Chapter 5

Application of Genetic
Algorithms to seismic
refraction tomography

5.1 Introduction

In this chapter the results from some experiments in the application
of Genetic Algorithms to seismic refraction tomography problems are
discussed. First the different Genetic Algorithms implementations pre-
sented in Chapter 4 are compared on a synthetc tests in order to select
the most effective configuration. Then the potentiality of such imple-
mentation is analysed on a number of synthetic tests simulating differ-
ent refractor geometries as well as on physical model and field data.

5.2 Inversion of synthetic data

5.2.1 Synthetic data generation

Synthetic first-arrival travel time data were generated using a line
length of 8000 m with a group interval of 200 m and shots spaced
at every 500 m. This results in a total of 615 rays/travel times which
are inverted to define the velocity structure in the first few hundred
meters below the surface. For the purposes of inversion, the slow-
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ness distribution in the sub-surface is defined by a 9 x 5 grid whose
spacing is 1000 m in the horizontal direction and 100 m in the verti-
cal direction. A linear slowness gradient is assumed between the grid
nodes. This has been extensively described in Chapter 3 where details
about the ray-tracing routine are given. Thus, the model has a 45-
dimensional solution space, formed from the slowness values at each of
the grid nodes. This dimensionality is small compared to conventional
seismic tomographic inversion but, to my knowledge, represents one of
the highest-dimensional Genetic Algorithm applications to seismic data
published so far.

5.3 Comparison of different Genetic Al-
gorithms

To explore the effects of the different choices described in Chapter 4,
a series of Genetic Algorithms have been compared on a dataset ob-
tained with an horizontally layered synthetic model with linearly vary-
ing slowness in the vertical direction (see Figure 5.1a). This model
is characterised by slowness values which allow for the occurrence of
both diving and refracted rays and a uniform distribution of ray paths
(Figure 5.1b).

Three different specific choices were tested; linear normalisation se-
lection, linear normalisation selection with pseudo subspace method
and parent selection with pseudo subspace method (see Chapter 4 for
details about the processes employed in these different Genetic Algo-
rithm implementations). Fach test consisted of five runs with different
random seeds, i.e. with different randomly chosen initial populations.
For each implementation the best solution found by the algorithm in
these five runs, together with the convergence curve is presented (Figure
5.1c-h).

Comparison of Figures 5.1c and 5.1e shows an improvement in the
performance of the linear normalisation selection when the pseudo sub-
space method is used. The essential features of the test model are
reproduced with only significant differences occurring at the top right
of the model in an area of poor ray coverage. This suggests that the
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Figure 5.1: Results from the comparison ofdifferent Genetic Algorithm
implementations on an horizontally layerd synthetic test with linearly
varying slowness in the verticaldirection. The synthetic model (a) to-
gether with the ray diagram (b) are presented. Both final models and
convergence curves are shown for linear normalisation selection Genetic
Algorithm (¢ and d), linear normalisation selection with psedo sub-
space method (e and f), parent selection with psewdo subspace method

(g and h).




algorithm benefits from the inclusion of the pseudo subspace method.

The quality of the solution obtained with the parent technique (Fig-
ure 5.1g), even though it is obtained at a much higher cost in terms
of the number of required function evaluations (Figure 5.1h) is not the
best of the three solutions. This suggests that efforts to maintain di-
versity within the population will not necessarily improve the quality
of the final solution.

Clearly the Genetic Algorithm with linear normalisation selection
including pseudo subspace method outperformed the other implemen-
tations. In the initial generations, using a coarse grid, the algorithm
still appears to be able to locate the favourable area of the solution
space in which to concentrate the more detailed and time consuming
subsequent analysis.

5.3.1 Local search method

The convergence curves in Figure 5.1 illustrate a well known character-
istic of Genetic Algorithms; they are poor optimisers [3]. They show
a very fast initial convergence, followed by progressively slower im-
provements. In fact this behaviour is common to many optimisation
techniques, but is of particular concern in Genetic Algorithms. The
form of the curve suggests that the algorithm should be stopped when
an approximate solution has been found, because further improvements
may be very costly. Improvements to the Genetic Algorithm solution
can only develop though crossover or mutation, i.e. random events. De-
pending on the exact form of the solution space, further improvements
to high-fitness solutions can be a rare event.

In the case of the best solution found by the Genetic Algorithm
with pseudo subspace method, small errors are present in each param-
eter. This is due to the fact that the traveltime misfit due to slightly
wrong parameters may be reduced by introduced small errors at ad-
jacent nodes. Improvement in the solution at this stage may be ob-
tained only by accurate tuning of most of the parameters at the same
time, that cannot be efficiently achieved by a Genetic Algorithm pro-
cess. However, further improvements to the inversion method can be
obtained by combining the Genetic Algorithm with a local optimising
method. In the initial stages of the inversion the space-sampling prop-
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erties of the Genetic Algorithm is used to direct the search to the region
close to the global solution. This solution can be further improved using
a local search method such as a hill-climber algorithm.

Other hybrid Genetic Algorithm implementations have already been
successfully applied to geophysical problems. A related approach has
been used by K. Mathias et al., [7] although in this case no pseudo
subspace method was used and local search was applied periodically
to more than one solution obtained by the Genetic Algorithm. Also,
Sen and Stoffa [10] showed how Genetic Algorithms performance can
be greatly enhanced by importing some elements from Simulated An-
nealing process.

A number of algorithms for the local optimisation of functions in
multi-dimensional spaces are described in the literature [5, 8]. The
choice of the algorithm to use is problem-specific and often experimental
trials are required. I tested four local search methods: the downhill
SIMPLEX method, Powells method, the conjugate gradient method [8],
and the local search routine from the Hill-climber method described
by De La Maza and Yurez [2]. Of these the SIMPLEX method, Powells
method and the local search routine from the Hill-climber method do
not use gradient information while the conjugate gradient method does.
The approximate calculation performed by the ray-tracing routine does
not give gradient information. Consequently, the numerical calculation
of the required derivatives is time consuming and the conjugate gradient
method is considerably slower than the other methods.

After extensive tests the SIMPLEX code was found to be the most re-
liable and stable algorithm and accordingly was used in the successive
tests. Figure 5.2 illustrates the result from the local optimisation of
the best individual from the Genetic Algorithm with pseudo subspace
method, together with its convergence curve. The SIMPLEX algorithm
was able to improve the solution, minimising the squared error up to
a level of approximately zero misfit. The solution is almost indistin-
guishable from the original model (Figure 5.1a). All the layers are well
reconstructed both in terms of velocity values and of vertical position,
with only a minor departure from the original at the middle left-hand
side of the solution. Clearly the two-staged procedure linking the Ge-
netic Algorithms global search with the local optimisation has been
very effective.
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Figure 5.2: Result from the optimisation of the Genetic Algorithm
solution with the SIMPLEX algorithm (a) and convergence curve (b)

5.3.2 Efficiency

An inversion process performance is not onlyevaluated in terms of
the accuracy of the solutionit can produce, but also in terms of its
cost. In case of a Genetic Algorithm this is basicallymeasured in
terms of the number of function evaluations (ray-tracing in this cage
required to obtain the final image In general, Genetic Algorithms are
considered a relatively expensive methal, to be used only in cases where
local procedures proved to be unsuitable Raiche [9] considers this to
be particularly true for geophysical applications However, my results
suggest that this is not always the case

Clearly, an importantdecision in terms of the efficiency of the two-
stage optimisation techniquesdescribed above, is when to terminate
the Genetic Algorithm ard implement the local search T now imple-
mented the Genetic Algorithm to output the best solutionevery 50
generations after the final grd configuration has been achievel. The
best solutions after 100, 150, 200 aul 300 generations for the Genetic
Algorithm with linear normalisation selection incorporating the pselo
subspace method are presented in Figure 5.3. These pictures should be
compared with the result at the end of the process, ie. after 400 gen-
erations, already shown in Figure 5.1e. Clearly an acceptable solution
is obtained after only 100 generations, with only minor improvements
occurring up to 300 generations, after which variations are negligible
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Figure 5.3: Best solutions after 100 (a), 150 (b), 200 (c) and 300 (d)
generations for the Genetic Algorithm with pseudo subspace method.
An acceptable solution is already obtained after only 100 generations.
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Figure 5.4: Models resulting from local optimisation of the best solu-
tions obtained after 100 (a) and 150 (b) generations of Genetic Algo-
rithm with pseudo subspace method. Only minor differences may be
found between the two models.

An even more interesting test is to improve, by local search, such solu-
tions and compare the final results. In Figure 5.4 the results obtained
using the local search, initialised with the solutions after 100 and 150
generations, are shown. The differences between the results are min-
imal, even when compared with the result from the solution locally
improved after 400 generations (Figure 5.2a). This shows that Genetic
Algorithms have discovered the 'good’” valley in the solution space very
rapidly. Furthermore, the computation effort, i.e. the number of func-
tion evaluations, for the local improvement of the 100, 150 and 400
generations solutions by the SIMPLEX code is almost the same (Figure
5.5). Clearly the space sampling of the Genetic Algorithm after the
100th generation has not been very productive. After a solution lo-
cated in a good valley has been found there is little advantage in using
the Genetic Algorithm for further space sampling because more effec-
tive results may be obtained by the local search. It is very difficult to
generalise about when to stop the Genetic Algorithm and begin the lo-
cal search. A number of alternatives are available, for instance, waiting
for no improvements to happen for a few generations, or waiting for
variations in the misfit to fall below a predetermined value. However,
choosing such a threshold can be very difficult and problem specific.
Because the Genetic Algorithm process is non-deterministic, it is pos-
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Figure 5.5: The number of function evaluations performed in 100, 150
and 400 generations by the Genetic Algorithm and the number of eval-
uations required by the local search to optimise these models.

sible to have many generations without any improvement, followed by
very rapid improvements as new domains are discovered by crossover or
mutation. Research to define effective criteria suitable for controlling
the inversion of the seismic data is on-going.

As shown in Figure 5.6, in 100 generations the Genetic Algorithm
performs approximately 6000 function evaluations to locate the region
in the solution space containing the global minima. This computation
effort is comparable to that required by the local search to further im-
prove the solution. Thus, a Genetic Algorithm applied to this problem
should be considered good not only in terms of accuracy but also in
terms of computation effort. Inversion of the synthetic data employing
only the local optimiser starting from a random point in the solution
space (i.e., under the same conditions used to initialise the Genetic
Algorithm process) were attempted and resulted in the process getting
trapped in local minima very far from the global solution. Even in these
cases the process required a number of iterations larger than required
by the Genetic Algorithm to find an acceptable solution.

5.3.3 Stability

As described above, each implementation of the Genetic Algorithm was
tested on five different random seeds (initial populations). The stability
of the proposed inversion procedure can be illustrated by comparing the
results of the five different tests. Since the Genetic Algorithm process is
non-deterministic we expect the solutions to differ. The best solution is
illustrated in Figure 5.1e. In Figure 5.6 the four other results obtained
after 150 generations using the linear normalisation Genetic Algorithm



8000 m 8000 m

\ _:_::-J/-————a___.s. - W — 0, &
= ] g
|t | B | g
e ,_‘.bﬁ-"’f— Q.ﬁ
e "-"‘-\.\_\_\_‘_
(a) (b)
8000 m 8000 m
— -  —
a.13 =
: e
ME.LT
_hﬁ“\\‘F#f;f/ﬁhh“=————f——— 0.1

(c) (d)

Figure 5.6: Results obtained using different starting populations after
150 generations using Genetic Algorithm with pseudo subspace method.
These results should be compared to the synthetic model in Figure 5.1a.
Solutions in (a) and (b) are comparable to the synthetic image, however
(c) and (d) contain discrepancies.
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with pseudo subspace method are presented. In two cases there has
been good reconstruction of the layering with minor anomalous fea-
tures (Figure 5.6a and 5.6b), whilst in the remaining two examples
major anomalies are present (Figure 5.6c and 5.6d). However, the re-
sults obtained after local optimisation using the SIMPLEX code are in
acceptable agreement with the synthetic image in every case (Figure

5.7).

This suggests that in all five tests the Genetic Algorithm with
pseudo subspace method has been able to find good valleys in the so-
lution space. All these solutions were sufficiently close to the global
minimum for the local optimiser to further reduce the error. All the
tests were randomly initialised but converged to the same solution.
This suggests that only one global solution is present in the applica-
tion, 1.e., no cases of clear ambiguity are manifested, although obviously
the number of tests is small. Given the relative inexpensiveness of the
Genetic Algorithm process, as a general rule it might be advisable to
perform more than one Genetic Algorithm inversion with different, ran-
domly chosen, initial populations and locally improve the best solutions
found. This would help identify where more than one solution to the
problem is possible.

Similarly, the solution obtained from the local search does not nec-
essarily have zero misfit. In such a case it is impossible to discriminate
if such solution represents a local minimum or a point whose surround-
ing space topography is so complicated that it cannot to be further
improved even by the local search. In one of the tests we performed
this has actually been the case. Calculating the function values along
the direction connecting a solution obtained from a local search to the
synthetic image, showed values to be constantly decreasing even at very
small steps. Thus, the local search had failed to complete the explo-
ration of the good valley. This was a lucky trial: not all the possible
directions can be examined in a 45-dimensional space, and the exis-
tence of curved valleys connecting the local solution to the global one
cannot usually be excluded. Thus, the assumption that the output
from a local search must be a local minimum should not be taken for
granted. However, in the test examples the difference between the local
optimiser solution and the global minimum is apparently not large.
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Figure 5.7: Results from local optimisation, using the SIMPLEX code, of
the four solutions shown in Figure 5.6 obtained with Genetic Algorithm
with pseudo subspace method. All the reconstructions are in good
agreement with the synthetic case (Fig. la).
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5.3.4 Other synthetic tests

The two-stage inversion procedure described above has been further
tested on three other synthetic data sets; a shallow horizontal refrac-
tor (see Figure 5.8), a refractor incorporating a step (Figure 5.9) and
an isolated buried body with anomalous velocity (Figure 5.10). These
noise-free data sets allow us to test the method without the complica-
tions due to the presence of noise. The same conditions used in the flat
horizontal layers inversion example have been applied in all these tests.
All the synthetic images have been created with a 9 x 5 slowness grid
resulting in a 45-dimensional inversion problem.

Notice that the only ’a priori” information used in these inversions is
contained in the Genetic Algorithm implementation, i.e., slowness field
parameterisation and slowness value constraints. Since the method
here described was developed as part of a project to define the near
surface structure of Precambrian rocks in the Western Australian shield
(see the field data application at the end of the chapter) the synthetic
models have slownesses of around 0.18 s/km. Accordingly, the values of
slownesses in the solution set were limited to lay between 0.14 s/km and
0.25 s/km, equivalent to velocities between 7.14 km/s and 4.0 km/s.
This information is the same for all the different tests and no specific
a priori information or starting model is needed in the individual runs.

The pseudo subspace method process has been implemented in three
stages. In the first stage the inversion is performed on a 3 x 2 grid,
whose spacing is 4000 m in the horizontal and 400 m in the vertical
direction. The node spacing is then halved at each stage. Consequently,
in the second stage the inversion is performed on a 5 x 3 grid and in the
last stage it reaches the final configuration of 9 x 5 nodes. Fach test
consisted of five runs with different random seeds and the best solution
found by the Genetic Algorithm has been further improved by the local
search. Here the results are presented:

Shallow Horizontal Refractor. This configuration is similar to the
horizontal flat layer case previously analysed, except that the re-
fractor is raised to the middle of the model and the slowness
below it kept constant (Figure 5.8a). This approximates the case
of a shallow layer whose velocity increases with depth, overlying
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Figure 5.8: Inversion of synthetic data set simulating the presence of
a shallow horizontal refractor. a) synthetic model, b) ray diagram, c)
result obtained using Genetic Algorithm with pseudo subspace method,

d) result obtained after local optimisation.

14



Step

a layer with a constant and higher velocity. This configuration is
particularly interesting because it tests the ability of the inversion
process to correctly recover the depth of the refractor. Intuitively
it is expected that many possible solutions to the problem exist
with increased depth to the refractor being compensated by a
higher velocity for the overlying area, and vice-versa. The solu-
tion obtained by the Genetic Algorithm is shown in Figure 5.8¢c
and after local optimisation in Figure 5.8d. The match between
true model and the final solution is very good with the refractor
correctly located in the vertical direction and perfectly horizon-
tal. From the ray-paths diagram (Figure 5.8b) we see that no
rays penetrate to the lower part of the model and hence no real
solution can be expected from this area. The slowness values are
simply artefacts of the Genetic Algorithm. Note further that as
the rays are concentrated in the area above the refractor it is not
surprising that the slowness in this area is well recovered.

refractor. This model is a development of the previous with a
step incorporated into the refractor (Figure 5.9a). As it can be
seen in Figure 5.9b, this model allows rays to dive through the
refractor. Again, the results after the two stages of the inversion
procedure are presented in Figure 5.9¢ (solution from Genetic
Algorithm) and 5.9d (from the Genetic Algorithm plus local op-
timiser). The final solution is accurate in the right-hand and
left-hand side of the model, however, small errors are present in
the central region. Overall the final model is very close to the
original one, with the best fit in areas where there are most rays,
especially when these vary in orientation.

Concealed Body. In the final model an isolated body with low veloc-

ity is superimposed on a vertical velocity gradient (Figure 5.10a).
As shown in Figure 5.10b most of the rays run along the top and
the borders of the body. In the resulting solution the outline
of the body is almost perfectly reconstructed (Figure 5.10d) and
this allows, as a consequence, excellent recovery of the vertical ve-
locity gradient. Note that the result obtained using the Genetic
Algorithm (Figure 5.10¢) is so close to the starting model that
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Figure 5.9: Inversion of synthetic data set simulating the presence of a
step refractor. a) synthetic model, b) ray diagram, c¢) result obtained
using Genetic Algorithm with pseudo subspace method, d) result ob-
tained after local optimisation.
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Figure 5.10: Inversion of synthetic data set simulating the presence
of a concealed body. a) synthetic model, b) ray diagram, c¢) result
obtained using Genetic Algorithm with pseudo subspace method, d)
result obtained after local optimisation.

the local search was not able to further improve it.

5.4 Inversion of model data

From Figure 5.2 it can be noticed that improvements to the Genetic Al-
gorithm solution through the use of the local optimiser can be obtained
only by a very small decrease in the error misfit. The success of such
process in different synthetic tests is very important from a theoretical
perspective because it shows that Genetic Algorithm search with the
use of the pseudo subspace method is successful in detecting the val-
ley containing the global minimum in the solution space. However, on
model and real data sets, i.e., on noisy data sets, the refinements on
the error misfit required by the local optimiser may fall well below the
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limitations imposed by the presence of noise. In such circumstances
the local optimisation of the Genetic Algorithm solution is obviously
useless. This phenomenum is further discussed in Chapter 7 where a
detailed study of the influence of noise in the tomographic inversion
of refraction data is presented. However, the synthetic tests presented
in this study show that the quality of the Genetic Algorithm solution
is satisfactory even without local optimisation. Consequently, the per-
formance of the Genetic Algorithm inversion procedure without local
optimisation has also been tested using model data. The analysis of the
effectiveness of the inversion procedure on such data set characterised
by a relatively low level on noise has been considered a useful step to-
wards the application to the real field seismic data set discussed at the
end of the chapter.

5.4.1 Experiment configuration

A model data were collected in the Physical Modelling Laboratory at
Curtin University of Technology. The model consisted of a block of
Plexiglass/Perspex having a P-wave velocity of 2670 m/s. Its top sur-
face models a fault with a dip of approximately 60 degrees (Figure 5.11).
The block was immersed in water (velocity 1470 m/s) which acted as
a low velocity layer overlying the faulted refractor. Notice that in this
experiment both the layers are characterised by constant velocity. Ac-
cordingly, a ray-tracing algorithm suitable for constant velocity media
has been used. The original algorithms from [1] was implemented and
used in this case. This is the algorithm that was modified in order to
allow for varying slowness inside the cells, and it has been described in
Chapter 3.

Data were collected along a single profile perpendicular to the fault.
The profile is 20 em long, and the experiment has been scaled at 1 :
100,000 so as to model a 20 km long seismic survey. At this scale the
water layer is 1500 m thick on the upthrown side of the fault and 3100
m thick on the downthrown block.

Forty shots, with a scaled spacing of 500 m, were modelled. Data
were recorded at 291 receiver positions spaced at a scaled interval of
50 m. The entire spread was progressively moved from left to right
across the model, as shown in Figure 5.11, i.e. from the shallower water
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layer to the thicker. Due to geometry problems the source was kept at
the left end of the spread during the entire survey and consequently
the number of receivers decreased at each shot. Accordingly, a larger
number of rays have been collected on the right side of the calculation
domain. A split-spread configuration may have yielded better results.

Two piezoelectric transducers with 1 MHz resonant frequency were
used as both sources and receivers to acquire the data. The trans-
ducers were 1.3 ¢m wide and were inclined at approximately 30 de-
grees to enhance the signal to noise ratio of critically refracted arrivals.
This inclination, together with the transducer width being one order of
magnitude larger that the receiver spacing caused the effective receiver
position to vary across the transducer surface, due to the different in-
cidence angles of direct, diffracted and critically refracted arrivals. To
address this problem the ray-tracing program was run with two differ-
ent receiver positions for each receiving transducer location. For direct
arrivals the assumed position was on the transducer margin closest to
the source, while for refracted arrivals the position was assumed to
coincide with the centre of the transducer. Arrival times were then
compared and the earlier arrival used in the inversion process. Tests
with synthetic data showed that this method correctly reproduced the
first arrival data.

5.4.2 Experimental results

Before attempting the inversion of the model data a further inversion of
a synthetic data set was performed. The synthetic data set was created
using a synthetic model simulating the geometry and seismic velocities
of the physical model (Figure 5.12a). The error-free synthetic data so
obtained allowed to test the potentiality of the inversion algorithm in
this problem from a mathematical perspective and to compare it with
the result from the actual model data. In all the following examples
the inversion has been performed using the pseudo subspace method
in three stages. In the first stage there were two cells in the vertical
direction, one representing the body and one the layer underneath the
domain. The cell underneath the domain is required to allow the rays
to be refracted before reaching the surface. Notice that in this case the
domain is discretised by constant velocity cells, as already mentioned.

19



Figure 5.11: The model used in the experiment at the Physical Mod-
elling Laboratory at Curtin University of Technology. It consists in a
block of Plexiglass/Perspex characterised by a seismic velocity of 2670
m/s. The model has been immersed in water so as to simulate the
presence of a low velocity layer overlying a higher velocity refractor.
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Figure 5.12: (a) Synthetic model reproducing the geometry and veloc-
ities of the physical model used in the experiment. (b) Result of the
inversion of synthetic data for a final grid configuration of 9 x 5 nodes.
Errors can be found in correspondence of the fault due to the relatively
coarse horizontal grid spacing. (c) Result of the inversion of synthetic
data in the case a final grid configuration of 21 x 5 nodes. The main
features of the original image, i.e. the fault, refractor position and the
lower velocity layer overlaying it have been recovered. (d) Result form
the inversion of the real data set for a final configuration of 21 x 5
nodes. As for the synthetic example, the variation in the thickness of
the low velocity layer is clear, as well as the presence of the fault in the

middle of the picture. .



In the second stage the cells dimension is halved resulting in three
vertical cells (two for the body and one for the bottom). Eventually
in the last stage the final configuration with five cells is reached. The
number of cells in the horizontal direction varied from one experiment
to the other, as will be shown, but the halving process is analogous.

Due to the statistical character of Genetic Algorithms, all the tests
were run five times and only the best results are shown in the diagrams.
However, the quality of the results obtained from the different runs is
comparable.

Figure 5.12b shows the result of inverting the synthetic data with a
final grid configuration of 9 x 5 nodes. As already mentioned, because
of the use of first arrivals only, no rays sample the cells in the bottom
part of the domain. Accordingly, no information from this area may be
collected and the Genetic Algorithm result from this part of the grid
is totally random. For the sake of clarity, this area has been set to a
constant velocity, in this case equal to the Plexiglass/Perspex P-wave
velocity. This is justified by the fact that the Plexiglass/Perspex P-
wave velocity must be considered a high velocity limit for the blocks in
this area: if the velocity was higher the rays would propagate in such
area before reaching the surface.

The result is particularly satisfactory. Errors can be found in cor-
respondence of the fault, however this is due to the relatively coarse
horizontal grid spacing. Notice the similarities between this test and
the ones already shown in Figure 5.8 and 5.9. In this case both the the
vertical position and the step in the refractor have been satisfactorly
reconstructed.

Figure 5.12¢ shows the result of using a final grid configuration of
21 x 5 nodes. The ray diagram for this case is presented in Figure 5.13.
The diagram shows that the ray-tracing routine accurately models the
rays diffracted at the top of the step. A large shadow area occurs ad-
jacent to the fault in the downthrown block, and the ray coverage is
poor close to the borders of the domain. Accordingly, the tomographic
reconstruction in such areas should not be considered reliable. Never-
theless, the main features of the original image have been recovered: it
is possible to recognise the refractor approximately in the correct po-
sition, the fault and a generally lower velocity layer overlaying it. The
image is less well defined than the previous one. This because the larger
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dimensional space (105 dimensions in this case) hinders both the for-
ward and the inverse process. In the forward process, the larger number
of cells decreases the ray density per cell, reducing the definition with
which the image can be reconstructed and resulting in ambiguity prob-
lems. This is particularly true for the top right area of the domain,
where the low velocity layer is thicker. In the inversion process, the
geometric dimension of the calculation domain increases exponentially
with the number of inversion parameters and a much larger population
should be used in the Genetic Algorithm. However, this would result
in the calculation time becoming impratically long on the current hard-
ware. The reconstruction of this image required approximately 15,000
function evalutations. Better results could probably be obtained with
a larger population and the implementation of parallel Genetic Algo-
rithms on appropriate hardware could probably offer a valid alternative
for large optimisation problems.

Since this result has been obtained with synthetic, error-free data,
the quality of the image in Figure 5.12¢ is unlikely to be bettered by
any inversion of the model data.

Having acquired some knowledge of the problem complexities the
inversion of the model data set was tackled. The result is shown in
Figure 5.12d. In this case a final grid configuration of 21 x 5 nodes was
specified. Again the main features of the model have been recovered.
As in the synthetic example, the variation in the thickness of the low
velocity layer is clear, as well as the presence of the fault in the middle of
the picture. The refractor runs mostly along the correct position. The
quality of the result is comparable to the one obtained with synthetic
data for the same grid configuration. Accordingly, I can state that the
maximum possible resolution has been approached.

5.5 Application to field data

Following the promising results obtained with both synthetic and model
data the Genetic Algorithm presented in this study has also been ap-
plied to the inversion of a real data set in order to test its efficiency on
practical situations.
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Figure 5.13: Ray-diagram for the synthetic model with 21 x 5 nodes.
The diffracted rays are clearly modeled at the top of the step. A large
shadow in correspondence of the step is shown as well as the poor ray
coverage close to the borders of the domain. These phenomena are
responsible for the lack of definition in such areas in the final recon-
struction of the image.
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Figure 5.14: Result of the analysis of the real data set recorded close
to the Nevoria Gold Mine, Southern Cross, Western Australia, with
the plus-minus method. A schematic description of the geology of the
area (obtained through lithologic analysis of RAB chips) is also given:
a weathered layer (c) overlays a basement formed by greenstones (a)
and granitoids (b) divided by an almost vertical contact.

5.5.1 The seismic data set

Refraction data from a seismic survey near the Nevoria Gold Mine,
Southern Cross, Western Australia, have been used. The area is mainly
characterised by greenstones and granitoids overlain by a thick weath-
ered cover (regolith). Such weathered profiles are of great exploration
interest and they have recently been the target of various geophysical
studies in order to deduce which is the most viable method to map
their base and internal structure. For this purpose the seismic refrac-
tion method efficiency has been tested. During that survey, shots were
fired and data recorded at 151 stations 25 m apart. The profile lies
across an almost vertical contact between greenstone and granitoids
that reaches the surface near shot n. 45 in Figure 5.11. The first ar-
rivals had been previously analysed with the plus-minus method [6] in
a study performed, in collaboration, by the University of Western Aus-
tralia and Curtin University in Perth, Western Australia (see [4]). The
results are presented in Figure 5.14.
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Figure 5.15: Schematic description of the process performed to sub-
divide the search domain into 7 small subdomains. Notice that such
subdomains overlap at the lateral borders in order to disregard the
results obtained in areas of poor ray coverage.

5.5.2 Experimental results

The same data set has then been inverted with the use of a Genetic
Algorithm with pseudo subspace method. The main aim in this exper-
iment was to test the ability of the algorithm to detect the refractor
position. The inversion has been carried out on a domain 3750 m long
and 160 m deep, with a resolution of 75 m in the horizontal and 40 m
in the vertical direction, resulting in a 51 x 5 nodes grid. In order to
reduce the problem dimensionality the domain has been divided into 7
small subdomains (9 x 5 nodes), each overlapping for 2 nodes at the
lateral borders. Figure 5.15 helps to describe the process. In this way
the problem has been reduced to the same dimensionality as the syn-
thetic tests above. Once all the 7 subdomains were inverted, the nodes
at the extreme of the single subdomains were disregarded, due to the
low ray density in such areas and the remaining nodes linked together
in order to obtain the global 51 x 5 node solution.
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Figure 5.16: Inversion of the real data set with Genetic Algorithm with
pseudo subspace method. The image has been obtained by subdividing
the search domain into 7 small subdomains and by linking the indi-
vidual results. The steep fault and the undulations in the refractor
position agree well with the previous analysis obtained with the plus-
minus method presented in Figure 5.14.

This solution is shown in Figure 5.16. As already mentioned above
for the synthetic and model tests the result below the refractor is not
reliable due to the limited amount of rays diving in such area. In order
to facilitate the interpretation, the position of the refractor has been
marked by a thick line and the slowness value below such line have been
muted (notice that the refractor position is discretised at the nodes
location). Such operation has been performed with the use of the ray-
tracing routine: each node slowness value is altered by a small amount
both in negative and positive sign, if the error misfit does not undergo
any change it means that no rays dive in area close to the node and
such node should be muted.

The result in Figure 5.16 agrees well with the previous analysis ob-
tained by the more traditional method presented in Figure 5.14. Notice
that a detailed comparison of the two pictures is not possible due to
both the approximations involved in the plus-minus method and the
coarse parameterisation in the Genetic Algorithm inversion. Neverthe-
less, the two images are characterised by the same main features: the
steep contact towards the left part of the picture as well as the acute
undulation in the refractor position in the centre and the smoother
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undulation at the right-hand side of the picture. Some disagreement
are present immediately to the left- hand side of the area where the
refractor reaches the surface (shots 35-40 in Figure 5.16). This may be
due to the coarse parameterisation in the Genetic Algorithm inversion.

Eventually, an attempt to invert the overall domain in a single pro-
cess has been performed. The pseudo subspace method has been im-
plemented in such a way to divide the search into 3 stages of different
dimensionality. In the first stage the search is performed on a grid with
13 nodes in the horizontal direction and two in the vertical. Then the
dimensionality is increased to 25 x 3 and eventually to the final config-
uration of 49 x 5 nodes, approximating the 51 x 5 dimensionality of the
final image in Figure 5.16. Such result is presented in Figure 5.17. It
can be noticed that the solution lacks of definition in the reconstruction
of the refractor position. The solution space is too large to be accurately
searched and some details can not be resolved. Furthermore, errors are
left in some parts of the picture. The deep undulation in the middle
part of the image is substituted by a flat refractor with a low velocity
anomaly over it. This kind of error was also present in the synthetic test
inverted with Genetic Algorithm without subspace search (see Figure
5.1c) and is due to details that can not be resolved in too large search
domains. Clearly the effort to keep the problem dimensionality as low
as possible by subdividing the search domain into small subdomains
have been particularly beneficial. Notice that this has been achieved
even at the cost of reducing the amount of information available. By
dividing the domain into a number of small subdoimans, not only the
problem dimensionality but also the amount of rays to be inverted has
been reduced because only the rays contained in the individual subdo-
mains were used and the ones crossing the subdomains were discarded.
However, even in this way better results have been obtained compared
to the inversion performed on the overall domain with all the informa-
tion available.

Nevertheless, it should be noticed that the solution in Figure 5.17 is
not totally unsatisfactory: the contact between greenstones and grani-
toids is well recovered as well as reasonably good in the reconstruction
of the average refractor position. Also, the stratification overlying the
refractor resembles the one presented in Figure 5.16. This suggests that
problems whose dimensionality is larger that the 9 x 5 nodes synthetic
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Figure 5.17: Inversion of the real data set with Genetic Algorithm with
pseudo subspace method without subdivision of the search domain.
The solution should be compared with Figure 5.16. Errors are present
in the refractor position and in the presence of a low velocity anomaly
in the centre of the picture.

tests presented above should not be considered completely beyond the
potentiality of the method. This confirms the results obtained with the
physical model data described above in which tomographic problems
up to 105 dimensions were satisfactory inverted.

5.6 Conclusions

Geophysical problems tend to have larger dimensionality than most
of the optimisation problems Genetic Algorithms have been tradition-
ally applied to. This has meant that Genetic Algorithm are not usu-
ally applied to large complex geophysical problem. The experiments
here presented show that Genetic Algorithms process strongly benefits
of the inclusion of a pseudo subspace method, whereby the complex-
ity and dimensionality of a problem is progressively increased during
the inversion. Such implementation allows to tackle larger dimensional
problems and to quickly locate the region of the solution space contain-
ing the global minimum in refraction tomography problems and proved
to be robust and to require a limited amount of ’a priori’ information.
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The experiments presented in this chapter show also that any further
possibility to reduce the problem dimensionality, such as subdividing
the search into small subdomains, should be pursued.

The method potentiality can not be yet compared with traditional
seismic processing techniques in very large problems and it should be
considered a useful tool to obtain a relatively fast and accurate prelimi-
nary analysis. However, the good results obtained in the reconstruction
of both the refractor position and the slowness field on synthetic and
field data is particularly promising. In addition, the process proved to
be effective, in terms of computation effort.
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