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Analysis of potential field data in the wavelet domain
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SUMMARY
Various Green’s functions occurring in Poisson potential field theory can be used to
construct non-orthogonal, non-compact, continuous wavelets. Such a construction
leads to relations between the horizontal derivatives of geophysical field measurements
at all heights, and the wavelet transform of the zero height field. The resulting theory
lends itself to a number of applications in the processing of potential field data. Some
simple, synthetic examples in two dimensions illustrate one inversion approach based
upon the maxima of the wavelet transform (multiscale edges). These examples are
presented to illustrate, by way of explicit demonstration, the information content of
the multiscale edges. We do not suggest that the methods used in these examples be
taken literally as a practical algorithm or inversion technique. Rather, we feel that the
real thrust of the method is towards physically based, spatially local filtering of
geophysical data images using Green’s function wavelets, or compact approximations
thereto. To illustrate our first steps in this direction, we present some preliminary
results of a 3-D analysis of an aeromagnetic survey.

Key words: gravity anomalies, magnetic anomalies, multiscale edge analysis.

horizontal and vertical position of main geological bodies.
1 INTRODUCTION

This approach has to face the fundamental limitation of
The collection and analysis of aeromagnetic data represents one non-uniqueness inherent in the analysis of potential field
of the cheapest forms of large-scale geophysical exploration. data (Al-Chalabi 1971; Boschetti et al. 1998). In the absence

of specific, objective a priori information, the selection of one,It has the particular advantage of allowing relatively easy

exploration of remote and hardly accessible areas. As a result, or some, among the infinite set of possible solutions, again

requires subjective judgement.extensive research has been performed in the last decades in

order to develop tools that allow the extraction of useful The two methods differ not only in the goals and in the

tools used, but also in the scale of the analysis. Visual inspectioninformation from potential field data.

Traditionally, the techniques used in potential field analysis and image processing techniques allow the analysis of very

large maps with a resolution comparable to the sample spacing,could be broadly divided into two classes. In the first class,

potential field maps are analysed visually by geoscientists (see while ‘pure’ inversion techniques, due to the complexity of the

search space and the limitation in computation capabilities,for example Telford et al. 1976). Image processing tools are

used to present the data in a form that facilitates this visual are normally constrained to coarse voxels, or to small segments

of a map.inspection. First and second derivatives, different sun-angle

illumination and careful map colouring are typical processing In more recent times, a class of methods intermediate

between the visual inspection and ‘pure’ inversion have gainedtools that allow geoscientists to discriminate better the features

present in the data. The aim of this kind of analysis is usually in popularity. These methods come under the heading of

signal processing techniques, and broadly seek approximateidentification of geological features, such as faults, folds, geo-

logical contacts and, more rarely, broad information about the inversions through the use of signal processing. In more than

one sense, these methods are analogous to migration algorithmsdepth and extent of the main geological bodies. Often, the

main goal is to produce an approximate 2-D geological map. in seismic processing. First, they seek to process the signal in

order to make a transformation of the signal ‘look like’ aThis approach has the flavour of an art and requires extensive

experience. As such, it is partly subjective. geological picture of the main features. Second, the signal

processing is motivated by the physics of the signal propagationThe second kind of approach can be defined generically as

inversion. A useful review on some of the methods available through space. An example is ‘depth slicing’ or separation

filtering, in its various forms (for example Cordell 1985;for the inversion of potential field data can be found in Blakely

(1995). The goal of inversion is typically to ascertain the Jacobsen 1987). The wavelet methods outlined below fit into
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this middle-of-the-road approach and, indeed, are very similar images, for example, spatially coherent discontinuities in the

pixels’ intensity allow the visual recognition of objects andin their use of upward continuation (field propagation by con-
volution with the Green’s function). However, this similarity main patterns. Accordingly, the automatic detection of such

features has been the object of intensive research. In the imageshould not be allowed to occlude a fundamental difference

in our approach. In the present work, we are assuming that processing community, the concept of multiscale edge detection
has long been used. In 1-D signals, ‘edges’ are characterizedthe source distribution is deterministic, and we seek specific

features in this source structure. This is very different from as points of extreme value in the first derivative. If one

transforms the signal in some way to eliminate or dampassuming a statistical ensemble of sources, and leads to different
interpretations of the same filters. In particular, the wavelet features smaller than a given scale s, the resulting signal is

often referred to as the signal at scale s. One can seek derivativetheory makes precise statements about the decay rates of

features in the ‘depth-slice’ domain. extrema (edges) in all such scaled signals. These extrema, and
their associated magnitudes (as functions of scale), are generallyOur description of multiscale edge detection by wavelet

analysis follows in almost every respect the development termed multiscale edges, and, in the case of 1-D signals, often

form a 1-D subset of the space-scale (x, s) plane (see, foroutlined by Mallat & Zhong (1992). We will show that wavelet
analysis is well suited to potential field theory and that example, Mallat 1991). As we shall see, such edges correspond

to features in the wavelet transform of the signal.fundamental equations, particularly upward continuation, have

a very elegant and compact form in the wavelet domain. The Sometimes, stationary points of the first derivative corre-
sponding to zero crossings of the second derivative defineupshot is the method’s ability to locate the edges of geological

bodies, allowing automatic production of the type of map what is meant by multiscale edges. Such edges also go by the

name of ‘fingerprints’, a guise in which they have alreadycommonly called a ‘worm diagram’ or skeletonization. Wavelet
analysis not only offers fast algorithms for detecting edges in appeared in the geological literature (for example Piech &

Piech 1990). However, Mallat & Zong (1992) point out thatimages, but also, by analysis of the wavelet coefficients at

different scales, allows the characterization of the structures simple inflection points can be a misleading characterization
of edges, and that the subset of second-derivative zero crossingspresent in the signal’s source. Indeed, an appropriate choice of

wavelet can lead to quantitative information about the depth corresponding to the maxima of the absolute value of the first
derivative might be a more pleasing definition of edge from aand characteristics of causative bodies, and consequently can

be used in an inversion procedure. This has also recently been perceptual point of view. In the following, we shall not be

particularly pedantic about precisely which definition of multi-pointed out by Moreau et al. (1997), in whose work precisely
the same wavelet transforms as we shall describe have been scale edge we refer to in our general discussions, although

we usually follow the convention of Mallat & Zong whenused to locate point sources, and to estimate the degree of

homogeneity (structural index) of point sources. presenting results.
In two dimensions, there is a greater choice for the charac-We present 2-D examples using synthetic data that demon-

strate, additionally, the recovery of the dimensions and even terization of ‘edge’. For example, the maximum magnitude of

the gradient along gradient streamlines (paths with gradientdensity contrast of a source anomaly, using a single multiscale
edge. Of course the conditions of the simulation are ideal; as tangent), is one analogue of the 1-D maximum of absolute

value of gradient. Similarly, the zeros of the (2-D) Laplacianhowever, this is good supporting evidence for our more modest

claim that multiscale edges will yield practical feature-based are analogous to the 1-D inflection points. In the following we
shall follow Mallat & Zong, and use the maximum gradientfiltering techniques, and allow recovery of limited information

on source type and depth in real data. along streamline characterization. This seems more natural

from the perceptual point of view; however, it is somewhatEdge detection applied to potential field data has been
explored by other authors (for example Blakely & Simpson at odds with mathematical convenience, which militates for

an edge definition expressed in terms of the zero crossings1986). The strength of this new approach is the use of a

multiscale edge analysis and the possibility that it offers in the (i.e. level crossings) of some linear differential operator.
Since the main features in an image are represented by itsframework of an inversion scheme. The fundamental theory

linking the multiscale edges, wavelet transforms and the edges, an open issue in image processing research in the last

decade has been the image reconstruction question: ‘Is theGreen’s function of the physical theory is far-reaching, as its
applications include full 3-D inversion, data compression, information contained in the edges sufficient to reconstruct the

entire original image?’ (Hummel & Moniot 1989; Yuille &de-noising, enhancement/elimination of specific features and

interpolation, all within a single, rigorous framework. The Poggio 1986). Also note that, in our application domain, we
are asking for the reconstruction of the image (the originalanalysis of these applications is ongoing, and we hope to

report more of these matters at a later date. Our goal in this data) from the multiscale edges, not the reconstruction of the
source. The latter is known to be impossible. In addition, wepaper is an elementary introduction to the theory for the

wavelet analysis of potential field data, which relies more upon wish to do this image reconstruction from just the edges, and

the values of a wavelet transform on those edges, not from thedemonstration of its application to simple 2-D and 3-D
examples than upon rigor mathematicus. whole wavelet transform. The latter inverse transformation is

presented in Appendix B.

The answer to the reconstruction question for completely
2 MULTISCALE WAVELET ANALYSIS

general images and commonly used Gaussian wavelets is ‘no’.
However, Mallat & Zhong (1992) showed that a very good

2.1 Basic concepts
approximation of the original image can be reconstructed
simply from the information contained in the location andIn a signal or image, it is the points of sharp variation and

irregular features that often carry most of the information. In amplitude of the local maxima of the wavelet coefficients, that
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is, in the position and ‘sharpness’ of the edges at different whose integral is consequently zero. (Note that D
x

denotes

differentiation with respect to x, and that, in preparation forscales. However, in the case where a well-defined physical
process (a potential field measurement) generates an image, a more than one dimension, we have already introduced the

comma subscript convention to denote differentiation in thestronger result may obtain, especially if precisely the correct

wavelets are used for the definition of the edges. classical tensorial style.) The functions h and y can be used as
smoothing function and corresponding wavelet respectively.In the case we consider, the wavelet transform is (apart from

a stretching of the scale-coordinate) a harmonic function of An often-used example pair is the Gaussian and its derivative.

The wavelet transform of a function f (x) is defined bythe space-scale half-space. Thus the values of the transform on
the entire space-scale half-space can be constructed from its

W [ f ](s, x)=[ f *y
s
](x) , (2.3)

values on a suitable surface (a Dirichlet problem). It then

remains to show that the multiscale edges form a suitable where y
s
(x) is a dilated version of the wavelet defined by

‘boundary’ for such a problem, a consideration which at
y
s
(x)= (1/s)y(x/s) , (2.4)

present we feel is related to the infinite differentiability of, and

maximum principle for, harmonic functions (Hummel & * denotes convolution, and s represents the scale. From (2.1)
it follows thatMoniot 1989; Mikhailov 1978).

Just as important is the need for a ‘boundary’ surface that
W [ f ](s, x)=[ f *(sD

x
h
s
)](x)=sD

x
[ f *h

s
](x) . (2.5)

leads to a stable solution. For example, knowledge of the values
of a harmonic function on a horizontal plane is sufficient to Eq. (2.5) shows that, except for a multiplicative factor of s,

the wavelet transform W [ f ] is the first derivative of [ f *h
s
].determine the values everywhere, but downward continuation

is nevertheless unstable, so the theoretical proof of the existence Thus the maxima of |W [ f ](s, x) | (in x) correspond to rapid
variations in [ f *h

s
] and hence can be interpreted as regionsof a solution can at times be useless from a practical point of

view. The definition used to define an edge is important also of rapidly changing intensity; that is, edges in the signal [ f *h
s
].

Now, [ f *h
s
] is just the original signal f blurred or averagedin this respect, since the resulting multiscale edges must not

only furnish a suitable boundary for the solution of the by the filter kernel h
s
. However h

s
averages f over its values

within a span of length (approximately) s. Consequently, theDirichlet problem, but must also be sufficiently redundant in
their information content to furnish a stable inversion for the local maxima of |W [ f ] | correspond to edges in the signal after

blurring at scale s. These edges, which become a function oforiginal image. Ironically, it is this instability of the solution

from a single boundary, together with the possibility of using scale s, are termed multiscale edges. This gives us a mathematical
characterization of the notion of an edge in terms of a featuremany boundaries (many multiscale edges) as ‘regularizing

constraints’ on the solution process, that makes the signal of the wavelet transform of the function, and thereby allows

a quite thorough study of what was once an empiricalprocessing applications of the multiscale edges plausible. The
accessibility of results pertaining to the topology of the multi- construction used in the analysis of images.
scale edges, and this stability/redundancy issue, makes the

perceptually less appealing ‘zero of Laplacian’ definition of
2.3 Lipschitz regularity and wavelet transforms

edge mathematically appealing.
Nevertheless, should this reconstruction conjecture prove not A feature of multiscale edge detection in the wavelet domain,

crucial for the following discussion, is the possibility of charac-to be true, the approximate reconstruction property appears
to be good enough to allow image compression, de-noising, terizing discontinuities and sharp structures in the data by

studying the behaviour of the local extrema of the waveletfeature isolation and interpolation. Preliminary investigations

into the reconstruction wavelets for continuous space and transform at different scales. In particular, the scale dependence
of the wavelet transform depends on the Lipschitz exponent ofdiscrete scale are promising (Appendix B), and we hope to

report more fully on these matters in due course. Here, we will the original signal.

Let us review the concept of the Lipschitz exponent, andconcentrate upon the elementary application to potential field
data, and show how the elements of the theory relate to its geophysical significance. We will concentrate upon ‘well-

behaved’ functions defined on sets of integer dimension, andinterpretation and inversion.

refer to Appendix A for a more complete discussion of less
regular situations. We recall that, given an aµ(0, 1], a function

2.2 Multiscale edge detection is said to be uniform Lipschitz a in the interval (a, b) if there

exists a constant C (independent of x
i
) such that, for allLet us briefly review the main concepts behind multiscale edge

x0µ(a, b) and x1µ(a, b),detection for 1-D signals. The application of the analysis to

potential field data in two and three dimensions will be | f (x
0
)− f (x

1
) |≤C|x

0
−x

1
|a . (2.6a)

described in the following sections.
Lipschitz uniform regularity of f (x) [denoted as LUR( f )] isLet h(x) be a non-negative differentiable function that con-
defined as the maximum a such that f (x) is uniform Lipschitzverges to zero at infinity sufficiently quickly that the following
a. We do mean the maximum here, not the supremum, andmanipulations are valid. Suppose, in addition, that its integral
the maximum may not exist. This is slightly at odds with theis unity, then the same conditions hold true of the scaled
usual definition. However, we wish to treat the case when thefunctions
maximum does not exist as a special case, since such a situation

h
s
(x)= (1/s)h(x/s) , s>0 . (2.1) does arise in the following, and we prefer to modify (2.6a) to

deal with this important case.Moreover, define
In Appendix A we show that f can be made continuous at

the end-points a and b, and give additional conditions undery(x)=h
,1

(x)=D
x
h(x) , (2.2)
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which f can be differentiated to yield a conventional function. Euler methods. We will clarify the relationship between the

two much later in our conclusions.If f can be differentiated, the derivative D
x
f can diverge at a

finite number of points, but the singularities are integrable, Let us briefly review the relationship between Lipschitz
regularity and scale dependence of the wavelet transform as itand the exponent of the divergence is bounded by a−1. In

the case mentioned above, when the maximum exponent does applies to 1-D signals. The subsequent analysis is based on
the following theorem, whose demonstration can be found innot exist, the usual cause is integrable logarithmic singularities

in D
x
f . Holschneider & Tchamitchian (1989).

If a=0 then (2.6a) confines the values of f to an interval T heorem 1. Let 0<a≤1. A function f (x) is Lipschitz a over
of length C, but f need not be continuous. For example, a

the interval (a, b) if and only if there exists a constant K such
step function satisfies (2.6a) with exponent zero. In the follow-

that, for all xµ(a, b), the wavelet transform satisfies
ing discussion, we constrain the number and type of jump

|W [ f ](s, x)|≤Ksa . (2.6b)singularities, and allow the derivative to acquire a finite number
of Dirac delta function contributions to model these jumps. In Appendix A, we demonstrate the forward implication
More complex situations are considered in Appendix A. (2.6a implies 2.6b) which is the main basis for the following

For our present application, it is possible to give meaning work. We also extend the forward implication to higher
to negative uniform Lipschitz regularity as follows. If f does dimensions and more general singularities—in particular,
not satisfy (2.6a) for any aµ[0, 1], but f is nevertheless logarithmic singularities. An indication of the treatment of
integrable, then we define the function negative exponents, and an outline of the machinery that

applies to the extension to irregular sets is also deferred to
Appendix A. The reverse implication (2.6b implies 2.6a) hasF(x)=P

[a,x]
f (t) dt .

been proved in the stated reference for the case of compactly

supported wavelets. We have yet to apply the inverse transform
Suppose that LUR(F)µ[0, 1), then we define LUR( f )= in Appendix B to extend this proof to the wavelets that we

LUR(F)−1. Note that such an f generally does not satisfy will be using. (The inverse transform may not be entirely
(2.6) for the negative value of a. However, if f is a function in necessary to this endeavour.)
the conventional sense, then LUR( f ) does bound the exponent Locally continuous features are common in signals arising
of any divergence in f . The case LUR( f )=−1 is intended to from physical experiments. They are characterized by positive
assert that f is a density with Dirac delta contributions. The Lipschitz exponents. Consequently, their wavelet coefficients
definition of negative Lipschitz regularity in terms of the decrease as the scale decreases. In the signal analysis literature,
primitive function F is appropriate for our present application these continuous features are usually modelled as the convolution
because f will be convolved with harmonic functions. Our of singularities with Gaussian kernels. The Gaussian is, in
interest is in the Lipschitz regularity of such convolutions and turn, interpreted as the Green’s function of the heat equation,
its relationship to source structure. so that the variance s2 becomes a measure of the time required

The above discussion was for functions and measures of a to obtain a smoothed feature from some hypothetical causative
single variable. If the x

i
in (2.6a) become n-dimensional vectors, singularity. In this way, the signal may be modelled as a linear

x
i
, then the modulus on the right of (2.6a) is replaced by the superposition of various singularities, each convolved with its

Euclidean norm of the difference (for example eq. A6). If own (unique) Gaussian; that is, by a heat diffusion approxi-
aµ(0, 1] then f again extends to a continuous function on mation. An estimation of the s2 of each (hypothetical ) Gaussian
the closure of the domain and the previous discussion now and the Lipschitz exponent of the underlying singularity can
applies to each line segment in the domain. If LUR( f )=0 in then be calculated by studying the multiscale edges derived
n dimensions, we will only consider the case when the jumps from Gaussian scaling functions. This idea is the basis of much
in f occur along some regular, rectifiable (n−1)-dimensional of the work in signal and image processing in this area.
subset. The foregoing analysis suggests that a useful signal model

When f ceases to satisfy the Lipschitz condition (2.6a) in could also be obtained by replacing the Green’s function
n dimensions, but is still an integrable density, then we can of the heat diffusion problem with the Green’s function of
once again define what we mean by LUR( f ) in a way that is some potential field theory. In this case, features in the signal
consistent with our purpose. Let us defer the discussion of this would be related to density/susceptibility sources at different
matter entirely to Appendix A, and focus upon the geological distances (depths) below the measurement level. This approach
interpretation that arises. The correspondence to be presented is particularly suited to our problem since potential field maps
is somewhat simpler than is actually the case, but it is a good are the result of such physical processes. Consequently, such a
guide to the significance of the following, and a fairly neat signal model would respect the true physics. The obvious
summary of the rather technical description in Appendix A. conclusion is that we should also use the potential field’s

The geophysical interpretation of the Lipschitz regularity is Green’s function to construct the analysing wavelets, the hope
(roughly) as follows. Positive Lipschitz exponents correspond being that the results relating to the Gaussian wavelets
to smooth variations. A zero exponent corresponds to a step, generalize.
or abrupt change in a function. In one dimension, a Lipschitz

exponent of −1 is associated with a Dirac delta point source.
2.4 Extension to potential field analysis

In two dimensions, a Lipschitz exponent of −1 is indicative of
a line source or linearly distributed concentration of some sort.

2.4.1 T he basic equations
An exponent of −2 corresponds to a point-like concentration
or source in two dimensions. Thus, the Lipschitz exponent is Consider the gravitational field. (The extension to magnetic

fields is discussed later.) The gravitational potential at a pointsimilar in spirit to the ‘structural index’ encountered in the
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(x, y, z0 ) due to a source distribution r(x, y, z) can be written By the use of the convolution theorem, the Fourier transform

of the gravity measurements can then be written asas

V (x, y, z
0
)

f̂
z
0

(k)=2pG P 0−2
r̂(k, z)ĉ

z
0
−z∞(k) dz∞ . (2.16)

=−G P
R2

dx∞ dy∞ P 0−2

r(x∞, y∞, x∞) dz∞
[(x−x∞)2+ (y−y∞)2+ (x

0
−z∞)2]1/2

,
For a certain height z>z0 we can express the vertical
acceleration via the upward continuation relation:

(2.7)

f̂
z
(k)=2pG P 0−2

r̂(k, z∞) exp[−2pdkd(z−z∞)] dz∞where G is the gravitational constant and z0 is the level at
which the measurements have been taken. We also suppose

that r(x, y, z)=0 for z>0. (That is, z increases upwards.) It
=2pG P 0−2

r̂(k, z∞) exp{−2pdkd[(z
0
−z∞)+(z−z

0
)]} dz∞follows that the magnitude of vertical acceleration is

= f̂
z
0

(k)ĉ
z−z

0

(k) . (2.17a)f
z
0

(x, y)=−g
z
=V

,3
=G P

R2

dx∞ dy∞
Thus

f
z
(x)=[ f

z
0

*c
z−z

0

](x) , z>z
0
, (2.17b)×P 0−2

r(x∞, y∞, z∞)(z
0
−z∞) dz∞

[(x−x∞)2+(y−y∞)2+ (z
0
−z∞)2]3/2

. (2.8)

which shows that the field continued to the level z is equal to
The expression the field at the measurement level z0 convolved with the

smoothing function for the proper height difference. The right-
K(x, y, z)=

z

(x2+y2+z2 )3/2
(2.9) hand side of eq. (2.17b) is directly comparable to the term

[ f *h
s
](x) in (2.5).

is the Green’s function for the vertical acceleration, and direct
calculation shows that 2.4.3 Wavelet transform

Our final task is to find a natural scale parameter s whichP
R2

K(x, y, z) dx dy=2p (2.10)
leads to a convenient choice of the z values corresponding

to s=0 and s=1. To this end, let f0 (x, y) be the verticalis independent of z. Hence the integral of the function
acceleration at z=0. Also, let the measurement height be z0 ,
and define the smoothing function at scale s=1 by h(x, y)=

c
z
(x, y)=

1

2p
K(x, y, z) (2.11)

c
z
0

(x, y). From this, we construct the smoothing function for
scale s from eq. (2.12); that is,

is unity for all z>0. Continuing this line of reasoning, we find
h
s
(x, y)=c

sz
0

(x, y)=s−2h(x/s, y/s) . (2.18)that

The derivatives of the smoothing function with respect to x

and y define the first-order wavelets, namelyc
sz

(x, y)=
1

2p

sz

[x2+y2+(sz)2]3/2

=s−2c
z
(x/s, y/s) ,

(2.12)
y1=h

,1
=D

x
h and y2=h

,2
=D

y
h . (2.19)

It is then easily verified that, for s>0,
which is the 2-D analogue of eq. (2.1). Consequently, (2.11)

yi
s
(x, y)=s−2yi (x/s, y/s) (2.20)can be used to define a smoothing function, and hence a

wavelet analysis of 2-D images. form a set of self-consistent dilation equations for these
From eqs (2.8,9) and (2.11), we see that the vertical first-order wavelets.

acceleration measured at a level z0 is given by It follows that the x-component of the 2-D wavelet transform
of f0 (x, y) is given by

f
z
0

(x, y)=2pG P 0−2
r(x, y, z∞)*c

z
0
−z∞ (x, y) dz∞ , (2.13)

where the symbol * now represents convolution on both x

and y. In view of eqs (2.1)–(2.5), eqs (2.12) and (2.13) are more

W 1[ f
0
](s, x, y)=[ f

0
*y1

s
](x, y)

= f
0
*sD

x
h
s

=sD
x
[ f

0
*h
s
]

=sD
x
[ f

0
*c
sz
0

]

= (z/z
0
)D

x
f
z
(x, y) ,

(2.21a)
than a little suggestive of a relationship to a wavelet transform.

2.4.2 Upward continuation

Define the 2-D Fourier transform by where s=z/z0 . Similarly, the y-component of the 2-D transform
is

f̂ (k)=I[ f ](k)=P
R2

f (x) exp(−2pikΩx) dx , (2.14) W 2[ f
0
](s, x, y)=(z/z

0
)D

y
f
z
(x, y) , (2.21b)

and hence the vector 2-D wavelet transform iswhere x is a 2-D vector and k is the 2-D phase vector. (Note
that k is in cycles per unit length.) Then the Fourier transform W [ f

0
](s, x)= (z/z

0
)V f

z
(x) , (2.22a)

of the Green’s function for the vertical acceleration (for example
where V denotes the 2-D gradient. This equation shows that the

Blakely 1995) yields
chosen wavelet transform of f0 (x, y) at a certain scale s=z/z0
can be obtained from measurements at a level z0 by:ĉ

z
(k)=exp(−2pdkdz) , z>0 . (2.15)
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(1) upward continuing to the level z=sz0 ; 3 APPLICATIONS
(2) taking the 2-D horizontal gradient;
(3) multiplying by the factor s. Edge detection, via multiscale wavelet decomposition, and

generalizations of eq. (2.23) offer a very powerful tool for at
Eq. (2.22a) is the crux of the connection between wavelet

least two major analyses of potential field data: first, estimationtransform theory and potential field theory, especially as it
of the depths and types of singularities in the source distri-relates to gravity. It is also of more than passing interest that
bution; second, automatic generation of ‘worm diagrams’

this forges a correspondence between the horizontal gravity
or skeletonizations. These applications are described in thegradients, and a wavelet transform of an ‘effective planar
following sections.

source’.
Continuing on, we define the modulus of the transform as

the scalar value
3.1 2-D examples

M[ f
0
](s, x)=dW [ f

0
](s, x)d , (2.22b)

Eq. (2.8) gives the general free-air formula for the vertical
where the norm is the 2-D Euclidean distance. Then theorem 1 gravitational attraction in three dimensions. The 2-D case is
can be formulated as follows for the 2-D case (see Appendix A). commonly obtained by assuming that the distribution of

If r(x, y, z∞) [as a function of (x, y)] is LUR(r)=a at density is independent of y; that is, the density distribution
z∞<0, and f d

0
(x, y) is the vertical acceleration generated by extends indefinitely perpendicular to the 2-D vertical section

r(x, y, z)d(z−z∞), then under analysis. There is a minor difficulty with the divergence
of the energy (2.7) in some circumstances, but this is a harmlessM[ f d

0
](s, x, y)≤K(s+s∞)a−1s , (2.23)

divergence typical of an extensive quantity of an infinite system.
where s=z/z0 and s∞=−z∞/z0 . Energy differences (intrinsic quantities) generally remain finite

Note that f d
0
(x, y) is the field at z=0 generated by the

and well defined.
concentrated planar source r(x, y, z)d(z−z∞) and not the field

Integration over y∞ in eq. (2.8) yields
generated by the whole of r(x, y, z). The full field f0 (x, y) is a

superposition of such elementary contributions from all the
planes z∞≤0, and we shall investigate some of the effects of f

z
0

=−2G P2

−2
dx∞ P 0−2

r(x∞, z∞)(z
0
−z∞) dz∞

(x−x∞)2+ (z
0
−z∞)2

. (3.1)
this in due course. A general study of the relationship between

the 3-D Lipschitz regularity of the source and the scaling of
According to eq. (2.21b), the wavelet transform W[ f0](s, x, y)

this 2-D wavelet transform is a matter of some delicacy. We
has a zero y-component and is independent of y. In this case,

have chosen instead to conclude as much useful information
f0 effectively becomes a 1-D signal, and we may take the

as we can by considering the singular behaviour of the field
wavelet transform as

at various depths, rather than tackling the source behaviour
itself. Since there is often a close correspondence between the W [ f

0
](s, x)

singularity in the field on a plane passing through a source
singularity and the source singularity itself, this is often a =−2Gs P2

−2
dx∞ P 0−2

r(x∞, z∞)D
xC (s−z∞) dz∞

(x−x∞)2+(s−z∞)2D .
successful strategy. Another view is that we seek to model the

source as a set of effective planar sources, and attempt to
(3.2)

locate the singularities in these effective sources.
The right-hand side of (2.23) is a function of s, s∞ and a. By In (3.2) we have chosen our units so that s=z, and will

analysing the variation of the wavelet transform as a function continue to do so. (That is, we choose units of length so that
of s, we can obtain estimates of s∞ and a. These estimates lead z0=1.) Eq. (3.2) can also be written either as
to the type of feature in the source (point source, line source,

discontinuous jump or smooth variation), encoded in a, and
W [ f

0
](s, x)=−2Gs P2

−2
dx∞ P 0−2

r
,1

(x∞, z∞)
(s−z∞) dz∞

(x−x∞)2+ (s−z∞)2the depth z∞ of the feature, encoded in s∞.
In particular, it is the edges of (2.22b) (maxima in x and y

(3.3)along gradient streamlines) that are chosen to be the points
at which the wavelet transform is studied. The s dependence

or asof eq. (2.22b) at the edges amounts to the scale dependence of

the ‘sharpness’ of the multiscale edge. We strongly recommend
consultation of Mallat & Zhong (1992) for a more complete W [ f

0
](s, x)=4Gs P2

−2
dx∞ P 0−2

r(x∞, z∞)
(s−z∞)(x−x∞) dz∞

[(x−x∞)2+ (s−z∞)2]2
.

exposition of these matters.
Of course, the simple case of a planar source leading to (3.4)

(2.23) can act only as a guide to the analysis of the actual

situation described by a continuous superposition of planar
sources [as in eqs (2.13) and (2.16) for z0=0]. Much of the

3.1.1 2-D block
following work is devoted to understanding and dealing with

this difficulty by way of explicit examples of great relevance to Consider the case of a 2-D rectangular block, of constant
density, whose density contrast with the surrounding materialthe interpretation of geophysical data. We deliberately avoid

a general mathematical discussion, as it would lead us quickly is unity. The configuration is sketched in Fig. 1.

The 2-D section of the block in the x–z plane is betweenfar from the matters immediately to hand. However, in the
interest of self-containment, we do present some introductory x=0 and x=xmax and between z=z

l
and z=0. Employing

eq. (3.3) for the wavelet transform of the gravity anomaly wematerial in Appendix A.
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This equation tells us that the wavelet maxima are displaced

with respect to the border of the block, the displacement
depending on the values of z

l
, xmax and s.

Fig. 2(a) shows that the displacement of the wavelet maxima

relative to the block border increases almost linearly with s
for narrow blocks, whereas this departure gets smaller as the
width of the block increases. Similarly, Fig. 2(b) shows that

the displacement is larger for thick blocks and increases with
increasing thickness. This confirms previous results presented
by Grauch & Cordell (1987). By substituting the x-value (3.7)

in (3.6a), the variation of the amplitude of the wavelet maxima
(Wmax) at different scales can be obtained.

Plots of the evolution of the wavelet maxima at different

scales for different values of z
l

are presented in Fig. 3. The
plots show a fast increase in Wmax for small s up to a maximum,

Figure 1. 2-D rectangular prism extending indefinitely in the y-direction.

find

W[ f
0
](s, x)

=2Gs P2

−2
dx∞ P 0

z
l

[d(x∞)−d(x∞−xmax)]
(s−z∞) dz∞

(x−x∞)2+(s−z∞)2

=2Gs P 0
z
l

(s−z∞)A 1

x2+(s−z∞)2
−

1

(x−xmax)2+(s−z∞)2Bdz∞ ,

(3.5)

where d(x) is the Dirac delta function. Notice that we are

interested in points of sharp variation, which correspond to
local extremes of the wavelet transform, independent of the sign.
Accordingly, we shall often ignore the sign of the amplitude of

the maxima.
Performing the integration (3.5) yields

W[ f
0
](s, x)=Gs logG (x2+ (s−z

l
)2)[(x−xmax )2+s2]

(x2+s2 )[(x−xmax )2+ (s−z
l
)2]H .

(3.6a)

If the block extends from z
l

to zd (the top of the block is

(a)

(b)

buried at depth zd) then (3.6a) is modified to Figure 2. Displacement of the wavelet maxima (edges) relative to the

border of the causative block: (a) for various values of xmax ; (b) for

various z
l
.W[ f

0
](s, x)=Gs logG(x2+ (s−z

l
)2)[(x−xmax )2+ (s−zd)2]

(x2+ (s−zd )2)[(x−xmax )2+ (s−z
l
)2]H

=2Gs[ log (d
0l

d
md)− log (d0ddml)] , (3.6b)

where the d
jf

are the distances from the point x to the corners
of the rectangular cross-section. [For example, compare with

the results for (infinite) parallelepipeds in Telford et al. (1976),
pp. 72–74.]

The location and behaviour of the wavelet maxima define

the multiscale edges. Their location can be obtained by calcu-
lating the zeros of the first derivative of (3.6a) with respect to

x. The solutions have the form

x={6xmax±
√12x2max−24[s2+ (s−z

l
)2−A]}/12 , (3.7)

Figure 3. Evolution of the amplitude of the wavelet maxima (Wmax )
at different levels above the top of the block for various values of z

l
.where

The scale of the maximum in the curve increases for increasingly

thick blocks.A=√12[s(s−z
l
)]2+[2s(s−z

l
)+x2max+z2

l
]2 . (3.8)
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after which Wmax decreases slowly. The information contained
3.1.3 L ine source

in the location and amplitude of the wavelet maxima can be
used in an inversion procedure to determine the characteristics Long, thin bodies can sometimes be modelled as line sources.

Here we study the wavelet transform of a line source buriedand location of the causative edge or contrast in r(x, y, z). An

example of this approach is presented in Section 4. at depth zd , as sketched in Fig. 5. In this case the result can
easily be read from eq. (3.4):

3.1.2 T ilted dyke W [ f
0
](s, x)=−4Gs

x(s−zd)
[x2+ (s−zd)2]2

. (3.12)

Another common structure used in 2-D geological modelling
Again, the locations of the wavelet maxima are found byis the infinitely thin dyke, as in Fig 4. The equation for the
differentiating (3.13) with respect to x and equating to zero,wavelet transform can be derived from (3.4) as
so that

W[ f
0
](s, x)

x=±(s−zd)/√3 , (3.13)

and the amplitude of the wavelet maxima is given by=4Gs P2

0
dx∞ P 0−2

d(−hx∞−z∞)
(s−z∞)(x−x∞) dz∞

[(x−x∞)2+ (s−z∞)2]2

Wmax=±
3√3

4

Gs

(s−zd)2
. (3.14)

=
2Gs(hx−s)

(1+h2)(s2+x2)
. (3.9)

3.1.4 Summary of 2-D resultsFollowing the same steps as in the previous section, we look
for the locations at which the wavelet maxima occur. The

At this point it is worth reviewing the results of these three
zeros of the derivative of (3.9) with respect to x are

examples in the light of Theorem 1 and the related equations

(2.6a,b) and (2.23). First, we note that the two multiscale edges
described by eqs (3.13) and (3.14) (from the line source) fitx=

s(1±√1+h2)

h
, (3.10)

into the category of a=−1 in eq. (2.23). This is precisely the

value expected from the nature of the singularity in the density
which shows that the locations of the wavelet maxima vary

field, being of Lipschitz uniform regularity −1. Moreover, any
linearly with s. By substituting (3.10) in (3.9) we obtain the

such concentrated source can be expected to yield two multi-
amplitudes of the wavelet maxima:

scale edges, corresponding to the left and right ‘edges’ of the
singularity. We have termed such pairing of multiscale edges

Wmax=
Gh2

√1+h2[√1+h2± (1+h2 )]
. (3.11) ‘dipole edges’. Such edge pairings are often associated with

negative Lipschitz exponents when the first-order wavelets y
s

of the form (2.2) and (2.19) are used.This value depends only on the inclination of the dyke and is
Eqs (3.10) and (3.11) (sheet singularity) are typical of a=0constant at each level above the surface (that is, constant in s).

in eq. (2.23). Indeed, if one takes h� 0, one finds that the leftThis behaviour makes the anomaly from a tilted dyke easily
multiscale edge tends to x=0, while its amplitude remainsdistinguishable from that of the 2-D block. Indeed, eqs (2.6)
non-zero and independent of s. The weaker multiscale edge toand (2.23) indicate that the variation of Wmax with s is the
the right of x=0 becomes weaker and moves off to infinity asprimary distinguishing feature determining the nature of the

singularity in r(x, y, z). Before discussing this matter in greater
detail, let us consider one more 2-D case.

Figure 4. Tilted dyke extending indefinitely in the positive-x and

Figure 5. Line source at depth zd , perpendicular to the x–z plane,the y-directions. The inclination of the dyke is given by the equation

z=−hx. extending indefinitely in the y-direction.
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h� 0. The h=0 case is precisely a step function of Lipschitz

uniform regularity 0 on the plane z=0. Hence the behaviour
as h� 0 is exactly as predicted by (2.23). What our dyke
example has achieved is to show how the behaviour (2.23) is

modified for a tilted planar source. We see the appearance of
an asymmetric dipole edge response, which is indicative of the
dip of the planar source. Nevertheless, the stronger multiscale

edge retains its a=0 character.
Finally, we come to the most complex case, eqs (3.6)–(3.8)

(density jump singularity). This case does not fit into the

Lipschitz classification scheme, and so (in Appendix A), we
make a modest extension to the notion of Lipschitz exponent.
Consider the case of eq. (3.6a) (that is, zd=0). In this case, the
actual vertical acceleration at z=0 (that is, f0 (x) ) has infinite

Figure 6. Singular surface representing the boundary between regionsslope at x=0. This divergence in the slope is logarithmic.
of different density.Consequently, f0 (x) is Lipschitz (1−e) for all small e>0.

However, f0(x) is not Lipschitz 1. The trick for dealing with this
situation is to modify (2.6a) by setting a=1 and introducing
a factor |log|x0−x1d on the right-hand side, which we do in earlier. Eq. (3.16) becomes
Appendix A. Setting x=0 in (3.6a) then gives the satisfying
result

W[ f
0
](s, 0)~K|s log s| as s� 0 ,

V
x
f
z
(x, y)=−G

∂
∂z P

R3

d(f−f
0
)ê
f

n(3) (dx∞)
dx−x∞d

=−G
∂
∂z P

R3

d(f−f
0
)ê
f

dx−x∞(j, g, f)d
J(j, g, f) dj dg df

=−G
∂
∂z P

dV

1

dx−x∞(j, g, f
0
)d

J(j, g, f
0
) dj dg ê

f
0

.

as predicted in Appendix A. The behaviour as s�2 is a
matter of some delicacy. As a result of some remarkable

cancellations, (3.6a) tends to zero (at x=0) as s�2, whenever
xmax is finite. However, the s�2 limit is non-zero if xmax is
infinite, that limit being determined by z

l
. Now f is, locally at ∂V, a path length, so that the Jacobian

J(j, g, f0 ) is the (area) ratio of ddj×dgd to djdg in 3-D space.

Thus J(j, g, f0 ) dj dg is the 3-D metric area of an infinitesimal
element of ∂V. Moreover, ê

f
0

is the unit normal to this area.
3.2 3-D examples

So

We can now extend the previous results to 3-D configurations.

From eq. (2.8), the vertical gravitational acceleration can be V
x
f
z
(x, y)=−G

∂
∂z P

dV

dA∞
dx−x∞d

=G P
dV

(z−z∞) dA∞
dx−x∞d3

.
written as

Scaled by the density contrast, this equation gives the vector
wavelet transform for piecewise-constant density fields in

f
z
(x, y)=−G

∂
∂z P

R3

r(x∞)
dx−x∞d

n(3) (dx∞) (3.15)
terms of the singular surfaces. This expression is geometrical
(coordinate-free) involving normals and areas, independent of
the parametrization.where n(3) is a 3-D volume measure and bold italic symbols

By defining O
z
v=v− (vΩ ê

z
)ê
z
, the projection perpendicularrepresent 3-D vectors. We know that the derivatives with

to the z-axis, the wavelet transform in the 3-D gravitationalrespect to x and y give the wavelet transform, so let us consider
case can be written in one of the formsthe 3-D gradient operator V

x
and select the desired derivatives

by projection. Now
W [ f

0
](s, x, y)=GsO

z P
dV

(s−z∞) dA∞
[(x−x∞)2+(y−y∞)2+ (s−z∞)2]3/2

,

(3.17a)
V

x
f
z
(x, y)=−G

∂
∂z P

R3

r(x∞)V
x

1

dx−x∞d
n(3)(dx∞)

=−G
∂
∂z P

R3

V
x∞

r(x∞)
1

dx−x∞d
n(3) (dx∞) .

(3.16)
which is convenient for piecewise-constant densities, or

W [ f
0
](s, x, y)=Gs P

R3

r(x∞)VC (z−z∞)
dx−x∞d3D

z=s
n(3)(dx∞)

For convenience, suppose r can take only the value 0 or 1,
(3.17b)and define V={x: r(x)=1}. Furthermore, let ∂V denote the

boundary of V, and let it be a regular, rectifiable 2-D set. or
Next we define a local parametrization ∂V={x: x=x(j,g, f0)},

where f is the path length perpendicular to ∂V, and ê
j
, ê
g
, ê
f W [ f

0
](s, x, y)=GsC ∂

∂z P
R3

r(x∞)V
1

dx−x∞d
n(3) (dx∞)D

z=s
,

the corresponding unit normals in the j, g, f coordinate

system (see Fig. 6). We are free to choose the scale of f so that
(3.17c)V

x
r=d(f−f0 )êf . Since we have assumed unit density contrast,

this identifies f as the path length normal to ∂V, as stated which are appropriate for sheet, line and point sources.
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The wavelet transform in x and y can be written as the
3.2.1 3-D block of infinite strike

derivative of the field multiplied by the scale factor. Thus
As an application of eq. (3.17a), we derive the vertical acceleration
due to a prismatic body between z=0 and z=z

l
, of infinite W 1[ f

0
](s, x, y)=4pGa3

xs(s−zd)
[x2+y2+ (s−zd)2]5/2

. (3.21a)
strike in the y-direction. The left border dips with slope −h,
reaching the surface at x=0. The right border is at x=2 From rotational symmetry and eq. (2.22a) it follows that
(see Fig. 7). Once again, we assume a unit density contrast.

Applying eq. (3.17a), we first note that the top and bottom
M[ f

0
](s, x, y)=4pGa3

s(s−zd)
√x2+y2

[x2+y2+ (s−zd)2]5/2
, (3.21b)

surfaces do not contribute, since they are projected away by
O

z
. This leaves the contribution from the dipping plane. We

which defines the modulus of the wavelet transform. We
can parametrize this surface with y∞ and l (see Fig. 7). Given

concentrate our analysis on the plane y=0. The edges can be
the dip of the plane (−h), the element of surface can (dropping

found by equating the first derivative of (3.21a) to zero, yielding
the z-component) be written as

the intersections of the multiscale edges with the y=0 plane,

x=±(s−zd)/2 . (3.22)dA∞=
dy∞ dl

√1+g2 C10D , with g=h−1 . (3.18)

This describes the location of the wavelet maxima at various
Accordingly, (3.17a) becomes levels above the centre of the sphere (Fig. 8). The amplitudes

of the wavelet maxima are found to beW [ f
0
](s, x, y)

Wmax=
64Gpa3

25√5

s

(s−zd)3
. (3.23)

=2Gs P lmax
0

[s−z∞(l)]
[x−x∞( l)]2+[s−z∞(l)]2 C1/√1+g2

0 D dl

These results are valid for any vertical plane passing through
(since z∞ and x∞ are independent of y∞). Performing the the centre of the sphere, and accordingly describe the evolution

of the wavelet maxima in three dimensions. One need onlysubstitution dl=√1+g2 dz∞ then yields
replace x in eq. (3.22) with the cylindrical radial coordinate to
track the general 3-D multiscale edge.

There is a clear interpretation as a=−2 in eq. (2.23), which
W 1[ f

0
](s, x, y)=2Gs P 0

z
l

(s−z∞)
(x+gz∞)2+ (s−z∞)2

dz∞ ,

W 2[ f
0
](s, x, y)=0 .

(3.19)
fits perfectly within the classification scheme established pre-
viously for line, sheet and block sources provided one recalls

It can be verified that the x-component in (3.19) for h=2 that the sphere is equivalent to a point source at its centre. A
(that is, for vertically dipping contact) is equal to the xmax=2 note in passing is that, while the multiscale edges contain
case of eq. (3.5), as it should. enough information to establish the depth and mass of the

spherical body, there is no way of determining its size without

knowledge of the density. This is a consequence of f
z

being a
3.2.2 Sphere

function of ra3 only, and is not in any way caused by the
Consider a sphere of radius a, and centre at z=zd . The vertical wavelet representation.
acceleration at (x, y, z) is

4 INVERSION OF POTENTIAL FIELD
f
z
(x, y)=−

4pGra3

3

z−zd
[x2+y2+(z−zd)2]3/2

, (3.20) DATA IN THE WAVELET DOMAIN

In this section we illustrate one way that the wavelet transformwhere r is the density of the sphere and G the gravitational
can be used for inversion purposes. To this end, a number ofconstant. As usual, we will take the density as unity, and

suppose zd<−a.

Figure 7. Prismatic body of thickness z=z
l
, infinite strike in the

Figure 8. Location of the wavelet maxima at various levels abovey-direction and extending to infinity on the positive x-axis. The slope

of the plane facing the negative x-direction is −h. a sphere.
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2-D synthetic examples of increasing complexity will be pre-

sented. Our objective is to use the information contained in the
wavelet maxima to reconstruct the location and characteristics
of the causative body.

Fig. 9 shows our first model, and corresponding data. It is
a 2-D rectangular block, as in Section 3.1.1, buried to a depth
of 10 m. In order to simulate a modestly realistic experiment,

the horizontal location of the borders of the block do not lie
on grid points at which the gravity profile is calculated, but
are positioned midway between grid points. Also, the gravity

profile was sampled at a spacing relatively coarse (1 m) com-
pared with the width of the body. The relatively coarse spacing
causes inaccuracy in the derivative calculation, while the non-

coincidence with the grid results in errors in the location of
the wavelet maxima. Fig. 10 shows the modulus of the resulting Figure 11. The amplitude of the multiscale edge as a function of
wavelet transform of the acceleration. scale s. The shape of the plot resembles that of Fig. 3, suggesting a

The amplitude of the wavelet maximum as a function of s 2-D rectangular prism as the source.

is plotted in Fig. 11 (G is in units of metres, grams and
seconds). The shape of the curve closely resembles the plot in as a function of s. Minimizing the squared error between
Fig. 3. In fact, we can infer that the causative edge is a density this prediction and the data of Fig. 11 is a four-parameter
contrast caused by the edge of a body of finite extent in the minimization problem. Our first attempt to perform the
x-direction. The simplest assumption is a rectangular prism, inversion, using a local descent method, resulted in unacceptable
and one might try this first. sensitivity to the selection of the initial prism geometry,

Given the width, depth, thickness and density contrast of a indicating that the minimization algorithm was being trapped
prism, the amplitude of the wavelet maximum can be calculated by local minima of the error surface. Consequently, a global

search method was employed, specifically, a genetic algorithm

(GA). See, for example, Boschetti et al. (1996) for details of
the particular implementation used.

In order to assess the variability of the results obtained

from stochastic global inversion techniques like our GA, the
inversion was performed starting from 10 different, randomly
chosen, initial prisms. Table 1 shows the results of the inversion.

The best result together with the average and the standard
deviation of the different runs are presented alongside the

geometry of the prism that generated the data set.
The best solution (second column in Table 1) is a very good

approximation of the true causative body, although there is

no way we could know this in general. The average solution
is the one of interest, as well as the variability of the solutions.
We see that the results from the various GA runs differ quite
substantially, especially in the estimation of the density

Figure 9. Data set employed in the first test. The block width is 30 m,
contrast.

and its thickness is 10 m. The depth to the top is 10 m, and the density
In our second test, the locations of the wavelet maxima, ascontrast with the background is 0.3 g m−3. Above the body we show

well as their amplitudes, are used for the inversion, and thethe gravitational anomaly at various levels.
results presented in Table 2. It can be seen that the variability
of the different GA runs is reduced and the estimation of the

density contrast is more accurate. We also note that only one
of the two multiscale edges was used for these inversions.

In the third test we increase the complexity of the experiment

to simulate a slightly more realistic configuration. Here we
model the presence of a second body, a tilted dyke, in the

Table 1. Results of the inversion of the synthetic data of Fig. 10

using only the wavelet maximum amplitude information. The standard

deviation of the various GA runs is indicated in the right-most column.

Parameter Synthetic Best sol. Av. sol. Std dev.

Width (m) 30 29.5 29.1 2.0

Depth (m) 10 10.8 11.5 1.0

Thickness (m) 10 9.6 8.1 2.4
Figure 10. Modulus of the wavelet transform of the gravitational field Density (g m−3 ) 0.3 0.32 0.40 0.10
caused by the body shown.
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Table 2. Results of the inversion for both the amplitudes and locations (1) we introduce the vertical variation of the field into the
of the wavelet maxima, for the synthetic data set of Fig. 10. picture; and

(2) we study the vertical variation of the horizontal
Parameter Synthetic Best sol. Av. sol. Std dev. derivatives.

Width (m) 30 29.5 29.7 0.3
Moreover, we specifically focus attention on the sharpness of

Depth (m) 10 10.0 10.0 0.2
the multiscale edges as a function of height.

Thickness (m) 10 11.4 11.3 0.6
The multiscale edges form a 2-D manifold that can beDensity (g m−3 ) 0.3 0.28 0.27 0.01

naturally embedded in the 3-D space above the image of the

measured data. If each point of the multiscale edges is coloured
according to the magnitude of the wavelet transform at thatvicinity of the block, as shown in Fig. 12. The presence of the
point, and transparency judiciously assigned, the appearancedyke affects the wavelet transform at both edges of the block.
is not unlike an aurora. (We leave it to the reader to ponderThe resulting inversion of the left block edge is shown in
this similarity in appearance.) It turns out that this infor-Table 3. We can see that the effect of the dyke is to give a
mation amounts to a different representation of the very samemoderately deeper and wider estimation of the causative block.
information as is contained in the shape of the graph ofHowever, the errors are still below 10 per cent, and accordingly
f
z
0

(x, y).the result of the inversion should be considered satisfactory.
Points in favour of the multiscale edge representation of the

information are these. A maximum, when perturbed by some-
5 WAVELET METHODS, INVERSION AND thing slowly varying, tends to remain a maximum, and is
UNIQUENESS therefore not unduly affected by other features, provided they

are not too close. Moreover, the maximum is a property of aThe wavelet methods should not be viewed as some sort of
point (x, y). In contrast, the shape of an anomaly in the graphmagic way of extracting more information from a potential
of f

z
0

(x, y) is a property of an extended region. Consequently,field map (image) than can be obtained from traditional
the determination of the location and amplitude of the waveletmethods. They are merely a different way of recovering the
maxima is an easy task to automate in comparison to thesame information. The essence of what is happening is as
estimation of the shape of the graph of f

z
0

(x, y).follows.
So far, our synthetic inversions seem acceptable when infor-The information about the type of causative edge in the

mation on both the amplitude and location of the waveletsource distribution is encoded in the shape of the graph of
maxima is inverted. The quality of the results is only marginallyf

z
0

(x, y) regarded as a function of (x, y). Information about the
affected by typical discretization inaccuracies, and there alsoshape of the graph of f

z
0

(x, y) is already commonly used to
seems to be some hope of disentangling multiple causativeinfer the characteristics of the causative body (for example
bodies, as discussed in the third experiment above. We alsoTelford et al. 1976). However, the description of the shape of
note that the estimation of the location and characteristics ofan anomaly in the graph of f

z
0

(x, y) first requires that the
the prismatic body were obtained by inverting the informationanomaly be isolated from adjacent ones, and then the para-
from only one of two edges of the anomaly. Thus, in somemeters of its shape estimated. In complex data sets, this can
(admittedly rare) circumstances, there is redundant informationbe a difficult task to achieve; more so to automate.
in the multiscale edges that could be exploited if one edge isBy introducing the wavelet transform we do two things to
disrupted.change this situation:

The issue of the uniqueness of the inversion deserves
particular attention and, in principle, we have the rigorous

results of wavelet transform theory available to tell us what to

expect. A Fourier analysis of the ambiguity domain in potential

field inverse problems can be found in Mareschal (1985) (see
also Boschetti et al. 1998), and the wavelet approach cannot

be expected to ameliorate the fundamental problem demon-

strated there. However, it may illuminate questions regarding

the minimal constraints that render the inverse problem unique,
especially constraints that are awkward to represent in the

z = __ 10 m

z = __ 20 m
width = 30 m

45 degrees

Fourier domain. Nevertheless, a more complete analysis willFigure 12. Model used in the third synthetic test. The experiment has
have to appear elsewhere. Here we will restrict attention tobeen designed to test the effect of the presence of another causative

body (in this case a dyke), in the vicinity of the block. specific points raised in this paper.
The tests presented in the previous section show that

the results from random initialization of the GA convergeTable 3. Results of the inversion of both amplitudes and locations of
towards very similar solutions. This suggests that the problemwavelet maxima for the synthetic profile generated from Fig. 12.

is sometimes unique for piecewise-constant density fields.
Parameter Synthetic Best sol. Av. sol. Std dev. However, our example with the sphere demonstrates that this

cannot be the case in general, even for simple parametrized
Width (m) 30 32.7 32.7 0.2 shapes of constant density. This is not a problem with the
Depth (m) 10 11.0 11.0 0.4

multiscale edge approach, but rather a manifestation of the
Thickness (m) 10 10.1 10.2 1.5

fact that any number of different spheres will yield the same
Density (g m−3 ) 0.3 0.30 0.31 0.05

potential field external to the sphere.
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Nevertheless, for Lipschitz exponents other than −2, we potential field data for quite some time (see, for example,

Blakely & Simpson 1986). Here we use the wavelet transformfound unique inversions when the domain was constrained
to have piecewise-constant density and a simple shape. Such primarily as an edge detection method. The difference is that

we construct multiscale edges that have the advantage ofassumptions are common to many inversion schemes (see

Telford et al. 1976; Blakely 1995), and can be seen as a priori forming the basis for subsequent analysis of the depth and
type of singularity.constraints on the causative body.

While the methodology of assuming some simply para- For geophysical exploration purposes, magnetic maps are

used more commonly than gravity. The greater relativemetrized shape, and inverting for that shape, is an important
approach, overemphasizing it misses what we feel is the main variation of susceptibility and/or magnetization leads to greater

contrast, and some economically interesting minerals have athrust of the method. The strength of the analysis is its ability

to characterize and locate singularities in the density field, be strong magnetic response. When edge detection algorithms are
applied to magnetic maps it is common practice to convertthey compact singular bodies of negative Lipschitz exponent,

sheet-like sources of zero exponent, or geological contacts of them first to pseudogravity (Blakely & Simpson 1986). There

are two reasons for this. First, pseudogravity transformation‘one minus log’ Lipschitz type.
By way of analogy, consider the Werner deconvolution involves reduction to the pole, which reduces directional

anisotropy of the magnetic response to the source distribution.approach (Werner 1953). Part of the analysis seeks some

singular body (a sheet source) that explains a ‘patch’ of the Second, transformation to pseudogravity leads to a single edge
response for each source border, instead of the two edgespotential field measurements. Applications of the method then

collect point estimates of the sheet top (obtained from many present in the raw magnetic data. This difference is due to an

extra differentiation that occurs in the Green’s function for thepatches) to piece together a view of the body causing the
anomaly. In a sense, the wavelet method extends the Werner total magnetic anomaly measurement (Telford et al. 1976),

which is in turn a consequence of the dipolar nature ofdeconvolution method to a wider class of singularities, along

the lines of a Euler deconvolution. Just as the singularities of magnetic sources.
While the pseudogravity transformation includes a numberthese traditional methods can be used to infer the possible

positions of causative bodies, so also can the point, line, sheet of assumptions that are not generally valid, it allows a simple
wavelet analysis on this type of data. A combination of upwardand contact singularities located by the wavelet analysis, and

perhaps to better effect. continuation and the analytic signal represents an alternative

approach, while the magnetostatic scalar potential and its relation
to the ‘monopole density’ (divergence of the magnetization) is

6 AUTOMATIC SKELETONIZATION OF
yet another possibility.

REAL DATA
The automatic edge detection algorithm has been applied

to the aeromagnetic data shown in Fig. 13. We see some strongIt has already been noted that most current analysis of
potential field data is carried out visually by experienced geo- magnetic anomalies emerging from a mostly flat background

in which structure cannot be discriminated easily. Fig. 14scientists, and is directed towards the detection of geological
contacts, faults and other features that are well characterized by shows the edges detected by the algorithm at the finest scale.

Not only are the major features in the data well defined bysingularities in the source distribution. This process is equivalent

to edge detection, and such algorithms have been applied to the edges, but the algorithm is also able to detect features in

Figure 13. Greyscale interpolated aeromagnetic data for a region near St Arnaud, Victoria, Australia.
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Figure 14. Multiscale edges calculated from the pseudo-gravity transform of Fig. 13 at scale s=1 (z=z0).

the flat background that are not easily seen in the original that nevertheless persist to larger scales. Although Wmax is not
shown in Fig. 15, some of these edges are becoming strongerimage, and are quite invisible in the pseudo-gravity transform

from which the wavelet transform derives. (in the sense that Wmax is still increasing with s) at s=5.

Recall that these multiscale edges represent boundaries, orFig. 15 shows the multiscale edges at s=5. We see that
much of the fine detail has decayed away, and that only some edges in the upward continuation of the field. This allows us

to make a connection with ‘depth slicing’ or separation filteringedges survive. However, it is also apparent that the amplitude

of the variation in the original image is not the sole determinant techniques. The separation filtering view of the upward con-
tinuation operator is that it is the product of two successiveof whether an edge survives or not. Indeed, it is the type of

singularity and its depth that determines the decay of the edge steps. First, a separation filter is applied to the signal at s=0
to eliminate the spectral content due to shallow sources aboveas a function of s, and this can lead to weak edges at s=1

Figure 15. Multiscale edges calculated from the pseudo-gravity transform of Fig. 13 at scale s=5 (z=5z0).
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z=−s. It is generally argued that the optimal such filter is due to a deep source with a negative Lipschitz exponent.

the upward continuation operator to height 2s. This filtered However, the separation filtering view would regard the decay
signal is then regarded as an approximation to the field at of the field anomaly associated with the edge as being indicative
s=0 arising from sources below z=−s. Second, this filtered of a shallow feature. More generally, our analysis demonstrates
signal is downward continued to depth z=−s. The nett filter that the apparent depth of features obtained from the ‘depth
is upward continuation to height z=s, which is then inter- slicing’ method is determined as much by the Lipschitz con-
preted as an estimation of the field at z=−s after stripping tinuity of the variations in the source as it is by the depth of
the sources above z=−s (for example Jacobsen 1987). Thus the source variation.
our multiscale edges at a given scale s can be viewed (in the Maps similar to Figs 14 and 15 have already been produced
separation filtering interpretation) as the edges present in this for exploration purposes in other areas of Australia, and
notional field at depth z=−s. the reaction of experienced interpreters has been positive. If

In the separation filtering interpretation, the spectral content nothing else, these maps represent boundaries of features in
of the signal is thought to arise from some form of random- the domain of downward-continued separation filterings, and
phase, linear superposition of effects arising from an ‘ensemble’ for this reason have a look familiar to interpreters. The next
of possible sources. While this view has merit when considering challenge is to present these multiscale edges in a way that
statistical quantities, such as spectral averages, it is consider-

illustrates the information about the source structure in an
ably less well justified as a view of all filtering operations of

intuitive and comprehensible way.
an image. A data image is, after all, but one realization drawn

As a first step towards a multiscale edge inversion tool, 3-D
from the set of all possible fields that could arise from the

renderings such as Fig. 16 have been produced. Here, the edges
ensemble that is (tacitly) assumed to underlie the analysis.

produced at different scales are stacked one upon the other,
Spectral averaging makes up for this rather dramatic lack of

and the amplitude of the wavelet extrema mapped with different
instances (one) by replacing ensemble averages with spectral

colours. This representation of the multiscale edges overlies a
averages (a kind of ergodicity). Not all manipulations in the

3-D relief rendering of the magnetic map. The vertical variationFourier domain admit such an interpretation. In general, it is
of the colour of the edges reflects the amplitude variation ofan error to confuse the spectral properties of a stochastic
the multiscale edge as a function of s, and different stylesprocess with the spectral properties of a single instance of the
of colour variation correspond to different types and depths ofprocess unless the spectral property is a statistical quantity
source variation. The maximum scale edges shown in Figs 16being estimated on the basis of an ergodic hypothesis.
and 17 are at (approximately) s=64 (800 m). The edges haveOur results for the strength and persistence of edges in the
been restricted to this range to minimize clutter. The edgesupward continuation are rigorous results pertaining to deter-
were actually calculated up to z=10 km (the whole area isministic features of the source. That is, we interpret the spectral
approximately 75 km wide). At very large scales, the edgescontent of the signal as arising from a single instance of a
simply separate the high-amplitude regions of the map fromsource distribution, which is of course the actual situation.
low-amplitude regions, and probably do not correspond toThis difference in worldview leads to different conclusions
any singularity in the source. Research directed towards thebased upon the same data and processing technique. For

example, the rapid decay of an edge as s increases could be steady refinement of such tools is ongoing.

Figure 16. Perspective relief view of the data of Fig. 13 with the multiscale edges suspended in the space above the image. Increasing height above

the image represents increased s, in the natural way. The amplitude of the multiscale edge (Wmax) has been mapped to colour. In this case, blue is

low and red is high. The view is from the lower half of the left hand edge of Fig. 13 looking down and slightly to the north of due east.
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Figure 17. Perspective relief view of the data of Fig. 13 in the same style as Fig. 16. The view is from near the right-hand end of the bottom edge

of Fig. 13, looking down and northwest.

the improved interpolation of the flight line or traverse data
7 CONCLUSIONS

used to construct the data image f
z
0

in the first place.
Having already summarized most of our results in Sections Let us hypothesize that we have an image arising from some
3.1.4 and 5, we will devote this section to speculation based boundary (call it the main edge), cross-cutting a set of smaller
upon the foregoing. edges or features. Then the multiscale edges can be expected

First, let us make a clear distinction between the reconstruction to interact and distort each other. Suppose that the general
problem and the inversion problem. By reconstruction we mean behaviour of the main edge is clear enough that the correspond-
the recovery of f0 (x, y) from a subset of the values of the ing multiscale edge can be isolated and smoothed (even
wavelet transform W [ f0](s, x, y), while the inversion problem extrapolated to smaller scale!). Then an image could be con-
is the recovery of r(x, y, z). structed from the smoothed, interpolated edge in isolation.

The recovery of f0 from the wavelet transform is demon- This image could then be subtracted from the original image,
strated in Appendix B, where it is also shown that a discrete and the resulting smaller features possibly examined free from
sampling of the scale parameter is also exactly invertible. That the effects of the main edge. This is just one example of the
the latter is possible demonstrates the redundant information many possibilities on offer. The method is, in every respect,
content of the wavelet transform, as is apparent from the fact as much a signal processing technique as it is a physical
that the domain of W [ f0] is 3-D, while the domain of f0 is

theory and basis for inversion. We find this combination quite
2-D. This suggests that knowledge of W [ f0] on some 2-D

compelling.
submanifold of the (s, x, y) domain may be sufficient to recon-

Our preliminary results on the reconstruction issue are
struct f0 . A candidate for such a 2-D submanifold is the set

showing some promise. The particular wavelets we are using
of multiscale edges defined by the wavelet transform. Were this

are non-compact, non-orthogonal, non-discrete, and cannot
to be the case, it would imply that, like the Fourier transform,

be expressed as a product of functions of x and y. This makes
the multiscale edges re-package the information contained in

them quite unlike anything of current interest in the wavelet
the image f0 . We have already outlined (in Section 2.1) our

literature. (Indeed, they seem to have been constructed byreason for suspecting the existence of such an inversion—let
placing the word ‘not’ in front of every adjective describingus discuss here the consequences in greater detail.
the current focus of study.) However, they are analyticWhile the Fourier transform illuminates the harmonic con-
(harmonic) and invariant under Euclidean metric preservingtent of the function f0 , the multiscale edge representation
transformations. Analyticity is proving to be advantageous forhighlights the positions and types of singularities in the source
the reconstruction from subsets of the wavelet domain, whiledistribution. Carrying the analogy further, the multiscale edge
symmetry of the wavelets is leading to particularly neat resultsrepresentation could be used for filtering and processing the
regarding the generation of the reconstruction wavelets fromimage, just as Fourier analysis is currently used. The difference
a single ‘mother’ wavelet. We demonstrate the utility of theis that the multiscale edge processing would facilitate filtering
rotation invariance in Appendix B, where we derive the waveletaccording to feature type rather than according to frequency
inversion transformation from a geophysicist’s perspectivecontent. This possibility opens the door to a range of appli-
(from the convolution theorem rather than the frame approachcations, including data compression, feature extraction, stable

downward continuation, layer stripping inversion, and even that appeals to mathematicians). This derivation is even easier
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than for the case of product wavelets, and does not require In the case of the Euler method, it is possible to invert also

for the ‘structural index’ (see, for example, Thompson 1982).the signal’s analyticity.
The inversion problem (recovery of r) is well known to be Indeed, there would seem to be some relationship between

the structural index of the source and the Lipschitz regularitynon-unique, even given complete knowledge of f
z
(x, y) for

some z in ‘free space’. Indeed, it is quite straightforward to of the source. A simple view of the structural index is that it
is the exponent governing the rate of decay with distancecharacterize all the density distributions that could yield a

given f
z
(x, y). Consider a discrete formulation of the problem. from the source. In the case of gravitational acceleration, the

acceleration decays as the inverse square of the distance to aIf f
z
(x
i
, y
j
) is given on an m×n grid, then this leads to mn

linear constraints on the Fourier coefficients of the discrete point source. Hence a point source has a structural index of
two in this case. It is easy to see that the structural index isvoxel representation r̂(k

x
i

, k
y
j

, z
k
). This is enough information

to determine only mn values of r̂(k
x
i

, k
y
j

, z
k
) (the equivalent of influenced by two factors. First, there is the rate of decay of

the Green’s function with distance. Second, there is the rateone layer of voxels at the same horizontal resolution as the
data image). The inversion for p layers of voxels can proceed of increase of source material within the field of influence of a

Green’s function that broadens with increasing distance toby searching the set of ( p−1)mn solutions in order to find
one that matches other constraints (for example, realistic source. So, for a line source, the gravitational acceleration

Green’s function decays as the inverse square of distance, butdensity values or independent drill-hole data) or is in some

sense the most likely according to a priori information. The the amount of source material to be found within the field of
influence of the Green’s function is increasing as the first powerproblem is that such constraints and likelihood, while often

easily expressed in the spatial representation [r(x
i
, y
j
, z
k
)], are of the distance. The nett result is an acceleration that decays

as the inverse first power of distance, and hence a structuralvery awkward to express in the Fourier domain, which is
where the search for solutions is best carried out. index of one for a line source. The numerical similarity to the

Lipschitz regularity is apparent.The wavelet representation offers a couple of possibilities

here. First, the source singularity information gleaned from The forgoing indicates that the structural index corresponds
to the exponent governing the rate of decay of our smoothingthe multiscale edges (that is, edges in the source) could

conceivably be used to set an a priori likelihood function on function convolution, [ f *h
s
], as a function of s. Now note

that, in eq. (2.2), we differentiate the smoothing function tothe variation of the source. For example, penalizing variations
in the source intensity at points in space not associated with form the basic wavelet, and then scale the wavelet in (2.4) to

form the wavelet family. The order of the differentiation andedges would amount to a (soft) constraint tending to make the
source variation piecewise-constant. In addition, wavelets are, scaling is important. The effect of doing the derivative first is

the extra factor of s that multiplies the gradient in the formulaby nature, quite localized in space. Consequently, spatially

local constraints are slightly easier to express in the wavelet (2.5) for the wavelet transform. The upshot of this is that the
wavelet transform amplitudes always scale the same way asdomain than in the Fourier domain. This observation is less

useful here than it might usually be, since the wavelets we are the smoothing function convolution. Indeed, if we were to go

to second-order wavelets, we would differentiate the smoothingusing have non-compact support. Nevertheless, there may be
some merit in expressing both the constraints and the search function twice, and then scale the resulting functions. This means

that our wavelet transforms always scale in a manner deter-space in the wavelet basis (a consideration which led us down

this path in the first place). mined by the source and the smoothing function, independent
of the order of the transform.More conventionally, inversion of potential field data seeks

an indication of depth, extent and type of source structure Let us contrast this with the structural index. When dealing

with dipole sources, one observes an inverse cubic decay ratebased upon the observed field anomalies. Does the current
wavelet analysis bear any relation to these techniques, and for a ‘point dipole’. Thus, the structural index of the dipole

point source is taken as three. This is more a consequence ofdoes it illuminate them in any way? We have mentioned the

similar aims and spirit of this analysis, and the Werner- and the fact that the Green’s function of the dipole field is the
gradient of the Green’s function of the monopole field than itEuler-based methods. As in the Euler method, the type of

singularity located by the wavelet analysis can be an output is a characteristic of the source (although we concede that this

point is moot). In fact, the structural index in this case hasof the method—in our case, to be deduced directly from the
behaviour of Wmax . In contrast, Werner-based methods treat been obtained by observing the decay rate of a differentiation

of the monopole field. This is what we would obtain from thethe type of singularity as an input (for example Hartman et al.
1971). We also note in passing that the method outlined by wavelet-style analysis were we to first scale the smoothing

function, and then differentiate to obtain the wavelet basis. InNaudy (1971) is algorithmically quite similar to the current

method. In particular, the cross-correlations used by Naudy effect, we would lose the factor of s multiplying the gradient,
and the relationship between the source Lipschitz regularityare closely related to the smoothing function convolution in

eq. (2.5). In our present work, we use the Green’s function and the wavelet decay rate would be disturbed.

The structural index is also related to the degree of homo-(point-source response), scale the Green’s function according
to depth, convolve with the image (or profile), differentiate, geneity of the observed signal or field measurement. In this

connection, the relationship between the behaviour of theand adjust the gradient by a factor s to yield the wavelet

transform. By contrast, Naudy uses the response of some Poisson-based wavelet transform, and the structural index has
recently been pointed out by Moreau et al. (1997).assumed source geometry (sheet), scales the profile according

to depth (by re-sampling), cross-correlates, and does not We see that re-casting potential field theory into wavelet terms

yields novel signal processing methods, illuminates traditionaldifferentiate. The relationship is clear. The cross-correlations
calculated by Naudy are nearly equivalent to our smoothing deconvolution methods, and offers some possibilities for further

progress in the area of full inversion and data fusion. Whateverfunction convolution [ f *h
s
].
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function ‘non-differentiable’ de Riemann, in L es Ondelettes en 1989,
V
I
(F )=sup

{x
i
}
∑
i
|F(x

i
)−F(x

i−1) | , (A1)pp. 102–123, ed. P.G. Lemarie, Lecture notes in Mathematics,

Springer-Verlag.

Hummel, R. & Moniot, R., 1989. Reconstructions from zero crossings where the supremum is over all such subdivisions of I. If
in scale space, IEEE T rans. on Acoustics, Speech and Signal

N(F, I, y) is the (possibly infinite) number of values x in an
Processing, 37, 2111–2130.

interval I5 (a, b) such that F(x)=y, then
Hwang, W.-L. & Mallat, S., 1993. Characterisation of self-similar

multifractals with wavelet maxima, T echnical report 641, Courant

Inst. of Math. Sci., Comp. Sci. Department, New York University, V
I
(F )=P

f(I)
N(F, I, y)n1(dy) , (A2)

New York.
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whenever F is continuous. (n1 is the usual Lesbegue measure multifractal sources being a special case (Hwang & Mallat

1993). Moreover, it is possible to define ‘Lipschitz exponents’in one dimension; for example Federer 1969, p. 177.) However,
we have already established that if LUR(F)µ(0, 1] then F greater than unity in terms of polynomial approximations, and

to generalize the present results further (Jaffard 1997).is continuous, can be extended to the closed interval, and

that its image has finite Lesbegue measure. Suppose that The above discussion was for functions and measures of a
single variable. However, we have kept the language generalN(F, [a, b], y) is finite for almost all y. If this is the case then

V
[a,b]

(F) is finite and hence F is of bounded variation on [a, b]. enough to make the passage to higher dimensions reasonably

clear, provided one does not attempt to be too general. In aSummarizing, if LUR(F)µ(0, 1] then F is continuous on the
closed interval [a, b] and moreover, if it does not oscillate too bounded singly connected open domain of Rn we require
much, it is also of bounded variation.

| f (x
0
)− f (x

1
) |≤Cdx

0
−x

1
da , (A6)

The set of linear functionals on the real line is isomorphic
to the real line, and hence the real numbers are reflexive as a where dxd is the usual Euclidean norm in Rn. If aµ(0, 1] then
Banach space. Under these conditions (bounded variation over f is again uniformly continuous, and extends to a continuous
a reflexive Banach space), there exist Borel regular measures function on the closure of the domain. It is also worth noting
m+
F

and m−
F

such that that the previous discussion applies to each line segment in
the domain.

With the above as background we make a slight modificationF(x)−F(a)=m+
F

([a, x])−m−
F

([a, x])=P
[a,x]

dF , (A3)
to the forward inference in Theorem 1 for the case of a
logarithmic singularity in the first derivative of the function

where the integral is understood in the Riemann–Stieltjes sense. being transformed. We also consider more than one dimension.
Stated in physical terms, a function F such that LUR(F)µ(0, 1]

T heorem 2. Let a real-valued function f satisfy the conditionand of bounded variation induces a source distribution that
can be denoted by dF, and the associated field can be under-

| f (x)− f (y) |≤Cdx−yda |logdx−yd |b , (A7)
stood in terms of the Riemann–Stieltjes integrals of the Green’s
function with respect to dF. where aµ(0, 1] and bµ{0, 1} then

The m±
F

are absolutely continuous with respect to Lesbegue

measure if and only if F is absolutely continuous (Federer
M[ f ](s, x)≤GK

1
sa b=0

K
1
sa |log(s) |+K

2
sa b=1

. (A8)
1969, pp. 164–166). In the absolutely continuous case we can
define the density

The demonstration of Theorem 2 follows closely that of
Theorem 1 (Holschneider & Tchamitchian 1989).

f =F
,1
=

dm+
f

dn1
−

dm−
f

dn1
, (A4)

Consider the wavelet y such that ∆y dx=0. Then

where the derivatives are in the Radon–Nikodym sense. This
W [ f ](s, b)=s−1 P

Rn

y[(x−b)/s] f (x) dx
density Lesbegue integrates back to F, making it a valid
candidate for the derivative of F. Mixing various notations

with which the reader may be more familiar, we have =s−1 P
Rn

y[(x−b)/s][ f (x)− f (b)] dx . (A9)

m+
F

(dx)−m−
F

(dx)=F
,1

n1(dx)=D
x
Fdx= f dx=dF . (A5)

Taking the norm of both sides, bounding the right and inserting
One can view the Lipschitz condition as a condition on (A7), and then making the substitution
the first derivative of F (when it exists). Substituting

u(x)=s−1 (x−b) , (A10)|F(x1 )−F(x0 ) |=| f (j)dx1−x0 | (for some jµ[ x0 , x1]) in the

Lipschitz condition yields a bound of a−1 on the exponent one finds
governing any divergence of the first derivative f of F (when
it exists). This same number (a−1) is taken as the Lipschitz

exponent of f , as outlined in Section 2.3. In the case when the
first derivative does not exist in the conventional sense, we
associate the exponent a−1 with dF, and the measures m±

F
.

That is, LUR(dF)=LUR(m±
F

)=LUR(F)−1. Even if F is not
absolutely continuous, (2.6a) can still be used to bound m±

F
with a Hausdorff measure of dimension a, and so dF can be
expressed as some superposition of fractional dimensional

M[ f ](s, b)=Ls−n P2

−2
[ f (x)− f (b)]y[(x−b)/s] dxL

≤s−n P2

−2
d(y0u) (x)d | f (x)− f (b) | dx

≤C P2

−2
d(y0u) (x)ddx−bda |logdx−bd |bs−n dx

=C P2

−2
dy(u)ddsuda |logdsud |b du

≤Csa P2

−2
dudady(u)d ( |log (s) |+|logdud |)b du

=GK
1
sa b=0

K
1
sa |log(s) |+K

2
sa b=1 .

measures of dimension bounded below by a. Indeed, the right-

hand side of (2.6a) can be replaced with Ch( |x0−x1 | ) for some
suitable positive function h vanishing at zero, increasing and
right continuous, the functions h(l )=la being a special case

(Rogers 1970). In this more general setting, the ‘dimensionality’
of the source is parametrized by functions h (or, more correctly,
by equivalence classes of functions) rather than by a single

number.
The above indicates that the wavelet methods can be used

to study much less regular sources and field configurations, (A11)
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Let us now consider densities with negative exponents, first that

in the 1-D case. Suppose LUR(F)= (a+1)µ(0, 1] and that F
has bounded variation. Then integrating by parts and applying
a 1-D version of the substitution (A10) to the Riemann–Stieltjes

integral (noting also that ∆y,1 dx=0, we find

M[m](s, b)=Ls−n P
E

y0um(dx)L
≤s−n P

E
dy0udm(dx)

=s−n P2

0
m(r/s) dF

b

≤s−n KP2

0
F(b, sv)m

,1
(v) dvK

≤Csa P2

0
vn+a |m

,1
(v) | dv

=Ksa ,

(A16)

|W[dF](s, b) |=s−1 KP2

−2
y0u dFK

≤s−1 KP2

−2
Fd(y0u)K

=s−1 KP2

−2
F0u−1 dyK

=s−1 KP2

−2
F(su+b)y

,1
(u) duK

=s−1 KP2

−2
[F(su+b)−F(b)]y

,1
(u) duK

≤s−1 P2

−2
|F(su+b)−F(b)dy

,1
(u) | du

∏Csa P2

−2
|y
,1

(u)du|a+1 du

=Ksa .

(A12)

provided the boundary terms in the integration by parts vanish,
and that the various integrals converge.

It remains to clarify the relationship between these results
and eq. (2.23). First, let us consider the vertical acceleration
f d
z
(x, y) at height z generated by a planar source r(x, y, z)d(z−z∞)

at depth z∞<0. Let us consider a wavelet transform of the
planar source based upon scale zero coinciding with z=z∞
rather than z=0. Then, if the planar source has Lipschitz

uniform regularity a it follows from the forgoing that

This is consistent with the definition LUR(dF)=LUR(F)−1.
z−z∞

z
0

dV f d
z
d≤KAz−z∞

z
0
Ba . (A17)

Our final task is to give an indication of how this last

manipulation can be generalized to n dimensions. Rather than
Introducing s=z/z0 and s∞=−z∞/z0 as in (2.23), and after

attempt anything fancy, we will make a simple and direct
some minor rearrangement, (A17) becomes

assumption about the distribution of source material that

allows immediate application of (A12). dV f d
z
d≤K(s+s∞)a−1 . (A18)

Suppose that m is some Borel regular measure, and define
Moving zero scale back to z=0, and considering the z=0the function F by
based wavelet transform of the acceleration f d

0
at zero height,

we find from the fundamental relations (2.22a,b) that
F(b, r)=m(B(b, r))=P

EmB(b,r)
m(dx) , (A13)

M[ f d
0
](s, x)= (z/z

0
)dV f d

z
d

≤K(s+s∞)a−1s ,
(A19)

where E is the support of the measure and B(b, r) denotes a
closed ball centred at b of radius r. Such an F is clearly a non-

which is just (2.23). In essence, we have used the wavelet
decreasing function of r, and can be used to define an integral

scaling result to infer the way that dV f d
z
d scales with distance

on the positive real line, which we will denote by ∆2
0

dF
b
. This

from the causative singularity, and then used the relationship
integral is the one induced on the radial coordinate under

between the z=0 based wavelet transform and the gradient
transformation of the m integral to polar coordinates about b.

to ascertain the scaling behaviour of the z=0 based wavelet
Let us suppose that

transform of f d
0

(in the absence of other sources of course).
Note also the underlying consistency here. Even if the planarF(b, r)≤Crn+a (A14)
source has negative Lipschitz regularity, the field f d

0
at z=0

is smooth. This is consistent with the s dependence of (A19),in some connected domain of Rn. Then we can consider the
which predicts vanishing wavelet amplitudes as s goes to zero.Lipschitz uniform regularity of m in a domain as the maximum
However, the mark of the singularity at z=z∞ underlying thea satisfying (A14) for all B (b, r) in that domain. In this case
smooth field at z=0 is still betrayed in the behaviour of (A19),we define LUR(m)=a. The case LUR(m)=−n is intended to
and might also be coaxed out of hiding by taking a differentassert that m has atomic measure contributions.
definition of zero scale. Such an endeavour would firstNoting that dy(x)d is invariant under rotations (by virtue
require that all other singularities in the field that lie above z∞of the symmetry of h) we can define
be removed before attempting to calculate the new wavelet
transform based upon zero scale at z∞.m(r)=dy(rn)d , (A15)

This leads to our current research, which seeks to identify
which is the same function of r, independent of the unit vector zero and negative Lipschitz regular sources at z=0, isolates
n. We also note that lim

r�0 m(r)=0. By first transforming to these features, reconstructs the signal corresponding to just
these features, and subtracts these sources’ effects from thepolar coordinates about b, then integrating by parts we find
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original data. The residual data, with the shallow sources pivotal importance of the rotational symmetry of the integrand,

stripped, might then be suitable for the construction of wavelet the scaling property dŷ
s
(rk)d2

C2
=dŷ

rs
(k)d2

C2
and the way the

transforms whose zero scale is below the z=0 plane. This measure ds/s does nothing to disturb the integral under a
process of stripping away sources can in principle be repeated. change in scale. These factors work together to make the
The idea is not as difficult to implement as it first appears, integration possible, and, moreover, lead to a scale-invariant
since the multiscale edges undergo a characteristic ‘trifurcation’ Y . See, in particular, Kaiser (1994) for less stringent conditions
at the depth corresponding to the source position. This charac- on Y that nevertheless lead to ‘nice’ inversion formulae, and
teristic topological behaviour, together with the tell-tale scale conditions on the basis, and s-measure that lead to these
behaviour of the multiscale edges, makes simple singularities inversions.
rather easy to pick. Performing the inverse Fourier transform yields

APPENDIX B: INVERSE WAVELET f
0
(x)=4 P2

0

ds

s P
R2

(y
s
(u−x), W [ f

0
](s, u) )

R2
du . (B6)

TRANSFORM

In this appendix, we present a very simple derivation of the The reconstructing wavelet [ys,u (x) in Kaiser’s notation]
inverse wavelet transform. We have taken the derivation from associated with scale s and point u [ys,u(x)=4y

s
(u−x) in (B6)]

Kaiser (1994), re-cast it in the language of convolutions, and is, up to a constant factor, just the original analysing wavelet
made some simplifications that arise in the case of Euclidean

[y
s,u

(x)=y
s
(u−x)]. More generally, the reconstructing

symmetry of the smoothing function.
wavelets are given by

Taking Fourier transforms of the basic wavelet transformation
equation, we find that

ŷs,u(k)=Y (k)−1ŷ*
s
(k) exp(−2pikΩu) , (B7)

Ŵ[ f
0
](s, k)=ŷ

s
(k) f̂

0
(k) . (B1)

which are not always expressible as translations and scalings
One begins by removing the vector nature of (B1). Taking of a single function when Y is not constant. (Note that y*
inner products, one finds denotes the complex conjugate of y.)

One can go on to calculate the reproducing kernel for the(ŷ
s
(k), Ŵ[ f

0
](s, k) )

C2
=dŷ

s
(k)d2

C2
f̂
0
(k) , (B2)

wavelet transform function space, whose defining property is

where the inner product and norm are the usual Euclidean
norm of 2-D linear vector spaces over the complex numbers.

Ŵ[ f
0
](s∞, k)=P2

0
K̂(s∞, s, k)Ŵ[ f

0
](s, k)

ds

s
. (B8)Clearly, we could divide (B2) by the factor dŷ

s
(k)d2

C2
, and

play all the usual tricks (which hardly ever work very well ) to
deal with possible division by small numbers. A neater trick is

The matrix-valued kernel has matrix elements
to integrate both sides over s, thereby dramatically reducing

the chances of dividing by zero. That is,
[K̂(s∞, s, k)]a

b
=ya

s∞
(k)Y (k)−1ŷc*

s
(k)g

cb
, (B9)

P2

0
(ŷ
s
(k), Ŵ[ f

0
](s, k) )

C2
ds

s
=P2

0
dŷ

s
(k)d2

C2
f̂
0
(k)

ds

s
. (B3) where the metric tensor g is Euclidean in the present case. In

the spatial domain with constant Y , one obtains
Inversion practitioners might like to add this to their bag of

tricks. The simplicity is a little misleading, as there are a few
Ka
b
(s∞, x∞|s, x)=4 P

R2

ya
s∞
(x∞−u)yb

s
(x−u) du . (B10)steps to be negotiated yet, and we have already engaged in

a little ‘rabbit pulling’ in our choice of the measure ds/s.

The choice relates to invariant measures on a product of the
One of the most useful properties of the reproducing kernelsymmetry group of the wavelet and the scaling group (for

is that it is an orthogonal projection into the space of waveletexample Kaiser 1994; Federer 1969). Continuing,
transforms, and can therefore be used to find a function whose

wavelet transform is the nearest (in the L 2 sense) to some
f̂
0
(k)=Y (k)−1 P2

0
(ŷ
s
(k), Ŵ[ f

0
](s, k) )

C2
ds

s
, (B4) desired form (for example Kaiser 1994).

Finally, consider the case when the wavelet transform is
where known at a discrete set of scales

s
m
=sm , s>1 . (B11)

Then for some function g which is integrable in the following

Y (k)=P2

0
dŷ

s
(k)d2

C2
ds

s

=P2

0
4p2sdkd2 exp (−4pdkds) ds

=
1

4
.

(B5) sense, we have

P2

0
g(s)

ds

s
=P2

0
g(s) d( log s)

# log (s) ∑
2

m=−2
g(sm ) ,

(B12)
It is in arranging for the identity (B5) that one makes
the various choices mentioned earlier. Note in particular the
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where the summation approximation is just the Riemann terms of elementary functions we get

sum corresponding to the integral. Repeating the previous Q
c
(b)

derivation, but summing (B2) over discrete scales in the manner
of (B12) instead of integrating, one finds that

f̂
0
(k)= log (s)Y

s
(k)−1 ∑

m
(ŷ
sm

(k), Ŵ[ f
0
](sm, k) )

C2
. (B13) =

1

4
+

1

2
∑
2

j=1 A2p2

c
jA1+ 4p2

c2
j2B

sinhA2p2

c
jB B1/2 cos[2pjb+Arg (C

j
)] .

Note that this is exact. The fact that the summation is an

approximation to the integral is irrelevant to the fact that
(B17)(B13) follows as an identity from (B2) after summing both

sides. The function space basis metric is now For s=e, the first non-constant term is already O (10−3), and
the terms decrease very rapidly with j. They also vanish rapidly

Y
s
(k)=log (s) ∑

m
dŷ

sm
(k)d2

C2
, (B14)

as c tends to zero (i.e. s approaching 1). For our purposes,

where geophysical processes such as upward continuation are
which is a self-similar, scale periodic function. The first step is

seldom within 5 per cent of the actual value, Y
s
(k) is as good

to apply a logarithmic transformation to extract a normal
as constant for any reasonable choice of s. If we approximate

periodic function from the scale periodic function. The periodic
Y
s
(k) with its continuum value of one-quarter, we again obtain

function then possesses a Fourier series expansion. Some
a set of inverse wavelets from scalings and translations of a

welcome cancellations occur in the evaluation of the series
single pair of wavelets. We conclude by simply quoting the

coefficients, and the final result requires the evaluation of
results for the inverse transformation and the reproducing

an elementary looking, but very stubborn integral. The final
kernel in the case of discrete scale:

result is

f̂
0
(k)=−

2pi log (s)

Y
s
(k)

∑
2

m=−2
sm

Y
s
(k)=Qlog(s)A log (4pdkd)

log (s) B , (B15)

×exp[−2psmdkd](k, Ŵ[ f
0
](sm, k))

C2
(B18)

where the corresponding periodic function’s Fourier series is
and

Q
c
(b)=

1

4
∑
2

j=−2
CA2− 2pj

c
iB exp (2pijb) (B16) [K̂(m∞, m, k)]a

b
=

4p2 log (s)

Y
s
(k)

k
a
k
b
s(m+m∞)

×exp[−2p(sm+sm∞ )dkd] . (B19)and C is the gamma function. Writing the gamma function in
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