationship has been obtained by fitting with two straight lines the mean
velocity-density conversion values reported in [3]. Such tabulated value are in
turn extrapolated from laboratory p-waves velocities and densities measurements,
presented in [6]. Analysis for in situ rock properties are also presented in [4].
Discussions about the validity of such conversion may be found in [3] where the
author points out that the previous relationship should merely be considered as an
average one, and departures should be expected for most rock materials. Similar
conclusions can be found in [4] where is suggested that appropriate parameters
for the conversion equation should be estimated locally. Accordingly, appropriate
laboratory measurements on rock materials collected in the area under analysis
should be performed in case the inversion strategy here presented was applied to
field data.

In order to adopt an approximation similar to the one used for the seismic test,
each cell in the 9 x 5 calculation grid is divided into a number of smaller subcells.
For each subcell a constant density value is determined by a weighted average

of the densities at the four grid nodes at the cell corners, with weights inversely
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Figure 7.8: Schematic description of the model parameterisation adopted for the
gravity forward calculation. Seismic slownesses are defined at the grid nodes (black
filled circles). They are converted into velocities and then into densities with the
use of the equations described in the text. At this point the densities for the
rectangular blocks (subcells) inside the cell is defined by averaging the densities

at the cell corners.

proportional to their distance from the centre of the subcell. Such procedure is
graphically described in Figure 7.8. In this study the cell have been divided into
16 subcells. Numerical tests showed that further division into a larger number of
subcells would have heavily increased the computation time without any sensible

improvements in the calculation accuracy.

7.3.3 Discussion of source errors

The effect of noise in gravity data has been studied following the same steps
employed in the analysis the seismic refraction data.

Figure 7.9 shows the sensitivity plot for the synthetic image presented in Figure
7.1a in the case of synthetic noise-free gravity data. This plot should be compared
with that presented in Figure 7.2 for the seismic case. The plot shows a smaller

range of values than in the seismic test (I recall here that the relative variation
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Figure 7.9: Sensitivity plot corresponding to the synthetic image inFigure 7.1a
for the gravity noise-free data set. As we can see the low values are now located
close to the surface nodes and the central part of the image is well constrained by

the data.

and not the absolute values of the plot are relevant to this analysis). The highest
values in the plot are still immediately above the refractor. Low values can be
found corresponding to the surfice nodes. This in due in part to the low density
of the superficial layer but mainly to the fict that the surface nodes influence the
density on the first row of cells only, while lower nodes iffluence two row of cells,
the one below and the one just above. However, the plot in Figure 7.9 is quite
homogeneous. Furthermore, no low values are located in the middle part of the
picture, i.e., in the area less defined by the seismic analysis. This suggests that
gravity data could be used to add information to the seismic inversion in this part
of the solution.

In Figure 7.10 the error misfit as a function of the two nodes shown inFigure
7.3b is presented for the noise-free gravity data set. This image should be com-
pared with Figure 7.3a for the seismic case. Since a conversion between slowness
and density has been used, and in order to facilitate the comparison, the axis
in the graph are still given in slowness units. The inherent ambiguity is clearly
shown by the curved long minimum in the middle part of the picture. The shape
of this minimum agrees well with analogous reconstructions of ambiguity domains
presented in [1] and [7]. In Chapter 6 I showed that Genetic Algorithms could be

successfully used to address such ambiguity in problems characterised by simple
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Figure 7.10: Solution surface for the noise-free gravity data set in the 2 dimensional
subspace correspondent to the two nodes in Figure 7.3b. The typical potential field
quadratic ambiguity is clearly present. Notice that, unlike the seismic case, both

the flanks of the valley are quite steep.

geometry with a single geological contact in the vertical direction. In the configu-
ration adopted in this experiment, in which the computation domain is described
by 5 nodes in the vertical direction (i.e., more than one geological contact can be
modelled in the vertical direction) the ambiguity problem may be too large to be
currently tackled with the use of Genetic Algorithms. Accordingly, the inversion
of gravity data is not attempted in this study.

However, the analysis of the solution surfaces in the gravity problem with and
without noise shows two interesting features. First, unlike in the seismic example,
in Figure 7.10 the two valley flanks have similar slope. In addition, in Figure 7.11
the error misfit is presented for the gravity data set to which a random noise at a
2.5% level as used for the seismic analysis has been added. As expected, the valley

is less steep and the minimum less evident, but the overall shape close resembles
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Figure 7.11: Solution surface for the noisy gravity data set in the 2 dimensional
subspace correspondent to the two nodes in Figure 7.3b. This image should be
compared with Figure 7.10. Notice that no major deformations in the solution

surface shape have been imposed by noise.

the noise-free case. Most important, the minimum is still located in the same area
as in the noise-free case. Clearly, the inversion of gravity data is less sensitive to
the presence of noise than the seismic one. This suggests that gravity data could
be used to constrain the inversion of noisy seismic data sets. Accordingly, the
potentiality of the joint inversion of seismic and gravity noisy data sets is now

analysed.

7.4 Joint inversion of seismic and gravity data

Different procedures may be employed when information from multiple data sets
are combined in the same inversion process. One possibility is to sequentially
invert the different data sets with the output from one inversion being used as the
starting model for the inversion of the next data set. This has the advantage not to

require any weighting between the different data set, but it has the disadvantage
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Figure 7.12: Solution surface for the noisy seismic + gravity data set in the 2
dimensional subspace correspondent to the two nodes in Figure 7.3b. This image
should be compared with both Figure 7.11 and Figure 7.7. The typical curved
potential field ambiguity in still present in the middle of the valley. However, its
dimension is reduced compared to the gravity case. Also, the global minimum
location corresponds to the one in the noise-free seismic case and no other minima

are present.

that it gives less control on the actual fit of both the data sets. Another alternative
is to invert the data sets simultaneously. In this case the objective function to be
optimised is represented by some combination of the individual data set misfits so
that information from the multiple data sets are used contemporaneously. There
is a useful discussion of some of the alternatives in [5].

I first consider the effect of combining the seismic and gravity data sets. A

typical choice for the misfit function is:

nrays |Tobs 7Tsynth |p Znstat | Gobstsynth |p
]\/j Sth _ ) 1 Tsynth _|_ 1 Gsynth 7 1
g9
? 4! seis W rav ( . )
nrays nstat

where 7' is the traveltime, G' the gravity measurement, nrays the number of

rays in the seismic model, nstat the number of stations in the gravity model, Wi

19



and Wy, are the weights given to the seismic and gravity misfit, respectively. In
my calculation I used p = 1.25. Further discussion about the different norms to
be used in goodness-of-fit criteria can be found in [2]).

In order to give the seismic data set more control on the inversion and to limit

the effect of the ambiguity inherent in gravity inversions I used:

Wieis = 10 Wy (7.2)

A similar method is used in [5].

With this misfit function I repeated my discussion using the two nodes from
Figure 7.3b. The result is displayed in Figure 7.12. There is no single isolated
global minimum and the curved ambiguity area is evident in the central part of the
image. Note that the vast flat area shown in the solution space from the inversion of
seismic noisy data in Figure 7.7 is no longer present. It is also important to observe
that the ambiguity area is smaller than the one present on the noise-free gravity
case in Figure 7.10 and its position approximately coincides with the location of
the global minimum on the seismic noise-free case in Figure 7.3a. Furthermore,
no local minima are present. Accordingly, the search algorithm is expected to be
able to locate the global minimum in the search domain, or at least to stop very
close to it.

I will now jointly invert the same seismic and gravity data sets. A staged
procedure to perform this task has been implemented. This procedure can be seen
as a compromise between the sequential and the combined inversions described
earlier. In order to reduce ambiguity problems and the computation effort in the
overall process seismic data only are inverted in the first stage. Then, using the
sensitivity plot, I can establish which nodes in the solution are most likely subjected
to errors. These nodes are selected and subjected to an additional inversion stage,
while the remaining nodes are kept fixed. In the second stage seismic and gravity
data are simultaneously inverted and the inversion is carried out again with the
use of Genetic Algorithms in order to avoid the risk to get trapped in local minima
far from the global solution.

The procedure is illustrated in the optimisation of the image in Figure 7.4. As

it has already been shown, this is the result from the inversion with the Genetic
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Figure 7.13: Solution from the two staged joint inversion of seismic and gravity
noisy data for the model in Figure 7.1a. The errors in the central part of the
image have been removed and now the resemblance with the synthetic image is

satisfactory.

Algorithm of the seismic noisy data set, ie., the result from the first stage of the
process. As already stated, errors are contained in the lowercentral part of the
image. Following the information contained in the sensitivity plot inFigure 7.2,
the second stage of the process is carried out by inverting only the nodes contained
in the box in Figure 7.2, while the remaining nodes are kept fixed. The result is
shown in Figure 7.13. The low velocity anomaly in the centre of the image has
been removed and now the resemblance with the synthetic model is satiséictory.
Some comments on the implementation of the second stage of the process need
to be made. First, the nodes under analysis are re-initialised by giving thema
random value. This guarantees that the inversion process avoids to get trapped in
local minima very far from the global one. Second, in this stage the inversion is
performed in a much smaller dimensional space and consequently its computational
effort is much smaller that the one in the first stage. I ran such stage with half
the Genetic Algorithm population and for one third of the generations usedin
the first stage. This resulted in approximately one skth the number of function
evaluations. Accordingly, even taking into account that the computational effort
of the forward calculation was almost doubled, due to the calculation of the gravity
anomaly, the global cost of the second stage was no more that one third of the one

in the first stage. This shows that the improvement in the final image is obtained
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at a reasonable cost.

7.5 Further test

The staged procedure previously described has been also tested against a model
characterised by a step refractor, presented in Figure 7.14a. The same 2.5% level
of random noise used in the previous experiments has been added to the synthetic
first arrival traveltimes and the data set obtained has been inverted with Genetic
Algorithm. The results is shown in Figure 7.14b. The major features of the
synthetic image, i.e. the step refractor geometry and the overall layering overlaying
it, are well recovered but two low velocities anomaly are located just above the
refractor. Notice that the location and sign of such anomalies agree with the ones
in the previous test.

Figure 7.14c shows the sensitivity plot for the image in Figure 7.14b. Two
areas characterised by low values are present and highlighted by the rectangular
boxes. Notice the close spatial relationship of the two low velocity anomalies and
the location of the rectangular boxes. It is particularly important to notice that
this sensitivity plot has been obtained in a different way from the sensitivity plots
in Figure 7.2 and Figure 7.9. Firstly, in this case the plot has been obtained
by calculating the variation of the error misfit for the Genetic Algorithm output,
while the previous images were obtained for the synthetic model. Secondly, here
the noisy data set has been used while previously the noise-free data set was
employed. This shows that such analysis is not strongly dependent on its location
in the solution space (provided we are relatively close to the global minimum) and
that it can be successfully performed on noisy data sets, i.e., that it can be of
applicative use.

The nodes contained in the boxes, corresponding to the areas more sensitive
to the presence of noise, are then selected and inverted in the second stage, while
the other nodes are kept fixed. The result from the final inversion is shown in
Figure 7.14d. It can be seen that the resemblance with the synthetic image is

quite satisfactory.
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Figure 7.14: Application of the two staged joint inversion of seismic and gravity
data to a synthetic model simulating a step refractor &). In Figure b the solution
from the inversion by Genetic Algorithm of seismic data only (first stage) is shown.
Figure ¢ shows the detection of the nodes most sensitive to the presence of noise
(black boxes). In Figure d the solution from the second stage of the process is

presented.
7.6 Discussion

After presenting the results at this chapter a fewcomments on the results of the
inversion of the Nevoria data set discussed in Chapter 5 and on the accuracy of
the ray-tracing routine at Chapter3 are worthwhile making.

It has been shown that the presence of noise on seismic data can create a
deformation on the search space such to mislead the inversion procedure towards
a wrong solution. The entity of this effect is a function of the level of noise in the
data as well as of the velocity contrast in the solution. Also, in presence of strong
velocity contrast the relatively small velocity anomalies imposed by the presence
of noise will influence to a lesser extent the geological interpretation of the final
solution.

A detailed study to assess the maximumlevel of noise able to affect thequality
of a seismic reconstruction for different geological settings would be a natural

development of this study but could not be performed in this research because of
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time constrains.

In the Nevoria experiment at Chapter 5 Low errors in the solutions, represented
by low velocity anomalies, are present only in the large 255 dimensional inversion
in Figure 5.17. No low velocity anomalies are present in the solution from the
inversion performed by subdividing the overall domain into 7 small 45-dimensional
subdomains presented in Figure 5.16. I propose the following interpretation for

this phenomenon:

e in the Nevoria experiment much stronger velocity contrasts are present com-
pared to the synthetic tests discussed in this chapter. This suggests that is
higher level of noise would be required to produce errors in the velocity field

reconstruction;

e even given the last point, this shows that the ray-tracing routine employed
in this study gives a satisfactory approximation of the ray propagation in
complex media. Clearly this result could not have been achieved if major
errors were inherent in the forward algorithm. This point has been already

addressed in Chapter 3;

e the low velocity anomalies in the 255 dimensional inversion of the Nevoria
data set presented in Figure 5.17 are most likely due to the inability of the
Genetic Algorithm to deal with a too large search space, rather than to the
presence of noise. Accordingly, these errors should be related to similar errors
present in the inversion of synthetic noise-free data with Genetic Algorithm

without pseudo subspace method (see Figure 5.1c).

7.7 Conclusions

In this work the effect of inaccuracies in the forward calculation in seismic tomog-
raphy inversion problems have been analysed. It has been shown that errors in
the traveltime can create a distortion in the solution space such to mislead the
inversion procedure towards a wrong solution.

This problem in independent of the efficiency of the inversion procedure. In

presence of such distortion, even an extremely efficient inversion routine, able to

24



exactly detect the global minimum in the solution space, would not be able to
reconstruct the correct parameter configuration, because it no longer corresponds
to the global minimum.

When an inversion process applied to real data apparently fails it is hard to
establish if this is due to the inability of the inversion routine to locate the global
minimum or to inaccuracies in the forward model.

This analysis put emphasis on the importance of accurate forward modelling
and appropriate parameterisation. Accordingly, once the problem has been exten-
sively studied in synthetic tests cases and a proper inversion algorithm has been
found to deal with the mathematical aspects of the problems, effort should be put
into the selection of efficient forward model that can accurately mimic the physics
of the process under analysis, in order to enable the procedure to work well on
field data.

The inversion of gravity data has been shown to be less sensitive to the presence
of such inaccuracies. Errors analogous to the one used in the seismic case do not
create major distortions in the solution space.

Accordingly, in this chapter I show that the joint inversion of seismic and
gravity data offers great potentiality in the treatment of noisy data sets. Seismic
data limit the inherent ambiguity in potential field inversion, while gravity data

limit the effect of noise in the seismic inversion.
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