Chapter 3

The Ray-tracing Algorithm

In this chapter the FORTRANT7 program used to calculate seismic first arrival times
and ray-paths in media characterised by either smooth or sharp velocity contrast
is presented. The algorithm approximates linearly varying slowness inside cells
defined by a regular grid. In this way direct, refracted, diffracted as well as div-
ing rays can be modelled. The algorithm employs approximate ray propagation
equations that allow for a very fast computation. The effects of the approxima-
tions used in the algorithm have been assessed by comparison with a widely used
algorithm and have been found to be negligible. This algorithm has been chosen
for the seismic refraction experiments presented in Chapter 5 because its speed
as well as its accuracy are well suited for its use as forward routine in the global

inversion performed by Genetic Algorithms.

3.1 Introduction

Ray-tracing algorithms are widely used to model the observed travel times of
seismic waves. These algorithms must be able to accurately trace rays through
complex velocity distributions and for most applications they must also be efficient
both in terms of speed and memory requirements. This is particularly true in the
case of seismic tomography where datasets are large and there is widespread use of
inverse modelling. The tomographic inversion of travel-time data usually involves
the use of search algorithms that span the solution space by iterative calls to a

ray-tracing routine. Global inversion techniques such as Genetic Algorithms and



Simulated Annealing require a large number of function evaluations in order to
effectively search the solution space. In seismic applications this means that a
large number of ray-tracings is required. Accordingly there is growing need for
very fast ray-tracing routines.

Vidale [8] described a ray-tracing algorithm in which ray propagation was mod-
elled by calculating the travel times between a network of nodes within the seismic
slowness field. This idea of approximating ray-tracing with concepts inherited from
graph theory has been adopted by other authors, and a number of variations to
that algorithm followed [6, 7, 4, 5, 1, 2]. In the algorithms proposed by Vidale [§]
and Moser [6] the traveltime calculation is performed at regularly spaced nodes
and the slowness is allowed to vary linearly from node to node. In the other papers
a scheme is adopted in which the slowness field is discretised by constant slowness
cells and the calculation is performed only at the cell borders, resulting in a very
fast computation. However, limitations imposed by the use of constant velocity
cells may invalidate the improvement in speed obtained by performing calculations
only at the cell borders, since complex media may be reconstructed only by the
use of a large number of cells, which in turns slows down the computation. In this
chapter a modification to the algorithm proposed by Asakawa and Kawanaka [1]
is presented in which this limitation is addressed and a method to approximate

linear variation of slowness within the velocity field is proposed.

3.2 Asakawa and Kawanaka’s algorithm

In Asakawa and Kawanaka’s method [1] the slowness field is discretised by the
use of rectangular constant slowness cells. The ray propagation calculations are
performed only at discretised points located at the borders of the cells. These
points are here called calculation points.

The seismic ray propagation from one cell to the other is governed by the 'linear
traveltime interpolation scheme’ according to which the traveltime at any location
along the border of a cell is the linear interpolation between the travel times at
adjacent calculation points. The procedure is illustrated in Figure 3.1. Suppose

the traveltime at points A and B has already been calculated and the traveltime



Figure 31: Visual representation of the procedure described by equatioBs4 and
3.5. The point Cis allowed to vary continuously between point A and B. The
actual location of point C is chosen is such a way that the arriveilme at point D

1S minimum.

to point D is required.Following Fermat’s principle we determine the point (n
the segment A — Bin which the ray crosses the cell border, that, once connected
to the point D, gives the fastest traveltime to the point D.

Due to the’linear traveltime interpolation scheme’, the traveltime at point C

is given by
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where r is the distance between point C' and A, Ty is the traveltime at point
A, Tg is the traveltime at point B and d is the distance between point A and B.
Thus, the traveltime to point D is:

Tp=Tc+ S\I2+ (I, +1)? (3.2)

where [, is the horizontal distance between D and A, [, is the vertical distance
between the same points and S is the slowness inside the cell.

This equation can be conbined with equation 3.1 to give:
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According to Fermat’s principle, the correct traveltime to point D is chosen by
determining the minumum possible value for Tp, i.e., by differentiating equation
3.3 with respect to r.

This gives:

Tp =Ty + AT% + %\/S%P —AT? (3.4)

with:
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where AT is the difference Ty — T4. The reader is referred to Asakawa and

r =

(3.5)

Kawanaka original paper for a detailed description of the method and the deriva-
tion of the above equations.

The traveltimes for all possible paths connecting the seismic source to a cal-
culation point in the slowness field are calculated by the iterative use of these
equations. How these process is carried out is described in section 3.5. Then Fer-
mat’s principle is used to select the correct traveltime, i.e., the one corresponding
to the fastest arrival. Once this is done for all the calculation points a discretised
‘traveltime field’ across the entire domain is obtained.

It is important to realise that the ray-paths are not required to determine the
arrival time at the receivers. During the calculation of traveltimes the ray paths
are not stored, since the process of storing the minimum traveltime paths at this
stage would be massive from both a computational and memory point of view.
If ray-paths are required these are calculated once the traveltime field across the
entire domain has been obtained. At this stage ray paths may be easily traced by
running backward from the receiver positions to the source. This is achieved by
connecting a receiver to the calculation point with the lowest traveltime value in
the cell in which the receiver lies and so on until the source location is reached.

If ray-paths are traced, an alternative way to obtain the traveltimes is to add

the results of multipling the length of individual segments of the ray-path by the



corresponding slownesses. A discussion about the accuracy of the two alternatives
in given below in the section ’Accuracy and efficiency’.

We have seen that the calculation points are located only at the borders of the
cells. No calculation points within the individual cells are used. This is the key to
the algorithm’s efficiency.

The fact that the ray-paths are allowed to cross the cells borders at any location
(i.e. not only at the calculation points) through the use of equations 3.4 and 3.5,
is important to mantain the accuracy of the calculation. Details the accuracy of
the algorithms are given in the original paper by Asakawa and Kawanaka.

This algorithm was used in the physical model experiment presented in Chapter

3.3 The linear-slowness variation approximation

Modelling diving rays is very important for refraction experiments. Equations 3.4
and 3.5 allow only for the modelling of direct, refracted and diffracted rays in
velocity fields characterised by both smooth and sharp velocity variations. For
example, the constant slowness assumption of Asakawa and Kawanaka does not
allow for diving rays inside horizontal layers. In this case the rays are always
refracted along the upper border of the cells. This happens because if the rays
dived into the constant slowness layers, they would take a path longer than the
one due to the refraction along the upper border. With the slowness constant,
such a path would result in a longer traveltime, that can not be chosen because of
Fermat’s principle.

With this configuration the only way to reduce the errors in the travel time
estimation would be to subdivide horizontal layers into a large number of thin
layers, i.e., to use a large number of constant-slowness cells. However, this would
result in a significant increase in the computation effort.

The model and equation 3.4 can be modified to approximate linear variation
of slowness inside the cells as follows. While in the original algorithm a constant
slowness value is assigned to a cell, in this modified algorithm the slowness field

is defined at the nodes of a regular grid, i.e. at the vertices of the cells. The



slowness value at the calculation points at the borders of the cell is then assumed
to be the linear interpolation of the slowness values at the two vertices of the
cell border. The seismic ray is then assumed to propagate inside the cell with a
slowness equal to the average between the slowness values at the points where the
ray crosses the cell borders. A similar approach applied to a regularly spaced grid
nodes scheme has been already proposed in the literature and can be found in
[8, 6]. Consequently equation 3.4 changes so that S becomes the average between
the slowness at points C' and D. This simple modification allows for rays to dive
inside flat layers with vertical velocity gradients.

The accuracy of this bi-linear approximation is discussed in the next section.
Notice that a proper linear slowness variation in the domain could be modelled

only by the use of triangular cells.

3.4 Accuracy and efficiency

The accuracy and speed of the algorithm is a function of the number of cells in
the domain and of the numbers of calculation points along the cell borders.

In section 3.2 it has been shown that traveltimes can be evaluated either with or
without ray-tracing. The possibility of obtaining traveltimes without actually trac-
ing the rays is not mentioned in the original paper by Asakawa and Kawanaka.
The travel times calculated with or without ray-tracing differ because both the
original and the modified equations presented above involve some kind of approx-
imation. The effect of the number of calculation points along the cell borders and
the calculation of travetimes with or without ray-tracing is now discussed.

The accuracy of the algorithm including the linearly varying slowness approx-
imation and the influence of the number of points along the cells borders have
been tested numerically against the SEIS83 ray tracing algorithm [3], an algorithm
often used for seismic refraction applications. A comparison has been made using
synthetic first-arrival travel time data generated using a model defined by a 9x5
grid whose spacing is 1000 m in the horizontal direction and 100 m in the vertical
direction. A linear slowness vertical gradient is assumed between the grid nodes

(the same model has been used to generate the synthetic seismic refraction data
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Figure 3.2: Squared misfit between the traveltimes calculated bySEIS83 and the
algorithm here presented both with(filled circles) and without raytracing(squares)

as a function of the number of nodes along the cells border.

presented and discussed in more detail in Chapter i The arrival times froma

source positioned at one endof the model to9 regularly spaced receivers have been
calculated usingboth algorithms. The misfit(calculated in millisecondg between

the two data sets has been squared and shown in Figure 2. as a function of the
number of nodes along the cells borders.

The algorithm has been run both with and without ray-tracing. Clearly, for the
number of calculation points along the cells borders equal to or larger tha®, the
discrepancy betweenthe two sets oftravel-times tends to become roughly constant
and negligible. In order to better evaluate the misfit between the two algorithms
the actual numeric results expressed in milliseconds for the implementation with
calculation points along the cell borders ancho ray-path computation is presented
in Table 3.3 and compared with the results fromseis83. The disagreement never
exceeds 1% and decreases at increasingsource-receiver offsets.

Figure 34 shows the CPU time, expressed in seconds in l86DX-PC with a 33
MHz processor for increasing numbers of calculation points along the cell borders

in the synthetic test previously described, for travel times calculated both with



Receivers SEIS83 Ray-Tr. code Difference %
1 198.1 200.0 0.95
2 295.0 296.2 0.40
3 390.1 392.1 0.51
4 484.9 487.7 0.57
5 579.2 578.5 0.12
6 659.2 658.4 0.12
7 738.3 738.2 0.01
8 817.3 817.9 0.07
9 897.7 897.3 0.04

Figure 3.3: Numeric comparison between SEIS83 and the code here presented
implemented with 3 calculation points along the cells borders and no ray-path
computation. The results in column 2 ans 3 are presented in milliseconds while

the difference in column 4 is given in percentual.

and without ray-tracing. The advantage of reducing the number of nodes and
avoiding raytracing is evident. From Figures 3.2 and 3.4 it is clear that by using
only 2 or 3 nodes along the cell borders and no ray-tracing a good compromise
between speed and accuracy can be obtained.

Finally, Figure 3.5 shows the ray-diagram for the slowness model presented
above, in which 15 seismic sources and 54 seismic receivers has been modelled.
This is intended to simulate a seismic refraction survey. Since the travel-time/ray
path calculation is performed only at the cell borders, there is no bending of rays
inside the cells but the presence of diving rays within the model is clearly seen.

Such a result would have not been possible with constant velocity cells.

3.5 Algorithm implementation

The algorithm’s implementation in FORTRANT7 is presented in Appendix A. The
implementation of equations 3.5 and the modified equation 3.4 is straightforward
and is carried out in the subroutine LINSHOT.

In order to show how the traveltimes are evaluated at each calculation point
consider the example in Figure 3.6 where the seismic first arrival from the seismic

source to point D is sought (notice that for the sake of clarity only one calculation
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Figure 3.4: cPU time expressedin seconds in a 486DX-PC with a 33 MHz processor
for increasing number of points along the cells borders for traveltime calculation

both with (filled circles) and without (white squares) raytracing.

point along the cell borders has been modelled her¢. First the seismic ray is shot
from the seismic source to all calculationpoints at the borders of the cellin which
the source is located (see dashed segments in the lef-hand side cellin Figure 3.6).
Then the traveltime to points located in thecells adjacent to the source cell are
calculated. For example, the arrival time at pointD is then evaluated by checking
all the possible paths the seismic ray could take fromthe source to D. In the
example in Figure 3.6 a ray can reach D by crossing the cell anywhere in segment
AB or BC. Thus, equations3.5 and 3.4 are applied to segments AB and BC'. This
assures that the traveltimes alongall the available paths from the source to point
D are calculated and the fastest arrival time is selected, according to Fermas
principle.

The procedure mustt be performed for all calculation points in the domain.
The calculation of the ray propagation must proceed outwards from the cell con-
taining the source. This operation is performedby the subroutine RAYMAIN and it

is sketched in Figure 37. First the calculation is performed for all the cells in the
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Figure 3.5: Ray-diagram for a vertical linearly varying slowness layered model.

column where the source is located downward (arrow 1 in the picture). Then from
the right-hand side of this column rays are shot from each point in the right-hand
direction, and similar procedure is accomplished on the left-hand side until all the
domain is covered (arrows 2 in the picture). Eventually, when all the calculation
points have been reached the travel time field is completely defined. At this stage
the arrival time at the location of any receiver is similarly calculated by first con-
necting the receiver to any point in the cell within which the receiver lies. This
creates a number of possible arrival times among which the minimum is then cho-
sen. In the program the ray propagation is performed by the routines TRASMITX,
TRASMITY, DIFFRACT that control the propagation from the calculation points
located on the horizontal axis, the vertical axis and the cell vertices, respectively.

Care must be taken to ensure all the possible ray paths are checked and that no
redundant calculation is performed, to keep the code as fast as possible. Particular
attention should also be paid to ensure that refraction does not occur at the borders
of the cells in more complex velocity distributions. Once the calculation for each
cell is completed, possible refraction along the horizontal axis must be checked

before shooting at adjacent cells in order to avoid possible errors to be propagated
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Seismic source

Figure 3.6: Schematic description of the ray propagation form the seismic source

to any calculation point in the domain.

in the entire domain. Similarly, once the traveltimes have been determined at the
vertical borders of a column of cells, refraction along the vertical axis should also
be checked. This task is accomplished by the subroutines VREFR1 and VREFR2.
If the ray-paths are required a similar procedure must be performed backwards.
From any receiver location the point at which the ray-path crosses the border of
the cell where the receiver lies is calculated using equation 3.5 and then stored.
The calculation is then performed iteratively from such points backwards until
the source is reached and the path completed. Such a task is performed by the

subroutines BACKDIFF, BACKX and BACKY.

3.6 Discussion

The aim of this research is to test the applicability of Genetic Algorithms to geo-
physical problems, including seismic refraction tomography. Genetic Algorithms,
as a global optimisation technique, require a large number of forward calculations.
On small workstations commonly used in research this can be best achieved by
the use of very fast routines, similar to the one presented here.

As has been stated above Asakawa and Kawanaka’s linear traveltime inter-
polation scheme is simply an approximation of the more complicated equations
governing the propagation of seismic energy in complex media. The same applies

to the modified equation 3.4. Also, the linearly varying slowness is not taken into
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Seismic source

Figure 3.7: Schematic description of how the ray propagation should be performed.
First the calculation is performed for all the cells in the column where the source

is located downward (arrow 1) and then outwards (arrows 2)

account in equation 3.5. An accurate solution for equation 3.5 with the assump-
tion of linear slowness variation has been calculated but resulted in a complex
calculation that strongly affects the efficiency of the algorithm.

It is worthwhile drawing attention to a number of observations in the use of

the algorithm presented in this chapter:

e Asakawa and Kawanaka’s linear traveltime interpolation scheme has been
tested in the original paper and a further test of its validity has been per-
formed on the physical model experiment described in Chapter 5. In this
experiment the original equation 3.4 and not the modified one, was used
because, as it will be shown in Chapter 5, the medium under analysis was

characterised by constant velocity layers;

e the linearly varying slowness approximation has been tested against the
widely used sE1S83 algorithm that employs more accurate modelling of the
ray propagation equations, and the results were shown to be particularly

satisfactory;

e the statements in the comments above refer to tests on models characterised
by relatively simple geometry. Far more complicated media has been mod-
elled in the Nevoria experiment presented in Chapter 5 where the results

obtained with Genetic Algorithms showed a good agreement with results
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from previous studies on the same area. In Chapter 7 an extensive study
of the effects on the inversion process due to inaccuracies in the forward
calculation is presented where it is shown that no accurate results may be
achieved if large errors are present in the forward calculation. Accordingly,
the good results obtained with Genetic Algorithms in Chapter 5 should be
considered as an indirect demonstration of the satisfactory accuracy of the
ray-tracing routine here presented. A more detailed discussion of this point

is presented in Chapter 7,

an acceptable balance between accuracy and speed in the forward calcula-
tion has been achieved with the use of this ray-tracing routine. If Genetic
Algorithms are to be routinely applied to more general seismic refraction
problems the inclusion of more accurate modelling of ray propagation in
complex media need to be carefully considered. This last point is further
analysed in the conclusions presented in Chapter 8 where directions for pos-

sible improvements are given.
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