Chapter 6

Inversion of potential field data

by Genetic Algorithms

In this chapter the application of Genetic Algorithms to the inversion of poten-
tial field data is discussed. 1 present a Genetic Algorithm that simultaneously
generates a large number of different solutions to various potential field inverse
problems. It is shown that in simple cases a satisfactory description of the am-
biguity domain inherent in potential field problems can be efficiently obtained by
a simple analysis of the ensemble of solutions. From this analysis information
about the expected bounds on the unknown parameters as well as a measure of
the reliability of the final solution can also be obtained, that can not be recovered
with local optimisation methods. I discuss how the algorithm can be modified to
address large dimensional problems. This can be achieved by the use of the pseudo
subspace method, already presented in Chapter 4, as well as by subdividing the
overall calculation domain into a number of small subdomains. The effectiveness
and flexibility of the method is shown on a range of different potential field in-
verse problems, both in 2-D and 3-D, on synthetic and field data. The material
presented in this chapter has been submitted to GEOPHYSICAL PROSPECTING and

it is currently under final review.



6.1 Introduction

Different techniques are available in exploration geophysics in order to obtain in-
formation on the distribution of minerals in the subsurface. Among these, the
analysis of potential field data is of great interest because it is far less expensive
than most of other investigation methods.

Similarly to other geophysical applications, the analysis of potential field data is
usually formulated as an inverse problem, in which a set(s) of geological parameters
is sought that define mathematical models which reproduce the observed data in
a satisfactory fashion.

As for the seismic refraction problem presented in Chapter 5, traditionally
potential field data inverse problems have been approached by the use of local
optimisation techniques. However, two main problems may limit the effectiveness
of this approach. First, when the shape of the geological bodies responsible for
the potential field anomaly is sought together with their density and/or magnetic
properties, the mathematical formulation of the inverse problem becomes highly
non-linear [1]. As extensively discussed in the previous chapters, on highly non-
linear problems local searches are prone to trapping in local minima. In these
circumstances an appropriate choice of a starting model is necessary in order to
obtain satisfactory results. Also, information about the curvature in the solution
space are needed by these algorithms to search the solution domain.

Secondly, ambiguity is inherent in the inversion of potential field data, i.e. a
large number of solutions can be found that satisfy the constrains of the prob-
lem equally well [2]. Again inversion methods that search the solution space for
a single minimum are not suitable for these problems because a single solution
can hardly be representative of the ambiguity domain. Traditionally this problem
has been tackled by limiting the ambiguity through the use of appropriate con-
straints. However, this requires detailed ’a priori’ information on the nature of
these constraints, that often is not available on geophysical problems. Recently,
a new approach to ambiguity problem has been proposed [11, 3] in which a large
number of solutions that fit the data is collected. Different statistical tools may

then be used to analyse the ensemble of the solutions and to describe the shape of



the ambiguity domain.

One of the main features of Genetic Algorithms is that they work by modi-
fying a population of solutions, rather that a single solution, as most traditional
algorithms. Consequently, they are able to explore different areas of the search
space at the same time. This not only sensibly reduces the risk of getting trapped
in local minima very far from the global one, but also allows for the simultaneous
optimisation of a large number of solutions which may help to address ambiguity
problems.

These factors, together with the promising results obtained in the seismic re-
fraction problem, suggest that genetic Algorithms could be successfully applied to
other areas of geophysics, including potential field inverse problems. This applica-
tion is described in this chapter.

The Genetic Algorithm here presented does not include any problem specific
operator. Accordingly, the algorithm can be applied equally well to the inversion
of gravity and magnetic data, either separately or simultaneously. The method
potential has been tested on three different applications. In the first test a grav-
ity and a magnetic synthetic data set have been simultaneously inverted. In the
description of this experiment details on how the simultaneous inversion has been
performed, as well as outlines on the statistical analysis of the ensemble of so-
lutions obtained by the Genetic Algorithm are given. In the second test a real
gravity data set has been inverted in order to reconstruct the shape of a sedi-
mentary basin in Western Australia. A slightly different implementation of the
algorithm is described that allows for the inversion of very long profiles with a
computational effort proportional to the profile length. In the last experiment
I show that the method can be easily extended to some 3-D problems. This is
described in the inversion of a real magnetic data set from the Auckland volcanic

field, New Zealand.

6.2 Genetic Algorithms implementation

The main aim in this experiment is to collect a large number of different acceptable

solutions in order to attempt a statistical description of the ambiguity inherent in



the inversion of potential field data. These solutions must be as different as pos-
sible one from each other to enable their statistical analysis to be representative
of the ambiguity domain. In order to obtain differing solutions diversity must
be kept in the Genetic Algorithm population. The GA operator mostly respon-
sible for manteining diversity inside the population is selection. In Chapter 4 1
showed how parent selection allows for larger diversity to be manteined compared
to linear normalisation selection. Accordingly, a Genetic Algorithm incorporating
parent selection has been employed in this analysis. The reader is refered to Chap-
ter 4 for more details about the selection operators and the Genetic Algorithms

implementations.

6.3 2-D simultaneous inversion of magnetic and
gravity data

Recently a number of authors have proposed to simultaneously invert gravity and
magnetic data in order to reconstruct the shape of buried geological bodies [12, 7].
The rationale behind this procedure is that the ambiguity inherent in the inversion
of potential field data is highly reduced when the two data sets are combined.

In the 2-D inversion of magnetic and gravity data I aim at reconstructing the
lower contact between two geological bodies of different density and magnetic sus-
ceptibility as well as the value of the density and magnetic susceptibility contrast.
In my applications this is achieved by reconstructing the depth of the contact at
regularly spaced nodes whose horizontal position is kept fixed.

In the example presented in this section the anomalous body is constrained
to outcrop between the extreme nodes. This configuration has been adopted to
simplify the problem geometry, but similar inversion processes could also be im-
plemented without this constraint.

In Chapter 4 I introduced the 'pseudo subspace’ and its effect in the Genetic
Algorithm process. Figure 4.7 shows how the method is implemented in this
application. Note that the lateral boundaries are determined by 4 nodes that are
fixed both horizontally and vertically throughout the inversion. The method is

implemented in three stages. In the first stage of the Genetic Algorithm search,



the body is described by the 4 fixed nodes plus 5 nodes whose vertical position
is allowed to vary (black dots in Figure 4.7a). In subsequent generations the
spacing of the nodes is halved. New nodes are inserted and they are given a depth
value equal to the average depth of the adjacent nodes. This guarantees that
the best solutions found so far are passed unaltered to the next stage. Now the
body is described by 9 nodes with variable depth plus the 4 fixed ones (see Figure
4.7b). This process is repeated one more time with a grid of 17 nodes (Figure
4.7¢), whereupon the Genetic Algorithm is run until an acceptable convergence is
reached.

I applied the Genetic Algorithm to the inversion of gravity and magnetic data
for the example described in Figure 6.1. The boundaries of a synthetic body are
represented by the thick line in Figure 6.1c. The density contrast of the synthetic
body relative to the surrounding geology is —0.15 ¢/m?® while the susceptibility
contrast is assumed to be 0.4 10® S.I.. Figure 6.1a and 6.1b show the gravity
and magnetic anomalies. The two synthetic anomalies have been simultaneously
inverted in order to reconstruct the shape of the synthetic body.

Different procedures may be employed when information from different data
sets are combined in the same inversion process. Lines [6] offers a good overview
of some of these choices. One possibility is to sequentially invert the different data
sets and use the output from one inversion as the starting model for the inversion
of the next data set. This procedure is well suited to local optimisation techniques,
in which a starting model is needed. It has the advantage of not requiring any
weighting between the different data sets, but it has the disadvantage that it gives
less control on the actual fit of both the data sets. A further discussion of the
advantages and disadvantages of this procedure can be found in [6].

I chose to invert the data sets simultaneously with the objective function to be
optimised represented by a combination of the individual misfits. In this way the
information from the multiple data sets are simultaneously used. This choice is
better suited for global optimisation and also it gives a better control on the misfit

of both the data sets. In my experiment I used the following misfit expression:
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Figure 6.1: Simultaneous inversion of magnetic and gravity synthetic data. The
synthetic gravity and magnetic anomalies (thick lines) together with the computed
anomalies for the best solution from the inversion (scattered points) are shown in
Figure 6.1a and 6.1b, respectively. In Figure 6.1c the synthetic body used to
generate such anomalies (thick line) is shown together with the best 60 solutions
from the Genetic Algorithm inversion (dashed lines). As we can see the ambiguity
inherent in this problem allows for very different solutions to satisfy the data

equally well.

sttat | Mobs_Msglnth |2 ZQStat | Gobs_nglnth |2
Mis fit = W,pgy— Moyntt 1 Geuntn (6.1)
mag mstat grav gstat

where M is the magnetic measurement, G the gravity one, mstat the number
of stations for magnetic measurement, gstat the number of stations in the gravity
model, and W,,,, and W, are the weights given to the magnetic and gravity
misfit, respectively. The choice of the weights is usually problem specific. In some
cases the choice may depend on the different accuracy of the particular data sets,
in other cases it may depend on the different degree of ambiguity inherent in a
data set. In my case, since I deal with two noise free data sets, each with a large

degree of ambiguity and normalised squared errors I chose to give the same weight



to the gravity and magnetic misfits, i.e., Wy0g = Wrao-

In the Genetic Algorithm inversion, the last stage involving the pseudo sub-
space method was reached after 60 generations. Now with a population of 100
individuals the Genetic Algorithm was allowed to run for another 100 generations.
The result of the inversion can be seen in Figure 6.1. Figure 6.1c shows the best
60 solutions superimposed one to the other. For each of these solutions the er-
ror misfit is approximately zero. The calculated anomaly for the 60 solutions is
shown in Figure 6.1a and 3b as scattered points. As can be seen the agreement
with the synthetic data (thick line) is good. This result is achieved because of
the ability of the procedure to find an approximately correct value for the den-
sity and susceptibility contrasts in the early stages of the inversion. The density
contrast obtained was —0.16 ¢/m? (—0.15 ¢/m? assumed for the synthetic model)
and the magnetic susceptibility contrast as 0.38 10* S.I. (versus 0.4 10* S.I. for
the synthetic value) and only very limited variations could be found among the
different solutions. The reason for this is that the anomalous body is constrained
to outcrop between the lateral points, that largely reduce the ambiguity in the
problem. Further comments on the influence of this configuration is given in the
"Discussion’ at the end of the chapter. This accurate information is then exploited
in the successive higher dimensional stages to better define the shape of the body.
However, the shape of the solutions differ widely and this gives a measure of the
degree of the ambiguity still inherent in this problem.

A better description of this observed ambiguity is achieved by calculating the
arithmetic average and the variance of the solutions for each parameter. This is
shown in Figure 6.2. Figure 6.2c shows the synthetic model (thick line), the average
of the solutions (dashed line) and the variance of each node depth (vertical bars).
As can be seen the average solution is a smooth but reasonably good approximation
of the assumed synthetic model. The variance bars give an indication of the
reliability of assuming the average to be the result of the inversion. The larger
the bar corresponding to one node the less reliable the depth. Also, this analysis
gives an estimate of the bounds on the values the parameters can assume in the
inversion.

This information could not be obtained with traditional methods unless spe-
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Figure 6.2: Statistical analysis of the best 60 solutions from the Genetic Algorithm
inversion. The arithmetic average (dash line) and the variance of the solutions for
each parameter (vertical lines) are shown in Figure 6.2c together with the synthetic
model (thick line). In Figure 6.2a and 6.2b the synthetic (thick line) and the

computed anomalies for the average solution are shown.

cific 'a priori’ information about the parameters distribution was included in the
inversion. As it has been shown, a Genetic Algorithm does not require this kind
of ’a priori’ information and the description of the ambiguity domain is simply the
result of its ability to sample different areas of the solution space at the same time
and to reconstruct a large number of different solutions.

Al-Chalabi [1] and Vasco et alii [11] tried to give a geometrical description
of the ambiguity inherent in magnetic and gravity problems using very different
analysis techniques. According to their work, this ambiguity belongs to a non-
normal, quadratic distribution. I performed a similar analysis for my problem and
their result was confirmed. Accordingly, more sophisticated statistical tools than
a simple arithmetic average should be used to describe these distributions. Never-
theless, the results presented in this section suggest that for practical applications
the simple statistics I adopted may give satisfactory results. The demonstration

can be found in Figure 6.2a and Figure 6.2b. The gravity and magnetic anomalies



due to the average solution in Figure 6.2c are presented as scattered points. As
it can be seen, the agreement with the synthetic anomalies is good. Also, these
pictures are almost indistinguishable from the ones in Figure 6.1a and 6.1b where
the agreement between the calculated anomalies for the 60 solutions found by the
Genetic Algorithm and the synthetic anomalies is presented. This shows that the
arithmetic average of the best solutions reproduces the synthetic data in a satis-
factory fashion despite it does not belong to the solutions quadratic distribution
(because of its non-normality).

In geological /geophysical analysis it is often desirable to reduce the ambiguity
inherent in the data sets as much as possible. Usually this is achieved by intro-
ducing a priori constrains in the problem. Where detailed ’a priori’ information
is present this can be easily included in the Genetic Algorithm process, for exam-
ple by fixing some of the unknown parameters. However, obtaining information
about the extent of the ambiguity gives in turn indications on how and where
to direct further surveying in order to further reduce the ambiguity. If a more
reliable description of the geology under analysis is required, it would be appropri-
ate to perform further geological/geophysical surveying at the locations where the
variance is larger. The correct assessment of the poorly determined nodes would

consequently also strongly reduce the ambiguity in the rest of the domain.

6.4 2-D inversion of real gravity data

I now present the inversion of a 120 km long real data set from a gravity survey
across Perth basin, in Western Australia. The aim of the inversion process is to
detect the shape of a deep graben consisting of Permian to Holocene sedimentary
rocks, with average density contrast with the background is —0.4 ¢/m?, bounded
by the Darling Fault to the east and by the Busselton Fault to the west.

Very large dimensional problems usually arise in inverting long profiles. When
an inverse problem has high dimensionality the efficiency of a Genetic Algorithm,
as for any inversion procedure, may be reduced by the following factors: (i) in-
crease in the computation cost for function evaluations, (ii) increase in ambiguity

problems and (iii) a corresponding increase in the volume of the search domain.



The last point is particularly important because, for computational reasons, the
increase can not be compensated for by a similar increase in the size of the Ge-
netic Algorithm population. Consequently, attention should be paid to keeping
the problem dimensionality as low as possible.

Thus, it is useful to modify the implementation of the Genetic Algorithm as
described above in order to simplify the inversion of long gravity profiles. The
modification consists in reconstructing the graben section by section and it is de-
scribed with the help of Figure 6.3. In Figure 6.3a the reconstruction of the part
of the profile between 35 and 65 kilometres only is attempted. This is achieved
by concentrating the depth nodes within this section in order to obtain a satis-
factory fit between calculated and observed data in this part of the profile. The
regions corresponding to the lateral sections of the domain, (i.e. between 0 and 35
kilometres and between 65 and 130 kilometres in Figure 6.3a) are modelled by the
use of two rectangles whose depths are varied to compensate for the corresponding
parts of the gravity profile. In the top part of the Figure 6.3a the observed gravity
anomaly is presented as a thin line, while the calculated one is represented by the
thick line. As it can be seen the lines agree in the section under analysis, while
the thick line gives just a rough average of the anomaly on the remaining of the
profile. Once the agreement between the measured and the calculated data on
the section under analysis has been achieved, the procedure may be repeated on a
adjacent area by progressively shifting the calculation domain horizontally along
the overall profile. This is shown in Figure 6.3b and 6.3¢c where the reconstruction
of the central part and of the eastern part of the graben, respectively, is performed.

When this moving technique is adopted the dimensionality of the inversion
depends only on the number of depth nodes inside the moving section. Thus, the
inversion of long profiles is reduced to several small-dimensional inverse problems,
whose required computation time is equal. This means that the computation time
required for the inversion of the overall profile is simply proportional to the number
of sections the profile is divided into, i.e., to the profile length. The length of the
profile does not affect the dimensionality, and accordingly the complexity, of the
problem and consequently this technique can deal with long profiles, regardless of

length. A similar approach has been used in the inversion of seismic refraction
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Figure 6.3: Staged inversion of long gravity profiles. In the first stage (a) only the

reconstruction of the Busselton fault to the West is attempted. The body described

in the bottom part of the picture reconstructs the anomaly in the corresponding

part of the profile. The rectangles at the two sides are meant to give an average

compensation of the lateral parts of the profile. In Figure (b) and (c) the same

process is applied to the central part of the graben and to the Darling fault to the

East, respectively.
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Figure 6.4: Final result from the inversion of the gravity profile on Perth basin.
The good agreement between measured and observed data is shown in Figure
6.4a, while the reconstruction of the graben in presented in Figure 6.4b. The

result agrees well with previous analysis of the same area shown in Figure 6.5.

data in Chapter 5.

However, if the moving technique was not employed, a number of equally spaced
calculation points, proportional to the profile length, would be required. In this
case the dimensionality and complexity of the problem would be affected by the
profile length and consequently the computational cost of the inversion would
become prohibitive at the increase of the profile length, because of the increase in
function evaluation cost for bodies described by higher number of nodes, and larger
population and longer convergence required by the Genetic Algorithms process to
cope with the larger dimensional space, as previously stated at the beginning of
the section.

The final result of the procedure can be seen in Figure 6.4 where the overall
anomaly is presented. The result is compared with a previous analysis of a close
parallel gravity profile in the same area (see Figure 6.5 from [5]) that has been
reconstructed by interactive inversion starting from a solution obtained from seis-

mic profiles. Both solutions satisfy the measured gravity data and give a similar
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Figure 6.5: Previous study of the gravity profile on Perth basin. The image is the
result of an interactive inversion of the gravity data set starting from a solution

obtained by analysis of seismic data.

estimate of the depth of the sedimentary basin. However, Figure 6.4 contains
additional information in the vertical bars representing the variance in the depth
assessment at each node. The average solution should be considered simply the
most likely or the smoothest among the family of solutions found through the
use of the Genetic Algorithm. The variance bars give an additional indication
on the reliability of the reconstruction. This ambiguity could not be accurately
represented by a single solution as shown in Figure 6.5.

This technique exploits the close and simple spatial relationship between the
geometric position of a density anomalous body and the corresponding perturba-
tion in the gravity profile. This relationship is only slightly affected by the lateral
distribution of other density anomalies. This is not true for magnetic profiles and
the extension of this technique to the inversion of magnetic data is less straight-

forward and currently under analysis.

13



East-west profile

Crater Hill

(a) PROJECTED DISTANCE (km)

North-South profile

(b) 0 1 2 3 4
PROJECTED DISTANCE (km)
[l Oense Basalt [///] Basal Tuff

Dense Basalt [1s ] Wirilava & scoria =] Alluvium/Colluvium

Figure 6.6: Previous geological reconstruction of the CratHill volcano(Papa-

toetoe Group).East-West profile (3 and North-South profile (b).
6.5 Extension to the 3-D case

Often magnetic/gravity data are collected over a 2-D region of the earth surface.
Inverting the data to reconstruct the 3-dhape of the geological body responsible
for the measured anomaly can be achieved, using Genetic Algorithms, if we replace
the line of fixedpoints in the previous example by a 2-Iegular grid of fixed
points and similarly determine the depth of the contact between the body and the
background geology at these points.

The method has been tested on a real magnetic data set collected in the Auck-
land volcanic field New Zealand. This is the youngest of a set of mainly basaltic
Pliocene to Recent intraplate volcanic associations in thew Zealand North Is-
land. A detailed geophysical survey, correlated kgological and geochemical

information available on the area, had been previously performed on the area. De-
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Figure 6.7: Observed magnetic field(expressed in nT) correspondent to the Crater
Hill volcano area (Figure 6.79. In (Figure 6.7b) the magnetic field correspondent
to the average of the solutions found by the Genetic Algorithm is presented. As
we can see the agreement is very satisfactory. Disagreements can be noticed in
correspondence with the negative pick at the centre and in minor departures on

the left-hand side of the picture.

tails about this survey and its results can be found in9]. The reconstruction of
one of these volcanic centres, the CrateHill volcano (Papatoetoe Group) is shown
in Figure 6.6a and 6.6b as East-West and North-South geological sections taken
from [9]. In the experiment presented here the source of the observed magnetic
field presented in Figure6.7a is the volcanic plug shown in Figuré.6.

The program GRV3TOPO[10] has been used as forward routine in the inversion
process. This has been performed on @ x 9 regular grid with 50 m spacing both
in northing and easting directions. In this case the bulk magnetisation, inclination
and declination of the anomalous body has been given a& priori’ information in
the problem. The corresponding81 dimensional space represents a relatively large
dimensional problem. However, the use of the pseudo subspace method helped
in tackling such high dimensionality. The Genetic Algorithm inversion has been
performed again in three stages. In the first stage the body is described by a 3 x
3 grid. In the second stage the grid spacing is halved and the body in described
by a 5 x 5 matrix, while in the last stage the final configuration o) x 9 nodes
is reached. Figure6.8 shows the 3-D representation of the average of the depth
solutions from the Genetic Algorithm inversion. Th&North-South and East-West
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profiles are shown in Figure 6.9 in order to facilitate the comparison with Figure
6.6. The corresponding calculated magnetic anomaly is shown in Figure 6.7b. The
overall fit is good. Minor disagreements are present in the negative pick at the
center of the magnetic contour, whose intensity in not perfectly recovered (190
nT for the observed magnetic field versus 170 nT in the calculated one) and in
some lateral areas. Also, it should be noted that reconstruction in Figure 6.8
presents undulations on the lateral areas that are not present in the sections in
Figure 6.6 and that the North- South profile in Figure 6.9 is larger than the one
in Figure 6.6. This is probably due to the fact that only one anomalous body has
been reconstructed in my experiment, and accordingly the 20-30 m tuff and basalt

cover overlying the main body shown in Figure 6.6 has not been modelled.

6.6 Discussion

A number of points deserve further discussion. Traditional local optimisation
methods have been applied to the inversion of real potential field data with hun-
dreds of parameters [8]. Usually global optimisation techniques are applied to
much smaller dimensional spaces, rarely exceeding a few tens of parameters [4].
This is the price paid for the advantage inherent in a global optimisation in complex
problems. Often the complexity of a problem and the lack of a priori information
may force the use of a global optimisation technique despite such limitations. Also,
the use of the pseudo subspace method may allow the application to much larger
dimensional spaces as shown in Chapter 5. Accordingly, the 81 dimensional so-
lution space inverted in the example described in the previous section should not
be considered as some maximum for Genetic Algorithm application to this kind of
problem.

Furthermore, global inversion techniques are far more expensive than local
methods. It has already been mentioned that an increase in computational ef-
fort may be required by the complexity of the problem, mainly due to its high
non-linearity. The 2-D simultaneous inversion of magnetic and gravity data as
described above required approximately 15 minutes of CPU time on a SUN SPARC-

STATION 20 while approximately 50 minutes were required by the 3-D inversion.
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Figure 6.8: 3-D reconstruction of the anomalous body responsible for the magnetic
anomaly in Figure 6.7a. The depth of the body agrees with what reconstructed in
Figure 6.6. The undulation at the sides of the main body are due to thin geological

layers overlaying the main body not modelled in this experiment.

This is still a reasonable result, especially when compared with the amount of time
required by the collection and preprocessing of the raw data. Furthermore, with
such computational effort not one but a large number of solutions have been found.
A large number of solutions with local optimisation techniques could be obtained
with a number of runs at least equivalent to the desired number of solutions, pro-
vided each run can converge towards different areas of the solution space, which is
rarely guaranteed. Consequently any general assumption of high cost in the use of
Genetic Algorithm should not be taken for granted, rather analysed problem by
problem.

The examples presented in this chapter are characterised by relatively simple
geometries, and their aim was to recover the shape and the density and/or magnetic
contrast of a single anomalous body with a simple geological background. It has
been shown that in these cases the simple statistics employed in this analysis

was sufficient to describe the ambiguity domain in a satisfactory fashion. More
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Figure 6.9: North-South (a) and East-West (b) sections of the 3-D body presented
in Figure 6.7. It can be noticed that the depth and approximate shape of the main

body agree with the reconstruction presented in Figure6.6.

complex geometries, ie. in which more that one geological contact is modelled in
the vertical direction, could still be modelled with this method. However, much
stronger ambiguity problems should be expected. This is particular true if the
body was not constrained to outcrop and the average depth of the models was
allowed to vary sensibly. In such case the simple statistics used in this work is not
expected to give satisfactory results and consequently more sophisticated methods

should be used. A review of such tools can be found in[11].

6.7 Conclusions

As already demonstrated on other geophysical applications, Genetic Algorithms
proved to be able to address the non-linearity involved in the inversion of magnetic
and gravity data. Also, they showed to be an effective tool to reconstruct a num-
ber of solutions large enough to make the statistical description of the ambiguity
inherent in this kind of problempossible. From this description not only a satisfac-
tory model of the shape of the geological body under analysis may be recovered,
but also useful information about the reliability of such reconstruction as well
as indications on where to concentrate further geological and geophysical surveys
may be obtained. Tests showed that the technique works well with synthetic as
well as with real data sets both in 2-Dand 3-D. Currently the applicability of the
method is limited to the reconstruction of the contact between a single anomalous

body and the background, and should be regarded as a fast tool for a preliminary

18



analysis of magnetic and gravity data.
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