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A fractal-based algorithm for detecting
first arrivals on seismic traces

Fabio Boschetti*, Mike D. Dentith‡, and Ron D. List**

ABSTRACT

A new algorithm is proposed for the automatic pick-
ing of seismic first arrivals that detects the presence of a
signal by analyzing the variation in fractal dimension
along the trace. The “divider-method” is found to be the
most suitable method for calculating the fractal dimen-
sion. A change in dimension is found to occur close to
the transition from noise to signal plus noise, that is the
first arrival. The nature of this change varies from trace
to trace, but a detectable change is always found to
occur. The algorithm has been tested on real data sets
with varying S/N ratios and the results compared to
those obtained using previously published algorithms.
With an appropriate tuning of its parameters, the frac-
tal-based algorithm proved more accurate than all these
other algorithms, especially in the presence of significant
noise. The fractal method proved able to tolerate noise
up to 80% of the average signal amplitude. However, the
fractal-based algorithm is considerably slower than the
other methods and hence is intended for use only on
data sets with low S/N ratios.

INTRODUCTION

The accurate determination of the traveltime of seismic
energy from source to receiver is of fundamental importance in
seismic surveying. This is particularly the case with seismic
refraction and tomographic surveys where traveltimes, usually
of first arrivals, are used to determine the seismic-velocity
structure of the subsurface. To improve efficiency and speed of
interpretation of such data it is common to use an automated
technique for detecting seismic events, and several such algo-
rithms have been published. As larger and larger data sets are
now being used for such interpretations, these automatic
methods of detecting seismic arrivals have become an essential
part of the processing of seismic data.

Fundamentally, detection of first-arriving seismic data re-
duces to determining the time when the seismic trace ceases to
be composed entirely of noise and also starts to include seismic
signal. When such an operation is carried out manually, a
subjective decision is made based on the change in the nature
of the trace in terms of amplitude and/or frequency and/or
phase both within the trace itself and also relative to its
neighbors. However, what is a relatively simple operation for
the human eye and brain is much more difficult to define
mathematically and translate into an algorithm.

Several methods for locating a first break have been pub-
lished (Coppens, 1985, Ervin et al., 1983, Gelchinsky and
Shtivelman, 1983, Peraldi and Clement, 1972, Ramananan-
toandro and Bernitsas, 1987). Most of the methods are based
on identifying a particular property of that part of the trace
where the first arrival occurs. Some methods also rely on
comparison of the trace with its immediate neighbors. The
different methods proposed to detect first arrivals will give
slightly different arrival times depending on exactly what
property of the trace they are based on, but, in general, are
extremely effective provided there is an adequate signal-to-
noise (S/N) ratio. However, in a situation of very low S/N ratio,
their accuracy may be affected seriously.

In this paper, we propose a new method of picking seismic
first arrivals in noisy data sets based on the change in fractal
dimension within the trace associated with the advent of the
signal. Since fractal dimension can be thought of as measuring
the “roughness”, i.e.,the overall shape, of the trace, the
algorithm automatically simulates the way the human brain
identifies the first arrival.

CALCULATION OF FRACTAL DIMENSION

Since its original introduction by Mandelbrot (1967) the
concept of fractals and fractal dimension has found widespread
applications in many fields including the earth sciences. For the
definition and an extensive description of the concepts behind
fractals the reader is referred to Feder (1988), Kaye (1989),
Mandelbrot (1977, 1983) and Mandelbrot (1983) while their
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use in geophysics is described in Turcotte (1992) and Scholz
and Mandelbrot (1989).

A number of different methods have been proposed to
calculate the fractal dimension of a curve, or in this case, a
seismic trace. Two methods have been employed in this study:
the “structured walk technique” or “divider method”
(Hayward et al., 1989, Kaye, 1989) and the “Hurst method”
(Russ, 1994). The two methods represent two different classes
of techniques for measuring fractal dimension. The “divider
method” gives a measure of the Hausdorff dimension that is
related to the geometry of the object under analysis, while the
“Hurst method” is an example of stochastic techniques, and it
gives a measure of the statistical relationship between the
dependent and the independent variables. It should be noted
that these two techniques actually measure two different
phenomena and they are not expected to give the same
dimension when applied to the same data set (Carr and
Benzer, 1991). There has been some discussion in the litera-
ture as to the relative merits of different methods of measuring
fractal dimension (Klinkenberg, 1994) and in particular to the
appropriate use of the “divider method” for self-affine curves,
e.g., time-series data such as seismic traces (Brown, 1987,
Power and Tullis, 1991). This discussion is beyond the scope of
this paper, and we will use the term “fractal dimension” for the
parameter we obtain using either method. Moreover, we note
that our method does not rely on the absolute value of the
fractal dimension of a given part of the seismic trace, but
rather on the relative variation in fractal dimension along the
trace. From this point of view, we consider a seismic trace
simply as a digitized curve, along which the relative variation of
geometrical and statistical characteristics are analyzed inde-
pendent of the absolute scaling of the X- and Y-axis.

Calculation of fractal dimension using the “divider method”

The basis of the divider method is to measure the length of
the curve by approximating it with a number of straight-line
segments, called “steps” (Figure 1). The calculated length of
the curve is the product of the number of steps and the length
of the step itself. As the step size is decreased, the straight-line
segments can follow the curve more closely, smaller-scale
structure becomes more significant, and the calculated length
of the curve increases. If the data follow a fractal model we
have

  (1)

where L in the curve length, r in the step length, and D is the
fractal dimension. Plotting the logarithm of the step length
versus the logarithm of the corresponding curve length, a
Mandelbrot-Richardson plot is obtained (Figure 1d). The
slope of a line fitted to these points is related to the degree of
complexity of the curve being analyzed. This slope is related to
the fractal dimension by the equation

(2)

where D is the fractal dimension, and S the slope of the line
(Kennedy and Lin, 1986). The slope of the Mandelbrot-
Richardson plot is equal to, or less than, 0. Thus, in the case of
a curve such as the seismic trace, the fractal dimension is
between 1 and 2.

Figure 2 is a typical Mandelbrot-Richardson plot obtained
from analysis of a seismic trace. Note that the points do not

define a single straight line segment, instead four segments (A,
B, C, and D in the figure) are seen. This is because of the fact
that the seismic trace is not a perfect self-similar fractal. Also,
the imperfect behavior of the seismic trace is related to its
representation as a series of discrete samples. The accuracy of
the presentation of the trace is limited by the sampling interval
and dynamic range of the digitizer. If the calculation of the
length of the curve is performed with a step that is too long, the
main structure of the line cannot be described which then give
rise to the flat section (D) in Figure 2. When the step size is
much less than the sample interval, we are not able to
recognize any new structure in the curve, and again a flat
section (A) results. Notice that a linear interpolation between
the discrete samples is used. Details about the method imple-
mentation may be found in Clark (1986). No generally ac-
cepted rules are available in the literature for the choice of the
step range to employ in the calculation of the curve length,
while indications can be found in Brown (1987), Kaye (1989)
and Klinkenberg (1994). Klinkenberg reports one-half the
average distance between adjacent points as a suggested choice
for the minimum step size, while the maximum step size should
be much less than the crossover distance (see Power and Tullis,
1991). Such recommendations have been employed in this
study although some experimental tuning was also necessary.
In the rest of the discussion we define as “compatible” a step
range that satisfies the requirements just described in relation
to the part of the trace under analysis (i.e., noise or seismic
signal).

Even when fractal dimension is carried out using an appro-
priate step size, the Mandelbrot-Richardson plot may still not
result in a single linear segment. Curves that give rise to
multiple straight line segments are usually referred to as
“multi-fractal.” This phenomenon occurs when a distribution
is governed by a limited number of structures, expressing
themselves at different scales as in the attempt to measure the
fractal dimension of a seismic trace section (Kaye, 1989). The
two linear segments in the central part of Figure 2 (B and C)
result from the fact that two uncorrelated components are
present in a seismic trace, i.e., the signal and the noise.

.

If we apply the “divider method” with a step size that is
compatible with the amplitude and frequency characteristics of
the noise, the resul t ing straight l ine segment on the
Mandelbrot-Richardson plot defines the fractal dimension of
the noise. The same is true when the step size is compatible
with the amplitude and frequency of the signal, with, of course,
the Mandelbrot-Richardson plot defining the fractal dimen-
sion of the signal. The relative change in fractal dimension
between noise (pre-first break) and noise + signal (post-first
break) and its relationship to step size is illustrated in Figure 3.
In Figure 3a when a section of the trace containing only noise
is analysed using a step range whose logarithm varies between
0.7-1.5, the slope of the straight line segment is -0.89. When
a step size whose logarithm exceeds 1.5 is used the plot is
horizontal. Figure 3b shows the Mandelbrot-Richardson plot
for a section of the trace containing both noise and signal. As
in Figure 3a, at step sizes whose logarithms are less than 1.5 the
straight line segment reflects the noise component within the
trace. However, in the presence of signal, at step sizes greater
than 1.5 a second, straight line is observed. According to
Mandelbrot, in the part of the Mandelbrot-Richardson plot for
step sizes of between 0.7 and 1.5, the slope of the two lines
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should be identical in Figure 3, because when two fractal sets
are unified the calculated fractal dimension should equal that
of the higher dimensional component. Clearly, this is not the
case with the seismic trace and we note that Russ (1994)
describes practical calculations showing that in such a case, the
fractal dimension assumes an intermediate value.

Calculation of fractal dimension using the “Hurst method”

In the “Hurst method” the fractal dimension is calculated by
determining the range of the data within windows of different
size. The maximum difference observed in a window of a given
size is normalized by dividing by the standard deviation of the
data. If the data follow a fractal model we have

 (3)

where R is the maximum difference observed in a window, S is
the standard deviation, F is a constant and H is called the
Hurst exponent. The Hurst exponent is related to the fractal
dimension by the equation

(4)

and it can be obtained by plotting the normalized maximum
difference against the window size in log-log space (Russ,
1994).

Again, as when the “divider method” is used over a range of
step sizes, a straight line on the Hurst plot is to be expected
only over a limited range of window sizes.

Figure 4 shows the Hurst plot for the same seismic trace
used in Figure 2. The data define a straight line only at the
left-hand side of the figure, i.e., for small window sizes, while
for larger windows the normalized differencebecomes con-

FIG. 1. Calculation of fractal dimension using the “Divider method.”The curve is approximated with a number of straight-line
segments, called “steps.”With a long step, only the main structures of the curve are approximated, while with a shorter step, the
segments can follow the line more closely. The logarithm of the step length versus the logarithm of the curve length is plotted
(Mandelbrot-Richardson plot). The slope of the line fitting the points is a measure of the degree of complexity of the curve and is
related to its fractal dimension.
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stant. This is, again, a consequence of the seismic trace not
being a perfect fractal and its representation as a series of
samples. Obviously, the greatest difference that can occur
within a given window is limited to the maximum and mini-
mum amplitude within the trace. Once the points with the
maximum and minimum amplitude are both contained in a
window of a certain width, any larger window will not be able
to find greater differences in value. Thus, all the points in the
“Hurst plot” obtained for a window larger than this size will
share the same value. The practical result of this observation is
that for a seismic trace whose amplitude will have been
resealed to lie within arbitrary limits, only a limited window
size yields useful data. For instance, in Figure 4 only 9 points
are significant. In some circumstances, the calculation of the
fractal dimension with so few points may not be reliable.

The Hurst method has the advantage that it requires much
less computation than the “divider method,” and can be
implemented around l-2 orders of magnitude faster. As will be
shown below, it works well in high or medium signal-to-noise
traces, but its performance is inferior to that of the “divider
method” on noisy traces. Since the main aim of the fractal-
based picking technique presented in this paper is to be robust
in presence of noise, even at the cost of time, the “divider
method” is preferred.

FIRST-BREAK DETECTION ALGORITHM

The basis of our first-arrival detection algorithm is that a
change in fractal dimension is expected when the trace ceases
to consist of just noise and begins to consist of both signal and
noise.

Figure 5 illustrates how the algorithm works. First the
approximate region of the trace containing the first break is
selected manually. A window is then moved across this region
and the fractal dimension of that part of the trace within the
window is calculated. When the window is entirely before the

FIG. 2. Mandelbrot-Richardson plot of a seismic trace. Four
sections with different slopes ‘(A-D) are defined. A and D are
sampling artifacts while B and C are caused by signal and noise
components within the trace.

first-arrival time, it contains only noise-window A in Figure 5.
When the window includes the first break, some of the trace
consists of just noise and some of signal plus noise-window B
in Figure 5. When the window passes the first arrival it is
completely filled by that part of the trace containing both
signal and noise-w indow C in Figure 5. The value of the
fractal dimension is calculated for each window and plotted at
the location of the maximum time of the window. Figure 6
illustrates the change in the fractal dimension of the trace
within the window using two different step ranges (one com-
patible with the noise and one compatible with the signal). The
seismic trace is also shown for comparison (Figure 6a). With
both ranges in step size, before the window reaches the first
arrival the fractal dimension is almost constant. When the
window reaches and passes the first-arrival time, the fractal
dimension changes quite rapidly before again assuming a near
constant value. The absolute value of the fractal dimension
measured on different traces may vary, depending on the S/N
ratio, on the amplification of the signal and on the sampling
frequency, but the overall shape of the fractal-dimension curve
is the same. It is interesting that depending on the range of the
step size there may be either an increase or decrease in fractal
dimension associated with the presence of signal. This depends
on whether the range in step sizes is compatible with the noise
or the signal. However, for the purposes of detecting the first
arrival the nature of the change is unimportant.

The plots in Figure 6 showing the variation in fractal
dimension along the trace are characterized by three distinct

FIG. 3. Mandelbrot-Richardson plot of a seismic trace contain-
ing (a) only noise and (b) signal and noise. Where the log(step)
is in the range 0.7-1.5, the “noisy” section has a higher fractal
dimension. Where the log(step) is in the range 1.5-2.0 the
situation is reversed.
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segments: a flat segment (A) indicating the fractal dimension
of the noise, an inclined segment (B) associated with the
change in fractal dimension, and a second flat segment (C)
associated with areas where the signal is dominating the trace.
The intersection between the first flat segment (A) and the
steep segment (B) occurs a few steps after the first-arrival time.
This is because the algorithm needs a few points to detect the
presence of the signal. The delay between the intersection of
the two segments and the first-arrival time rarely exceeds a
signal wavelength. This means that to detect the first arrival we
can determine the intersection of these two segments (A and

FIG. 4. Hurst plot of a seismic trace. The sloping segment at the
left-hand side of the plot is caused by the fractal behaviour of
the trace. The flat segment at the right-hand side of the plot is
caused by the seismic trace not being a perfect fractal.

B), then run backwards along the trace until a local amplitude
extreme is found. If required, the delay between the first
amplitude extreme and the first break can be determined using
traces with a high S/N noise ratio, and subtracted from the
arrival time determined by the algorithm. More sophisticated
methods, taking into account the correlation with adjacent
traces may also be implemented.

EXPERIMENTAL RESULTS

The effectiveness of the “divider method” and the “Hurst
method” based algorithms were compared with each other and
with other algorithms designed to detect first breaks described
in the literature. To assess their relative merits in the presence
of noise, three different field data sets were used:

1) a data set, with a very high S/N ratio,
2) a data set with a medium S/N ratio,
3) a data set with a very low S/N ratio.

The first data set was collected during a seismic reflection
survey across a granitoid-greenstone terrain in Western Aus-
tralia [Nevoria seismic experiment, see Dentith et al., (1992)].
The second data set comes from the WISE experiment (West-
ern Isles Seismic Experiment), an offshore seismic refraction

FIG. 5. Schematic illustration of how the variation in fractal
dimension along the seismic trace is detected. The working
window is manually selected to contain the first break. A
smaller window is then moved progressively along the trace
and the variation in dimension plotted as a function of the
maximum time within the window.

FIG. 6. (a) Seismic trace. (b) Fractal dimension of the sections
to the left of a cursor moving along a seismic trace, when the
investigation is carried on in a range compatible with the noise
amplitude and frequency. (c) Same as in (b), but now the
investigation is carried on in a range compatible with the signal
amplitude and frequency. (d) Fractal dimension as in (b)
approximated by three straight-line segments.
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experiment in western Scotland. The last data set is part of a
crustal scale refraction experiment across the southern part of
the Yilgarn Craton in Western Australia (see Bolt et al., 1958).
The fractal-based algorithm was able to pick the correct first
arrival on the high and medium S/N data sets using either the
“divider” or the “Hurst” methods. On the low S/N noise data
set, the algorithm could pick most of the traces employing the
“divider method,” failing only on traces where even a human
operator would be unable to discriminate between noise and
signal. However, the “Hurst method” proved not to be effec-
tive on this data set because of the instabilities caused by the
few points used to calculate the fractal dimension. In these
tests the “divider method” was used for a range of step sizes
and although the nature of the change in fractal dimension
varied the algorithm was still successful.

The performance of the “divider method” algorithm was
compared on the medium S/N data set with those of five other
published picking algorithms (Coppens, 1985, Ervin et al.,
1983, Gelchinsky and Shtivelman, 1983, Peraldi and Clement,
1972, Ramananantoandro and Bernitsas, 1987). Such algo-
rithms were developed to be applicable to field data with no
particular limitations, and they are representative of different
kinds of picking methods available in the literature. Coppens’s
method is based on the detection of a sudden increase in
energy on a trace, Gelchinsky and Shtivelman’s and Peraldi
and Clement’s methods are based on different kinds of corre-
lation with adjacent traces, while Ervin et al. and Ramanan-
antoandro and Bernitsas’s algorithms look for the first arrivals
by convoluting the seismic traces with different operators. Of

these, the most effective algorithms proved to be the ones from
Coppens, Gelchinsky and Shtivelman, and Peraldi and
Clement, whose results, together with the ones from the
“divider-method” algorithm are compared in Figure 7. Only
the fractal-based algorithm is able to pick the correct first
arrival on all the traces. Note that, as described above, the
fractal-based method detects the first amplitude extreme after
the first arrival.

Progressively larger amounts of random noise were added to
the high and the medium S/N ratio data sets to estimate the
maximum amount of noise the fractal-based algorithm could
tolerate. The algorithm was still able to detect the correct pick
after noise was added, with an average amplitude of 80% of the
average amplitude of the signal. However, for the algorithm to
be successful in this case, a step range compatible with the
signal structure is required. This is particularly important in
the presence of large amounts of noise because the relative
change in fractal dimension associated with the onset of the
signal will be relatively small when using step ranges compat-
ible with the noise.

Notice that the “divider method” gives a measure of the
roughness of the section of the trace under analysis, that
depends on the amplitude, frequency, and phase of noise and
signal all together and not on any single component alone. The
algorithm then detects the change in the overall shape of the
curve, simulating the way a human brain discriminates the
presence of signal in the seismic trace. Such discrimination is
effective also in the presence of a high level of noise (see
results shown in Figure 8) and does not depend on single

FIG. 7. Comparison between the fractal-based algorithm and three algorithms from the literature. The fractal-based algorithm is able
to pick the correct arrival time in all the traces while the other algorithms may occasionally show relevant errors.
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characteristics of the signal, such as frequency or amplitude.
Accordingly, unlike most common picking algorithms, no
preprocessing or filtering of the data is necessary.

DISCUSSION

The fractal-based picking algorithm requires a relatively
large amount of calculation compared to other first-arrival
detection algorithms (approximately one order of magnitude
larger that the Coppens method). The fractal dimension
calculation requires the measurement of the length of the
seismic trace within the window for different step lengths and
then regression of the points so obtained. This must be
performed for a window located at each point of the trace.
Also, significant effort is required to define the three segments
that best fit the fractal dimension curve. The implementation
of the fractal-based algorithm is quite straightforward, but
both the accuracy of the result and the speed of the code
depend critically on the tuning of a different number of
parameters. In particular, the influence of such a tuning on the
speed may be crucial, allowing performance improvements up
to l-2 orders of magnitude.

Second arrivals may alter the shape of the plot in Figure 6b
and 6c. In such circumstance, the flat segment corresponding
to the signal fractal dimension may be substituted by a curve of
a different shape depending on the characteristic of the second
arrivals. However, the contact between the first and second
segment in Figure 6b and 6c will be unchanged and conse-

quently only minor modifications to the algorithm will be
required to detect the first arrival. If possible, such problems
could be eliminated by selecting an appropriate window and
letting the algorithm run only on the section of the trace where
the first arrival is known to be. In this way, valuable time would
not be spent investigating useless areas.

In terms of speed, the most important parameter is the step
size of the window along the trace. In the previous discussion,
it was assumed that the calculation of the fractal dimension
took place at each point along the trace. As described in the
section, First Break Detection Algorithm, the real arrival time
is determined running backward from the intersection of the
two segments until an amplitude local extreme is found.
Accordingly, carrying out the calculation every 5-10 points,
and so doing reducing the amount of calculation of 5-10 times,
does not affect the result. Obviously the maximum step allowed
depends on the frequency of the signal and must not exceed
the signal wavelength. An even faster calculation may be
carried out with a very long window step, just to detect the area
where the first arrival is located, and performing a more
accurate search with a shorter step in that area. The effective-
ness of such an “accelerating” process depends strongly on the
signal-to-noise ratio:the simpler the trace the faster the
algorithm can be run. In our experiments the parameters have
been tuned on the most complex traces, and then this config-
uration has been used on all the traces. Another solution is to
tune the parameters for fast operation using a medium com-

FIG. 8. Progressively increasing amount of noise added to a high signal-to-noise seismic trace to assess the maximum level of noise
the code can tolerate. The fractal-based algorithm can still detect the correct pick after an amount of noise up to 80% of the average
signal amplitude is added.
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plexity trace and to use a slower but more accurate configura-
tion for the hardest traces whose first arrivals were not
detected.

CONCLUSIONS

The difference in fractal dimension between the part of a
seismic trace containing only noise and a section containing
noise plus seismic signal can be used to detect a seismic first
arrival.

Analysis of the variation in fractal dimension along numer-
ous traces highlights a consistent pattern that may be approx-
imated by three segments. A segment associated with noise, a
segment associated with the transition from noise to signal and
noise, and a segment caused by signal and noise. The proposed
picking method relies on the fact that the contact between the
first and the second segment falls just a few steps after the
first-arrival time. Different techniques may then be used to
detect the correct pick-time; the most favored being running
backward along the trace till a local amplitude minimum is
found.

The algorithm has been tested on different real data sets and
works well even when the S/N ratio is low. However, this
greater reliability is achieved at the expense of speed.

ACKNOWLEDGMENTS

We express special thanks to Prof. M. Jebrak, Prof. A. Mees,
and Dr. B. Power for their helpful comments on an initial draft
of this paper. F. Boschetti is supported by an Overseas
Postgraduate Research Scholarship and by an University Re-
search Scholarship from The University of Western Australia.

REFERENCES

Bolt, B. A., Doyle, H. A., and Sutton, D. J., 1958, Seismic observation
from the 1956 atomic explosions in Australia: Geophys. J. Roy. Astr.
Soc., 1, 135-145.

Brown, S., 1987, A note on the description of surface roughness using
fractal dimension: Geophys. Res. Lett., 14, 1095-1098.

Carr, J. R., and Benzer, W. B., 1991, On the practice of estimating
fractal dimension: Math. Geol., 23, 945-958.

Clark, M. W., 1986, Three techniques for implementing digital fractal
analysis of particle shapes: Powder Technology, 46, 45-52.

Coppens, F., 1985, First arrival picking on common-offset trace
collections for automatic estimation of static corrections: Geophys.
Prosp., 33, 1212-1231.

Dentith, M. C., Jones, M. C., and Trench, A., 1992, Exploration for
gold-bearing iron formation in the Burbidge area of the Southern
Cross Greenstone Belt, W.A.: Expl. Geophys., 23, 111-116.

Ervin, C. P., McGinnis, L. D., Otis, R. M., and Hall, M. L., 1983,
Automated analysis of marine refraction data: A computer algo-
rithm: Geophysics, 48, 582-589.

Feder, J., 1988, Fractals: Plenum Press.
Gelchinsky, B., and Shtivelman, V., 1983, Automatic picking of first

arrivals and parameterization of traveltime curves: Geophys. Prosp.,
31, 915-928.

Hayward, J., Orford, J. D., and Whalley, W. B., 1989, Three imple-
mentations of fractal analysis of particle outlines: Comput. and
Geosci., 15, 199 -207.

Kaye, B. H., 1989, A random walk through fractal dimension: VCH
Publ.

Kennedy, S. K., and Lin, W., 1986, FRACT-A fortran subroutine to
calculate the variables necessary to determine the fractal dimension
of closed forms: Comput. and Geosci., 12, 705-712.

Klinkenberg, B., 1994, A review of methods used to determine the
fractal dimension of linear features: Math. Geol., 26, 23-46.

Mandelbrot, B. B., 1967, How long is the Coast of Britain? Statistical
self-similarity and fractional dimension: Science, 156, 636 - 638.

— 1977, Fractals: form, chance and dimension: W. H. Freeman &
co.

— 1983, The fractal geometry of nature: W. H. Freeman & Co.
Peraldi, R., and Clement, A., 1972, Digital processing of refraction

data, study of first arrival: Geophys. Prosp., 20, 529-548.
Power, W., and Tullis, T., 1991, Euclidean and fractal models for the

description of rock surface roughness: J. Geophys. Res., 96, 415-
421.

Ramananantoandro, R., and Bernitsas, N., 1987, A computer algo-
rithm for automatic picking of refraction first-arrival time: Geoexpl.,
24, 147-151.

Russ, J. C., 1994, Fractal surfaces: Plenum Press.
Scholz, C. H., and Mandelbrot, B. B., 1989, Fractals in geophysics:

Birkhauser Verlag.
Turcotte, D., 1992, Fractals and chaos in geology and geophysics:

Cambridge Univ. Press.


