Bringing conceptual geological models to life
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Abstract

We present a first step towards the development of a system that would allow geological
models to evolve backwards in time. The method provides for the inclusion of geological
knowledge and expertise in a rigorous mathematical inversion scheme, by simply asking
an expert user to evaluate different geological models visually. The potential of the tech-
nigue is demonstrated for a number of conceptual geological models.

Introduction

In recent years fast computers have led to the development of quite sophisticated forward modelling of geological
processes. We can answer questions such as “What faults or fractures will be generated by this stress field in this
material?”, using accurate modelling of material behaviour. However, we really would like to solve the inverse problem,
which is based upon field observationg, “What stress field or material behaviour can generate these faults?”. Our
task is thus to invert present-day observations in order to unravel the time evolution of a geological formation.

The first approach used by geologists is to construct time-dependant conceptual models in order to explain geological
evolution. This is a human method of inversion which is based upon an expert's knowledge and experience, but it is
highly visual and usually offers little hard data. In our quest to ground such conceptual models in the laws of physics,
we need to find the correct combination of initial conditions and material parameters in order to reproduce and thus
validate the geologist’s visual model. We lack numerical targets for mathematical inversion techniques, and so we
have chosen a method of visual image ranking as a means for exploring geological parameter space. This approach
capitalises upon the inherent subjectivity in geology.

Method

We have applied a method called interactive evolutionary computation (IEC) to geological problems in which subjec-
tive judgment is necessary to evaluate geological models in the absence of sufficient constraints. The process works by
producing different possible solutions from a numerical forward model and then presenting them to the user for judg-
ment and ranking. The ranking directs the choice of parameters for the next round of forward models, and this process
continues in an iterative manner. We believe that the system represents an advance on traditional, time-consuming trial
and error approaches by providing a formal role for relevant geological experience and knowledge in inversion. The
traditional numerical measure of data mismatch is replaced by the user’s subjective evaluation.

Our IEC system works by linking a geological forward model to a genetic algorithm (GA). Boschetti et al. (1996) [1]
present a more detailed description of the specific GA implementation used in this work. The forward modelling code
used here is a particle-in-cell finite element code. Details of this code can be found in Moresi and Solomatov (1995)
[2] as well as on the World Wide Web at http://www.ned.dem.csiro.au/research/solidMech/PIC/Ellipsis.htm.

Models

The example included here seeks to reproduce common extensional structures in a rifting environment. The ranking of
forward model results is based upon comparison with a target image, in this case the simplified line sketch of Figure 1a.
Although the forward models evolve in time, in this introduction to our inversion method, only the final configurations
are used for visual evaluation. The model is composed of two initially homogeneous crustal layers, on top of which
is a low density, low viscosity background material which does not interfere with the mechanics of the problem. This
initial configuration is illustrated in Figure 1b. The upper layer has strain-softening properties, which cause initial
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wherep is the pressureg is theaccumulategblasticstrain,andthe remainingcoeficientsarearbitrary Eightforward
modelsarerun ateachstepof theinversion,andwe vary six uppercrustalstrengthparametersviscosityandfive yield

law coeficients.

Extensionproceeddy applyinga uniform velocity to the right-handboundary Figure 1 illustratesthe evolution of

resultsusingthe IEC algorithm.In our continuumforward-modellingcodewe infer thatbandsof high localisedstrain
representaults. Accumulatedstrainis indicatedby areasof darkenedmaterial,andthe degreeof shadings indicative
of the amountof strain. The first panel(i) containsno modelswhich resemblehe targetimage. In fact, only two

modelshave corvergednumericallyandbeenextendedo full length. Models6 and8 exhibit structuregpenetratinghe
upperlayer, andfor this reasorthey arerankedfirst andsecondyespectiely. The othermodelsdo not meritranking,
but arenonethelesgeightedrandomlyby the GA in orderto fill up theremainingsix positions.

Panelii containsthe seconditeration of the algorithm. Onceagainthereare four modelswhich do not corverge
numerically but thosethatdo corverge generallydisplay more crustal-scalestructureghanin thefirst iteration. The
rankof eachmodelresultis notedbelov eachimage.We continueiteratingin this mannertotal of six times,atwhich

point half of theresultingimagesarequalitatively similar to the targetimage(paneliii), andthe processs halted.The
outcomeis a setof crustalstrengthparametershat leadsto the behaiour obsened andinferredin the field. These
(dimensionlessparametersirelistedin Table1, togetherwith their initial rangesthe final valueswhich give rise to

the highest-rankd modelof thefinal generationFigure 1,paneliii, third model),andthe rangeof the parameter$or

thefour top-ranledmodelsof thefinal generation.

Parameter Initial range | “Best” value | Range
Viscosity 5000- 10000 9000 9000
CohesionB, 0-2000 0 0
Pressurelependencés,, 0-1.0 0.2 0.2
Tensionlimit B, 10- 1000 100 100- 200
E, 0.1-0.9 0.2 0.2
€o 0.1-1.0 0.7 0.3-0.7

Tablel: Six uppercrustallayerparameterarefreeto vary duringtheinversion.The“best” valuesgiverise
to thetop-rankedmodelof thelastgenerationThe lastcolumngivestherangeof parametewaluesfor the
top four modelsof thelastgeneration.

Conclusions

For the above problem,arriving at a suitablecombinationof parametersvould previously have involved one of two
more laboriousapproachesthe manualselectionof parameterdy trial and error, or an exhaustve coverageof all
parametricspace. Trial and error may succeedwith a limited numberof parametersbut dependsuponthe users
knowledgeof thecouplingandfeedbaclkbetweerparametersyhich,in highly non-lineamproblemsnvolving comple
crustalrheologiesmay be impossible. A parametricstudy quickly becomesaunfeasibledue to the sheernumberof
modelswhich mustbe run asthe numberof parameterss increasedNeitherof theseapproachetakesfull advantage
of theexpertknowledgeof anexperiencedjeologist.

Thetechniqueof IEC hasconsiderablydiminishedthe effort requiredto explore parametespaceduringtheinversion
of conceptuamodelsin geology We bypasghelack of numericaldatafor aninversiontargetby usinga GA together
with imagerankingto focuson a visualtarget. This approachexploits the experienceandknowledgeof anexpertuser
in avisualandthereforeintuitive environment.
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Figurel: Tamgetimage(a), initial geometryof the crust(b), and evolution of the IEC inversion. Panels
(i) to (iii) representhe first two andthe last generatiorof the GA. Imagesare ranked accordingto their
similarity with thetargetimage. Somemodelshave not beenextendedto full lengthbecausef numerical
non-corvergence. Theseareleft unranked, andthe GA ordersthemrandomlyso asto fill up the bottom

rankings.
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