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Abstract 
Whether considering climate change, altered nutrient input or environmental flows, 
there’s a growing need to understand and predict ecological responses in aquatic 
systems: how will the network of interactions between nutrients, primary production 
and higher trophic levels respond to these changes? What system responses need to 
be predicted, and what are the limits to predictability? In this paper we argue that for 
ecological systems a more appropriate and realistic aim may be to focus on system 
characterisation rather than prediction. We draw on simple, well-studied ecological 
models to demonstrate why conventional means for assessing predictability fail in 
such systems, and illustrate an approach that goes some way to addressing these 
problems.  

Introduction 
Prediction is an endeavour fraught with danger, and there’s a surprisingly wide range 
in interpretations of what it means to predict. Chaotic systems are widely described 
as being ‘unpredictable’ and yet they exhibit regularities or patterns in time that can 
be characterised and understood very well. Lorenz’ famous ‘butterfly’ attractor is 
simply a graph that captures such a pattern in the relationship between three varying 
quantities. Similarly, stochastic systems are unpredictable, and yet again we can 
characterise their behaviour; we cannot predict the exact time course of heads and 
tails in a series of coin tosses, but over time we know we’ll see roughly equal 
numbers of each. Appropriate characterisation of the underlying processes gives us 
our best chance of making appropriate decisions in the face of uncertainty in these 
systems, and allows us to quantify risk associated with those decisions. 

Ecological systems present particular challenges. A fish population can vary in time 
due to externally-imposed forces (e.g. flow extraction or regulation) and due to 
internally-generated dynamics (eg. population dynamics emerging from nonlinear 
interactions between fish and the underlying foodweb). It remains an open debate in 
ecology whether ecological systems exhibit chaos, although chaotic population 
dynamics have been observed in laboratory chemostats (Becks et al, 2005). When 
faced with the prospect of managing a complex system, with both internal and 
external sources of variation in time, it’s appropriate to draw on methods established 
in other disciplines for studying and characterising such systems. In this paper we 
demonstrate the use of nonlinear time series analysis techniques to characterise and 
compare behaviour in simple ecological models. These are unashamedly ‘toy’ 
models, but they are needed (a) to isolate and demonstrate concisely fundamental 
problems in predicting ecological response; and (b) to function as a test bed for 
alternative methods of analysis. 

Methods 
We employed two models: a simple one-species model that maps population change 
from one generation to the next, and a three-species food chain. 

If population breeding occurs seasonally, with non-overlapping generations, discrete 
maps can define the relationship between the population in one generation and the 
next. The simplest such mapping is the well-studied logistic map. The following rule 
defines the mapping from one point in time, xn, to the next, xn+1: 



( ) nnn xxrx −=+ 11   (1) 

 
where r is a growth rate parameter. The equation can generate a range of behaviour; 
it can produce the familiar logistic growth curve where xn grows exponentially from 
low values and then levels off at a constant value over time, or it can exhibit chaotic 
fluctuations.  
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Figure 1 Diagram and equations for the nutrient-phytoplankton-zooplankton model 

Table 1 Default parameter values used by Edwards and Brindley (1999) 

Parameter Symbol Default value  Reported range 

a/b gives maximum P growth rate a 0.2 m
−1
 day

−1
 0.07–0.28 

Light attenuation by water b 0.2 m
−1
 0.04–0.2 

P self-shading coefficient c 0.4 m
2
 (g C)

 −1
 0.3–1.2 

Half-saturation constant for N uptake e 0.03 g C m
−3
 0.02–0.15 

Cross-thermocline exchange rate k 0.05 day
−1
 0.0008–0.13 

Higher predation on Z q 0.075 day
−1
 0.015–0.150 if n = 1 

0.25 - 2 m
3
 g
-1
 day

-1
 if n = 2 

P respiration rate r 0.15 day
−1
 0.05–0.15 

P sinking loss rate s 0.04 day
−1
 0.032–0.08 

N concentration below mixed layer N0 0.6 g C m
−3
 0.1–2.0 

Z growth efficiency α 0.25 0.2–0.5 

Z excretion fraction β 0.33 0.33–0.8 

Regeneration of Z predation excretion γ 0.5 0.5–0.9 

Maximum Z grazing rate λ 0.6 day
−1
 0.6–1.4 

Z grazing half-saturation coefficient µ 0.035 g C m
−3
 0.02–0.1 

Mortality exponent n 1 1 or 2  

 
The second model is a system of three ordinary differential equations representing 
the population dynamics of a simple nutrient-phytoplankton-zooplankton (NPZ) food 
chain. Nutrient, phytoplankton and zooplankton ‘stocks’ are linked by flows of carbon 
between them (Figure 1). Specifically, the NPZ model used by Edwards and Brindley 
(1997, 1999) is used. The rates of change in N, P and Z are 

Rate of change in N = – uptake by P + respiration + Z excretion + Z predation excretion + mixing 
Rate of change in P = uptake of N – grazing by Z – sinking – mixing 
Rate of change in Z = growth by feeding on P – higher predation  

 
The differential equations are shown in Figure 1. N, P and Z are nutrient, 
phytoplankton and zooplankton carbon concentrations respectively, with units of  g C 
m−3. Parameter descriptions, units and default values are given in Table 1. The NPZ 
model is capable of is capable of a range of behaviours, including stable, constant 



populations in time, oscillating boom-bust cycles and chaos. These have been 
thoroughly analysed by Edwards and Brindley (1997,1999).  

For each model we generated time-series that we refer to as the ‘observed’ time 
series. The first time series is a chaotic time series from the logistic map, with the 
growth parameter set to r = 3.7. The second time series is a chaotic time series from 
the NPZ model. In this case q = 0.1432, k = 0.0552, N0 = 1 and the remaining values 
were the default values listed in Table 1. The equations were integrated using the 
ode15s integrator in Matlab. 

Models for predicting biogeochemical and ecological response in aquatic systems 
are usually systems of nonlinear differential equations with unknown parameters that 
need to be fitted. The most common approach to model fitting is to use a sum of 
squares approach; here the sum of squared difference between the two time series is 
a ‘distance’ between the two time series, calculated on a point-by-point basis. If the 
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This conforms to our conventional notion of prediction, and provides a direct measure 
of how well a model is able to reproduce the exact time course of a series of 
measurements. 

It can be argued, however, that in ecological systems finding a model that captures 
key dynamical characteristics (eg. boom-bust cycles) is a more realistic aim than 
expecting to find a model that predicts the exact time course of events. How can 
these dynamical characteristics be quantified and compared? An approach 
considered in this paper again relies on the notion of a ‘distance’ between the two 
time series; however before calculating this distance the time series are transformed 
so that geometrical patterns in the data (the system attractors) become the objects of 
comparison. 

The key to the transformation is to consider how the observations relate to historical 
observations; in each case we seek a functional relationship between past and future 
observations, and use this relationship to construct a measure of comparison. 

Results 
In the case of the logistic map, we know that there is a very simple function relating 
past and future values, and the relationship is fully captured by plotting each 
observation against its predecessor (the return map). The chaotic time series (Figure 
2a) when plotted against itself with a time-lag, shows the parabolic function that 
captures the underlying, deterministic dynamics (Figure 2b). 

A defining characteristic of chaotic time series is their extreme sensitivity to initial 
conditions. In the example shown in Figure 2, a mean through the data is a ‘better’ 
match (in the sum of squares sense) to the time series than a time series generated 
by exactly the same model with a different initial condition (sum of squares error E = 
4.7 vs E = 10.5). Hence the need for an alternative measure of what it means for two 
time series to ‘match’. In this particular case, it is more appropriate to calculate the 
‘distance’ between the geometrical patterns in the return map, than from point-by-
point differences in the time domain. 
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(b) 

Figure 2 (a) Two chaotic time series generated from the same logistic map (r = 3.7) (b) the 
return map for the two time series. Although the time series don’t ‘match’ in the time domain, 
their return maps do match, demonstrating that they have been generated by the same 
underlying process. 

 
The logistic map is a trivial example. The NPZ system situation is more complicated; 
rather than a discrete mapping from past to future, time is continuous and there are 
now three quantities influencing each other (N, P and Z). Given only nutrient 
observations (we rarely have measurements of all quantities needed by our models), 
how do we transform the time series to reveal the deterministic pattern in the 
nonlinear dynamics? Again, the dynamics are revealed clearly if observations are 
plotted against past observations, in a procedure called ‘time delay embedding’ or 
‘state space reconstruction’ (Abarbanel, 1996). This approach is commonly used in 
other disciplines, but has found little application in ecological systems, mostly likely 
due to lack of long-term high frequency time series. The method, stripped of its 
basics, shows the relationship between N(t) and time-lagged versions of the 

observations, N(t – τ), N(t – 2τ) and so on. Typically the time lag, τ, is chosen by an 
average mutual information criterion, and the appropriate number of lags is 
determined by a false nearest neighbour criterion (Abarbanel, 1996). When these 
steps are followed for chaotic NPZ time series (Figure 3a), the distinctive shape of 
the attractor is clear (Figure 3b). Thus we can capture the attractor without needing 
measurements of the other quantities, P and Z, influencing the system dynamics. 
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(b) 

Figure 3 (a) Two chaotic time series generated from the same NPZ model (q = 0.1432, k = 
0.0552, N0 = 1 and the remaining values were the default values listed in Table 1. Time series 

temporal resolution is 1 day.) (b) the same time series in reconstructed state space (τ  = 16 
days). Although the time series don’t ‘match’ in the time domain, their attractors do match, 
demonstrating that they have been generated by the same underlying process. 

 



Again, the time series is chaotic and a mean through the data is a ‘better’ match in 
the least squares sense than a time series generated from the identical model with a 
different initial condition (sum of squares error E = 2.9 vs E = 5.7). As before, it is 
more appropriate to calculate a ‘distance’ between the attractors than between points 
in the time-domain. Performing this calculation is non-trivial and there are many 
possible ways to approach it. We’ve had some success using cluster-weighted 
modelling (Gershenfeld, 1999) to represent the reconstructed attractors as probability 
density distributions, which are then used to calculate joint probabilities as a distance 
measure. 

Discussion and future directions 
In advancing our aquatic models from purely physical processes (eg. predicting 
circulation patterns or density stratification) to include geochemistry (eg. interactions 
between physical transport and  redox conditions) and eventually ecology (eg. effect 
of altered nutrient delivery on phytoplankton or fish populations), we encounter the 
very real possibility of oscillatory and chaotic responses due to internal nonlinear 
dynamics. Nonlinear time-series analysis may provide useful approaches for fitting 
and validating such models. 

In this paper we’ve demonstrated the point as simply as possible using autonomous 
models; that is, the dynamics observed in the time series are purely the result of non-
linear interactions internal to the system, with no variation ‘forced’ from outside the 
system. Real aquatic systems, of course, experience variations due to internal 
dynamics and external forcing, and this presents an additional set of challenges. 

Consider the same NPZ model, now forced with a time-varying stochastic 
zooplankton mortality parameter, q (Figure 4a), as zooplankton specific mortality 
rates would not be expected to be constant in a real system. Other parameter values 
are set to the default values in Table 1, with the following exceptions: the quadratic 
mortality exponent set to n = 2 and two different N0 values were used. In a low-
nutrient scenario, N0 = 0.6 g C m

−3, this system simply oscillates about a steady 
value (Figure 4a), only gently affected by the stochastic variations in q. Typically, 
models are used to test alternative scenarios, often involving increased nutrient 
delivery to systems. In this case if we consider a high nutrient scenario, N0 = 2 g C m

-

3, the system responds very differently (Figure 4a). 
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(b) 

Figure 4 (a) Time series showing the stochastic q forcing (dotted line), the nutrient response 
at for the low N0 scenario (grey line) and the nutrient response for the high N0 scenario (black 

line); (b) The high N0 response plotted in reconstructed state space (τ  = 16 days). 

 
Note that only the rate at which nutrients are supplied to the system, and nothing else 
has changed in this model. In particular, the external forcing in q remains identical to 
the low nutrient case, and yet the system now responds in a more extreme manner; it 
exhibits rapid ‘surprise’ rapid regime shifts. This type of threshold behaviour has 



been observed in many ecological systems (Scheffer et al, 2001), and needs to be 
better understood if we’re seeking to manage aquatic systems to be resilient. 

Transforming this time series as before, we see that again there is a pattern which 
captures some of the dynamical behaviour (Figure 4b). Can the nonlinear time series 
approaches used in this paper can be applied to such forced systems? Experience in 
other disciplines would suggest that it may be possible (Casdagli, 1992). 

Conclusion 
The examples presented in this paper clearly demonstrate problems that lie in the 
way of good analysis of ecological responses. Unfortunately, we are far from having 
the high-resolution time series and analysis methods to explore these problems in 
real ecosystems. Even in virtual worlds of numerical simulation, with only moderate 
increases in model complexity and dimension these methods for characterising 
system response rapidly become intractable. Nevertheless, these are important 
concepts and very real problems that need to be tackled. Earth’s systems are 
generally recognised as being in a ‘no analogue’ state – humans have induced 
widespread and rapid changes to natural systems that are unprecedented in their 
magnitude and rate of change – and there’s an urgent need to understand how 
nature will respond (Steffen and Tyson, 2001). Applying the insights gained from 
simple nonlinear models to real-world problems will be an ongoing challenge. It is 
certain from these examples that if we are to explore these issues in aquatic 
systems, we will require high quality, long-term, high frequency measurements in 
order to unravel the important dynamics underlying observed variations. 
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