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Abstract 
 

Understanding animal movement provides information that helps design effective conservation initiatives. We 
intuitively understand that the way animals move at large scales determines the extent of their home range and their 
migratory patterns – and we know that these features are relevant to decisions about the location, size and 
distribution of protected areas. It is less intuitively obvious that knowledge of movement characteristics at finer 
scales can also have conservation implications. By modelling the small to intermediate scale movement (1 to 103 
metres) of a large marine predator in a shallow coastal environment, we show how different assumptions about 
movement patterns influence estimates of species abundance derived from field observations. Foraging behaviour, 
statistical properties of the swimming path and average speed exert the greatest impact, suggesting that these 
should be the focus of further experimental work.  Better data would inform our understanding and considerably 
reduce the uncertainty in abundance estimation, improving conservation-related decision making.  
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Highlights 
 

• Assumption about fine scales (1-1000 m) movement can have a considerable impact on estimation 
of animal abundance. 

• This also applies to estimates of abundance uncertainty. 
• We demonstrate this by modelling shark movement via Levy-flights and correlated random walks 
• Foraging behaviour, statistical properties of the swimming path and average speed have the largest 

impact. 
• We demonstrate the approach on real data from remote underwater video surveys of sharks in 

coastal waters. 
•  

1 Introduction 
 
Estimates of the abundance of large predators helps inform choices about which species and which areas need 
protection, and monitor the effectiveness of protection [1, 2]. The abundance of large predators cannot usually be 
observed directly, but can only be inferred indirectly from counts of individuals, which is usually obtained from 
very sparse spatial and temporal sampling. Estimating abundance from individual counts is further complicated 
because predators move and it can be difficult to discriminate between different individuals.  It follows that the way 
predators move affects i) the probability of detecting an individual at a given location during a certain time interval 
and ii) the probability that two separate detections are due to two different individuals, rather than a single 
individual seen twice.  
 
Detailed understanding about how marine predators move is still lacking so we need to make some assumptions. 
Often, this is done without making the assumptions explicit. The aim of this paper is to show how these 
assumptions affect estimates of marine predator abundance obtained from camera surveys, using remote 
underwater video surveys of sharks (e.g. [3]) as a test system. Identifying which assumptions have the greatest 
influence on estimates of abundance provides information about which components of a predator's movement 
deserve more experimental attention, and the extent to which this will help conservation decisions.     
 
Computer models of animal behaviour have been used to simulate field surveys in order to assess species 
abundance and distribution or to test survey design [3-11]. Depending on model complexity, these approaches 



require the model developer to make explicit  (in the computer code) a number of assumptions about movement 
patterns. Very simple models may approximate animal movement by Brownian motion leading to diffusion-like 
area cover [12]. A model user may then  need to provide the size and centres of home ranges. As an output, the 
model may provide, say, the probability of detecting an animal at different positions in space. This, obviously, 
depends on the assumed movement type (in this case Brownian motion). However, how detection probability 
depends on the assumed movement type may or may not be clear to the model user. At the other extreme, more 
complex models may allow the user to control a larger number of movement parameters, including the animal’s 
speed, the type of movement (e.g. Brownian vs Correlated Random Walk), preferential directionality, time 
dependence, space dependence, and so on. The requirement to provide many parameters entails more a-priori 
biological knowledge, which is often lacking. Some users may feel that in these circumstances, uncertainty in 
model outcomes increases with model complexity. However, these requirements highlight that if movement 
assumptions are not made explicitly by the model user, they are made implicitly by the model design, often leaving 
the user unaware of both these choices and their implications. Only once these assumptions are made explicit will 
the user be able to appreciate the potential impact these choices can have on the model’s behaviour.  
 
In this work we provide an example of how uncertainty in some parameters controlling animal movement can 
affect estimates of species abundance. We describe a model to simulate the movement of blacktip reef sharks 
(Carcharhinus melanopterus) in coastal reefs. We then use this model in an inverse mode [13, 14] to estimate shark 
abundance. By showing which movement parameters most affect abundance estimation and uncertainty, we also 
provide information on which of these parameters further experimental work should focus.  
 
We describe all equations used in the model and provide the information needed to reproduce our results. We 
emphasise visual description of our results with the specific aim of the development of an intuition for how features 
of a species' movement patterns influence estimates of abundance. We start by reviewing some approaches 
commonly used to model animal movement. We then treat the estimation of predator abundance as an inverse 
problem and show how a model of animal movement can be used to fit observations from underwater video 
cameras. We proceed by describing the model used in this work and show how parameters controlling the modelled 
predator movement impact visitation patterns and, in turn, abundance estimation. In doing so, we model realistic 
settings in shallow reef environments from Western Australia and apply our results to a real data set. We conclude 
by discussing the implications of our results in terms of future experimental work and its potential impact on 
decision-making in marine conservation.  
  

2 Analysis of animal movement 
 
Animal movement can be analysed at a number of levels, each characterised by its own implicit temporal and 
spatial scale [15-20]. Here we consider four levels of analysis. At the finest level, we have what [15] define as 
‘fundamental movement elements’, which animals perform in their daily activities (e.g. stepping, speeding, 
lounging, stopping, standing) and which are mostly determined by the physical and physiological characteristics of 
the species.  At the next level, fundamental movement elements are combined to carry out specific activities (e.g. 
habitat choice, foraging, avoiding predation, mating, resting). These represent ‘decisions’ and reactions carried out 
at scales of fractions of seconds to minutes and can be seen as incorporating the ‘causal’ mechanics responsible for 
animal movement. At the third level, longer time series of unit movements result in geometric patterns at the scale 
of minutes to days and meters to kilometres, depending on the species. These geometric patterns are usually 
analysed in terms of shape, spatial extent covered and search and foraging efficiency, which can be interpreted as 
global properties emerging from actions at finer scales. While the first level describes the mechanics and the second 
level supposedly includes the immediate ‘causes’ of movement, the third level can be seen as providing an 
additional evolutionary feedback resulting from its adaptive efficiency [21-31]. In the literature the first and second 
levels of analysis are usually referred to as ‘mechanistic’, while the third level is often referred to as ‘statistical’ 
[32, 33]1.   
 
The fourth level is represented by the actual field observations. Data collection is usually carried out at a scale 
intermediate between the mechanistic and statistical levels, but at a resolution considerably sparser than both. This 
is where much of the debate on whether the statistical movement patterns of large predators are best described by 
Lévy flights, Brownian Motion or Correlated Random Walks arises [34-37]. In most circumstances, including the 

                                                      
1 This terminology may lead to the misleading conclusion that the ‘mechanistic’ processes are deterministic and algorithmic 
and that stochasticity belongs only to the statistical framework. Nevertheless, here we decided to adopt this terminology out of 
consistency with current literature. 



datasets we have collected, discriminating between these statistical distributions is difficult [24, 32, 38, 39] because 
they are affected by how the animal movement depends on the local environment and the distribution of prey, as 
well as by distortions imposed by the resolution or rate of measurements [11, 40-44]. As a result, it is important to 
think of field observations as a product of the complex interactions between an animal's actions and the features 
which constrain (e.g. physical obstacles) or alter (e.g. prey-predator distribution, habitat distribution, currents, 
winds) these actions [15]. 
 
Information about movement of large marine predators is mostly derived from studies of oceanic species, 
undertaken in the open ocean, which can be considered essentially unbounded [45]. In coastal reef ecosystems this 
is rarely, if ever, the case. When information does come from coastal ecosystems, the constraints imposed on 
animal movement by physical obstacles are rarely explicitly discussed. Even if we had high resolution observations 
and their impact was discussed, unravelling the unconstrained movement patterns from the effect of the constraints 
would be very difficult. As a result care should be used in adopting statistical movement characteristics observed in 
one environment (open ocean, say) to a very different one (coastal ecosystems). 
 

3 Estimating population abundance from field observations 
 
In a previous study [3], we cast the assessment of shark abundance as an inverse problem. Observations of 
individual animals do not provide direct estimates of abundance. However, given a suitable model of the 
individual's behaviour, the model can be fitted to the observations, thus indirectly providing an estimate of 
abundance, among other parameters, and the associated uncertainty. Several algorithms could be used to carry out 
the inversion numerically [13, 14, 46]. The results from the inversion could also be visualised to help the user gain 
insights into model parameter uncertainty and carry out an approximate sensitivity analysis [47-49].  Alternatively, 
parameter uncertainty and a priori ecological knowledge could be formally included in the analysis via Bayesian 
approaches [50, 51], including Bayesian Hierarchical Modelling [52-56]. An application to a similar problem can 
be found in [57]. Some of these approaches can be computationally very expensive, in particular when a large set 
of model parameters needs to be inverted. In this work we extend the approach used in [3] by using a combination 
of visual and fairly simple statistical analysis to determine which feature of an individual's movement most 
influences the estimates of density.  
 
Figure 1 summarises the approach (see [3] for more details). Figure 1a shows a shallow water environment, where 
black is the land (coast and reef crests) and blue and white water (white corresponds to an assumed foraging habitat 
which will be introduced below). This spatial domain represents a realistic habitat for blacktip reef sharks, and is 
based on a location within the Ningaloo Marine Park in Western Australia (within the Mandu Sanctuary Zone, 
approx coordinates 113.52E, 22.05S), where this species is abundant [3] (see Figure 16 below). The red marks 
show the position of underwater video cameras which record for 1 to 3 hours. The camera view is determined by 
the camera orientation, the aperture angle (which we measured at 45 degrees) and the maximum distance from the 
camera at which predators can be discriminated (discussed below). In dark blue we see the simulated paths of 2 
individual sharks, as obtained via the movement algorithm we describe below. For each shark s (s=1…S) and each 
camera c (c=1…C) we calculate the time ts,c the shark s would theoretically be visible on camera c and we define 
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where T is the duration of the simulation, C the number of cameras and the subscript mod indicates ‘modelled’ 
results. Fmod thus estimates the average length of time we expect to see a shark in the video recording.  Similarly, 
we analyse the actual underwater video camera footage and we calculate the time the actual sharks are visible, from 
which we obtain an analogue measure Fobs (where obs indicates ‘observations’).  
 



 
Figure 1. (a) The test area used in the simulations discussed in the study. It corresponds to a location within the 
Mandu Sanctuary Zone within the Ningaloo Marine Park in Western Australia, The red pixels show the area 
covered by the camera's view. The blue lines show the swimming paths of two sharks, starting from the cyan dots. 
(b) Fmod  plot. For a given shark density (X axis) we plot different values of Fmod  (Y axis) resulting from multiple 
simulations of different parameter combinations. The horizontal dashed line indicates Fobs obtained from 
observations. This line intersects the 5th and 95th percentiles of the Fmod  distribution for shark densities of 58 and 88 
sharks/km2 respectively. (c) Cumulative probability distribution over different shark densities for the specific Fobs 

obtained from observations. The yellow and red bars show the 50, 5 and 95 percentiles, respectively. 

 
Fmod is a function of the density of individual sharks as well as of a number of parameters controlling each sharks’ 
behaviour (see model description below).  We can obtain an estimate of the distribution of Fmod via a Monte Carlo 
approach, by running our model for different parameter combinations. To account for the inherent stochasticity in 
the simulations, we can carry out multiple runs for each parameter combination. An example of this distribution is 
shown in Figure 1b, where for each shark density on the X axis, we plot the corresponding distribution of Fmod 

resulting from the simulations.  
 
The last step in our approach involves determining which densities correspond to values of Fmod ≈ Fobs. As an 
example, in Figure 1b, the horizontal line Fobs=6e-3 intersects the 5th and 95th percentiles of the Fmod  distribution 
corresponding to densities of 58 and 88 sharks/km2 respectively. This gives us an indication of the likely shark 
density in the area as well as an approximate estimation of its uncertainty. The cumulative probability distribution 
over the shark densities for Fobs=6e-3 is also shown in Figure 1c, where the yellow and red bars show the 50, 5 and 
95 percentiles, respectively. In the rest of the document we refer to this as a Fmod plot. For sake of simplicity, we 
temporarily assume Fobs  is a precise measurement with zero error, a requirement we will relax later on.   
 

4 A model of movements by large marine predators 
 
In this section we describe a model of movements by large marine predators (that could also be extended to other 
fauna). It consists of four modules: i) unoriented stochastic movement, ii) oriented stochastic movement, iii) 
obstacle avoidance and iv) interaction with other individuals of the same species.    
 
The unoriented stochastic movement module generates a random walk and aims to simulate the paths followed 
within a constrained area, usually represented by a specific habitat. The level of correlation in the random walk, 
together with other statistical properties of the resulting path, is controlled by a number of adjustable parameters 
and is described in Section 4.1. In this module, memory is represented in a fairly abstract sense by the time lag 
within which the animal movements are correlated.   
 
The oriented stochastic movement module generates an oriented path between two locations and aims to simulate a 
‘purposeful’ movement towards a specific area. Here memory is modelled explicitly as the animal’s ability to 
remember how to reach the target location. 
 
The obstacle avoidance module is used to steer clear of fixed obstacles like the coastline and exposed reefs. Finally, 
repulsion or attraction towards other individuals implements a simple form of interaction with other members of the 
same species.  



 

4.1 Unoriented stochastic movement 
 
The path generated by an animal movement can be thought of as a series of individual steps, each step consisting of 
a straight segment, where the angles between two straight segments are defined as turning angles. Different 
distributions of step lengths and turning angles can result in very different movement paths. Most animal 
movement models described in the literature can be broadly divided into 2 classes, depending on whether the main 
focus is on the distribution of step lengths or turning angles. Models belonging to the first class usually choose the 
step lengths according to a specific statistical distribution and assume random, uncorrelated turning angles. Lévy 
flights are a common example of this class of models, in which the step distribution is self-similar over a number of 
spatial scales [39, 58-60]. Models belonging to the second group choose the turning angles according to a specific 
distribution and employ constant or random uncorrelated step lengths. Brownian motion and various forms of 
correlated random walk belong to this class of models.    
 
Viewing these two classes as arising from two different generating processes is both intuitively and mathematically 
meaningful since the resulting movement patterns are not equivalent. For example, in the first class smoothly-
curved paths are extremely unlikely to arise since the turning angles are uncorrelated, while in the second class they 
can be generated by a suitable distribution of turning angles, as we will see below. Similarly, in the case of Lévy 
flights, extremely long steps are rare but likely to occur, but are unlikely to occur in the second approach given that 
they would require extremely long series of zero turning angles.  
 
 
To implement correlated random walks we follow the approach described in [30]. The turning angles are chosen 
from the following circular distribution [61]: 
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Equation 2 
 
where, θ is the turning angle and P1/γ is the associated Legendre function of the first kind of order 0 and degree 1/γ. 
For a given turning angle θ, Equation	2 gives the probability of the predator making a change in swimming 
direction of angle θ. This probability distribution depends on two parameters -∞<γ<∞ and κ≥0. By varying these 
two parameters, Equation 2 generalises most of the standard symmetric circular distributions [61, 62] including 
some employed to model certain types of animal movement [63]. For κ=0, Equation 2 generates the uniform 
circular distribution, which leads to Brownian motion.    
 
[25] show a number of different movement paths as a function of different γ and κ combinations in Equation 2, as 
well as some properties of the resulting paths, including the mean cosine angle ρ=〈cos	(*)〉 and the correlation 
length , = −1 /0(1)⁄ . The mean cosine angle gives an indication of the directional persistence of a path (the closer 
to 1, the more linear the path is) while the correlation length, which represents the amount of correlations in 
successive steps along the path, gives an indication of the directional memory. For a more general analysis of the 
types of behaviours arising from Equation 2 we refer the reader to [61]. In this work, we chose six combinations of 
γ and κ leading to different values of ρ and τ and thus to six qualitatively different movement paths, which we refer 
to as JP1-JP6 in the rest of the document (JP indicates the initial of the authors in [61]). As discussed above, 
Brownian motion (BM) is obtained by modelling a JP distribution with κ=0.  
 
As modelled in [7], the self-similar distribution of step lengths for the Lévy walks follows  
 
3(4)~467		894		4 ∈ ;/�<=, /�>?@	  
Equation 3 
 
where P(r) is the probability of occurrence of a step of length r, lmin and lmax are the minimum and maximum step 
lengths, respectively ([45, 64]) and µ is the scaling exponent, which determines how step lengths are distributed 
within this range. Following [7], we chose three Lévy walk exponents µ=[1.7, 2, 2.3], to represent three alternative 
forms of Lévy walk. Empirical observations suggest that Lévy flights resulting from these exponents are suitable 
for modelling foraging animal behaviour ([65-68]), including sharks ([45, 64, 69]). These values are distributed 
around µ=2, which some studies suggest provides an optimal search pattern ([45, 64, 69-72]). In the rest of the 
document we refer to these Lévy walks as LW1-LW3.  



 
When it comes to numerical implementation, JP and LW paths can be generated by very similar algorithms. Given 
a specified lmin in Equation 3, a step in a Lévy flight can be equivalently seen as i) a single step n x lmin length  
between two changes of direction or ii) n steps of length lmin without a change of direction. The latter is equivalent 
to a sequence of n-1 0o turning angles. This also provides a simple way to compute the mean cosine angle for Lévy 
flights.   
 
This overall approach provides 10 alternative path types (JP1-JP6, BM, LW1-LW3). Because we lack detailed 
empirical information about which of these best describes the movement of C. melanopterus, we employ all 10 
alternative path types to reflect uncertainty in sharks’ movement behaviour and study their impact on the estimation 
of shark abundance. Table 1 summarises the parameters and resulting statistics for each path type, and Figure 2 
shows the angle distribution for JP1-JP6.  
 
Table 1. Parameters and mean cosine angle of swimming paths resulting from the 10 path types. 
Modes Equation Parameters Mean cosine angle 
JP1 Equation 2 γ =-.1; κ=5.01 ρ=.93 
JP2 Equation 2 γ =-1; κ=1.86 ρ=.73 
JP3 Equation 2 γ =0.03; κ=6 ρ=.9 
JP4 Equation 2 γ =-2; κ=1 ρ=.43 
JP5 Equation 2 γ =1; κ=3.8 ρ=.5 
JP6 Equation 2 γ =1.95; κ=.93 ρ=.29 
BM Equation 2 κ=0 ρ=0 
LW1 Equation 3 µ=1.7 ρ=.82 
LW2 Equation 3 µ=2 ρ=.73 
LW3 Equation 3 µ=2.3 ρ=.62 
 
 
 

 
Figure 2. Circular distributions of turning angles for path types JP1-JP6, showing the probability of occurrence (Y axis) of a 
given turning angle (X axis).  
 
 
Figure 3 shows an example of the path of an individual shark for each path type, where the plots are shown at 
different resolution in order to allow the visual inspection of the path’s small scale details. Figure 4 shows the paths 
of 10 sharks, each starting from the same position; here the paths are plotted at the same scale, to illustrate the 
spatial extent of paths encompassed by individuals following different path types. 
 



 
Figure 3. Path of a single shark (1000 time steps) swimming in an obstacle-free area for the different path types. Plots are 
shown at different resolution to highlight the path’s small scale details. 
 
 

 
Figure 4. Paths of 10 sharks (1000 time steps), each starting at position (0,0). Plots are shown at the same resolution to 
highlight the area cover resulting from different path types. 
 
 
Figure 5 shows the pattern of site visitation generated by modelling 9 sharks (equivalent to a density of ~40 
sharks/km2) swimming for 6 hours, in an obstacle-free area (the blue background indicates water). Locations 
visited by a shark are coloured according to the number of times the pixel has been visited (red to yellow tones map 
lower to higher visitation rates; blue means no visitation). A simple visual inspection shows how visitation patterns 
differ between some path types. Brownian Motion (Figure 5g) provides the most clustered visitation pattern, which 
results in larger areas of low or no visitation. Among the correlated random walks (JP1-6) JP1 and JP3 result in the 
most homogenous visitation pattern, and JP6 is the one closest to Brownian Motion (BM). Among the Lévy walks, 
the visitation patterns become less homogenous with increasing exponent µ (LW1 to LW3). By comparing this 
with Figure 4, we see that these visitation patterns are related to the spatial extent of the shark movement as, a 
function of the mean cosine angle ρ.  
 
 



 
Figure 5. Site visitation distribution for 9 sharks swimming (equivalent to a density of 40 sharks/km2) for 6 hours. The blue 
background represents an obstacle-free area. A pixel’s tone (red to yellow) maps the number of times the location has been 
visited by a shark, with hotter tones reflecting higher visitation rates (blue maps no visitation). 
 
 
Figure 6 shows 160 sharks (equivalent to a density of ~20 sharks/km2) for the test area in Figure 1a, which includes 
reef crests and coastline. The visitation patterns found in Figure 5 can also be recognised in Figure 6, with JP1, JP3 
and LW1 giving the most homogenous visitation pattern and JP6 and BM the most clustered.  
 
 

 
Figure 6. Site visitation distribution for 160  sharks (~20 sharks/km2) swimming for 6 hours, in the study area.  
 



For each of the 10 different path types, Figure 7 shows the Fmod plots arising from 20 virtual cameras located in the 
same test area. Given a fictitious Fobs value (2e-3 in this example) it shows how estimates of shark density, as well 
as the associated uncertainty, can vary considerably as a function of the movement mode. The uncertainty in the 
estimates varies dramatically from JP1(~28-48 sharks/km2) at the lower end to BM where the uncertainty is largest 
(~ 33-116 sharks/km2).  

 
Figure 7. Fmod  plots for different path types. A fictitious observed value of Fobs ≈ 2e-3 would result in different shark density 
estimates (yellow vertical bar) and uncertainty (red vertical bars) depending on the assumed path type. 

 
So far we have performed a visual analysis of the swimming paths, visitation rates and estimated shark density 
along with associated uncertainty. The visual analysis suggests that the path types have a considerable impact on 
these variables. A simple statistical analysis of the simulation results supports this initial conclusion. For each 
combination of two path types, we carry out a pair-wise Kolmogorov–Smirnov test (KS test [73]) between the 2 
sets of Fmod values. The results are seen in Table 2, where bold values show statistical significance (p<0.05). It 
shows that, for this specific experimental setting, the three Lévy walks cannot be differentiated from one another, 
JP2 cannot be differentiated from JP3, JP4 from JP5 and finally JP2 and JP3 cannot be differentiated from any of 
the LW path types.   
 
 
Table 2. p values from Kolmogorov–Smirnov test between the Fmod generated by the different path types . 
 JP2 JP3 JP4 JP5 JP6 BM LW1 LW2 LW3 
JP1 2.8e-03 1.5e-05 6.4e-11 3.6e-10 7.5e-20 2.9e-54 2.0e-07 1.1e-06 6.4e-05 

JP2  6.8e-01 8.6e-04 4.7e-03 3.8e-09 3.4e-41 1.6e-01 2.0e-01 8.8e-01 

JP3   1.1e-02 7.6e-02 2.7e-07 2.2e-39 6.0e-01 9.1e-01 9.4e-01 

JP4    6.8e-01 3.3e-02 8.2e-24 1.1e-01 2.1e-02 1.3e-03 

JP5     1.3e-03 3.5e-30 9.8e-02 2.5e-01 2.5e-02 

JP6      1.7e-15 7.1e-06 1.1e-06 1.8e-08 

BM       2.6e-32 6.1e-34 1.3e-37 

LW1        9.7e-01 4.4e-01 

LW2         6.0e-01 

 
 
Different experimental settings, including different numbers of cameras, varying camera locations and different 
geographical features, will have an impact on the ability to discriminate between some path types. We will return to 
this issue in the Discussion.  

4.2 Obstacle avoidance 
 
A shark’s path in shallow water is necessarily constrained by the coastline and reef crests. We model obstacle 
avoidance as gravitational repulsion (the opposite of gravitational attraction). This is carried out by assigning a 
gravity value to the land pixels in Figure 1a and generating the corresponding gravity field over the entire spatial 
domain [74, 75] (see Appendix 3 for implementation details). Figure 8a shows this gravity field. Close to the 
coastline or a reef crest, the swimming direction θu resulting from the unoriented swimming module described 
above, interacts with the gravity field resulting in a new swimming direction θ’ away or parallel to the obstacle. 



Figure 1a shows how the gravity field generated by the reef crests allows the two individuals to swim around these 
obstacles in their path to the foraging area (white area). 
 

Figure 8. (a) Gravity gradients generated by coastlines and reef, as described in Section 4.2. These repel the sharks and 
ensure obstacle avoidance. Notice that the domain border is treated as a coastline to prevent sharks from entering or 
leaving the model domain. (b) For each map location, direction towards the foraging area, (white region in Figure 1a) 
as described in Section 4.3. This is pre-calculated to speed up the computational effort during a simulation.     

 

4.3 Oriented stochastic movement  
 
Some species of large predators visit specific areas at certain times of the day, often to forage. In this work, we 
model this movement component via an additional field which is superimposed to the spatial domain. In Figure 1a 
the white area represents reef flat habitat, assumed to be a desired foraging habitat for C. melanopterus. A 
parameter kdir is used to orient an individual's movement towards this area as  
 
θ′ =	 (1 − A�<B)θ+ A�<Bβ, 	A�<B ∈ ;0,1@   
   
where β is the direction towards the reef flat. For kdir=0 the movement is unoriented and an individual follows a 
path along a direction θ, as described above, while for kdir>0, the movement is adjusted towards the reef flat. 
0.05<kdir<0.3 has been suggested to provide a realistic description of animal movement [76] and the values kdir=[0, 
0.05, 0.1] are used in this work.  
 
The parameter kdir can be used to model a species' behaviour at different times of the day, under the hypothesis that 
some species of sharks do not tend to forage at noon (kdir=0), and they are more active at dusk [3] (kdir>0). Here, 
choosing the two values kdir=[0.05, 0.1] allows us to represent the uncertainty in how individuals move towards the 
target area. 
 
As an example, Figure 1a shows the path of two individual sharks following a JP3 path type, with kdir=0.1. The 
sharks start swimming outside the reef (cyan dots) and swim towards the reef flat (white) avoiding the reef crest. At 
each step, the direction chosen by each shark is a weighted sum of the stochastic value drawn from the JP3 turning 
angle distribution, the repulsion from the coastline and the attraction towards the reef flat. 
  
For each location in the model domain, the direction to an area (β) is calculated with the algorithm described in 
Appendix 2. This algorithm can be computationally expensive. However, since β is not affected by an individual’s 
movement (and thus does not change in time), it is possible to pre-calculate a field Β= β(x,y) for each map position 
(x,y) and store it for later use. This leads to a considerable increase in the speed of simulations. Figure 8b shows the 
field Β= β(x,y) for the spatial domain in Figure 1a. 
 
Figure 9 shows the visitation rates for 160 sharks (equivalent to a density of ~20 sharks/km2), as in Figure 6, with 
kdir= 0.1. Following the KS test results in Table 2, in Figure 9 we show the visitation patterns for only 5 path types. 
The impact of the spatial constraints on the sharks’ paths now becomes evident. Because the sharks need to swim 
around the reef crest to reach the reef flat, visitation rates are higher close to the reef edges. The difference in 
visitation rates between these locations and the rest of the domain is particularly evident for path types JP1 and 
LW2.    



 
Figure 9. Site visitation distribution for 160
 

5 Interaction with other sharks and video cameras
 
We know very little about how and at what frequency b
modelled interactions between individual sharks in a similar fashion 
fictitious mass value which generates a fictitious gravitational field. When two or more sharks happen to swim 
within each other’s gravitational field, they 
altered. Details about the implementation are prov
extension of the gravitational field, sharks can be rep
distances.  Obviously, a 0 gravity value impli
 
Figure 10a shows the influence of the gravity field 
Here we used a fairly strong gravity field 
Obviously, the impact of shark interaction
where the individuals swim around the 
information about interactions among sharks 
Figure 10 are realistic.     
 
Like interaction between individuals, we know very little about possible interactions between sharks an
systems that we use to observe them – whether these be divers, unbaited or baited cameras
underwater cameras and the visual analysis of the video recording
to be attracted or repelled by the cameras. 
by assigning a gravity field to the cameras and by 
different distances.  

 
Figure 10. (a) Site visitation distribution for 
kdir=0.1 and JP1. (b) Zoomed in region close to the lower reef, where local shark density increases due to the sharks swimming 
around the reef to reach the foraging area. Here the interaction between the sharks is higher and it impacts the sharks 
swimming paths.   
 
 

160 sharks (~20 sharks/km2) swimming for 6 hours in the study area with 

with other sharks and video cameras   

and at what frequency blacktip reef sharks interact with one another
between individual sharks in a similar fashion as obstacle avoidance. Sharks are assigned a 

which generates a fictitious gravitational field. When two or more sharks happen to swim 
, they are influenced by this gravitational field and their swimming path is 

altered. Details about the implementation are provided in Appendix 3.  By choosing the sign
sharks can be repelled or attracted to one another and

Obviously, a 0 gravity value implies that sharks do not interact. 

of the gravity field in the case of sharks repelling each other
rong gravity field and a large field of influence (20 metres) to emphasise the effect. 

impact of shark interaction is stronger where the shark density is high and is particularly 
the reef  as shown in the zoomed in panel in Figure 10

information about interactions among sharks in nature prevents us from assessing whether the 

interaction between individuals, we know very little about possible interactions between sharks an
whether these be divers, unbaited or baited cameras

visual analysis of the video recordings does not indicate any clear tendency for sharks 
to be attracted or repelled by the cameras. Attraction or repulsion, should they occur, can however 

assigning a gravity field to the cameras and by adjusting the field to model shark-came

Site visitation distribution for 160 sharks (equivalent to a density of ~20 sharks/km
) Zoomed in region close to the lower reef, where local shark density increases due to the sharks swimming 

around the reef to reach the foraging area. Here the interaction between the sharks is higher and it impacts the sharks 

swimming for 6 hours in the study area with kdir=0.1. 

sharks interact with one another. We have 
obstacle avoidance. Sharks are assigned a 

which generates a fictitious gravitational field. When two or more sharks happen to swim 
influenced by this gravitational field and their swimming path is 

.  By choosing the sign, magnitude and spatial 
elled or attracted to one another and may interact at different 

repelling each other, for the JP1 path type. 
emphasise the effect. 

stronger where the shark density is high and is particularly noticeable 
10b. The lack of 

whether the patterns shown in 

interaction between individuals, we know very little about possible interactions between sharks and the 
whether these be divers, unbaited or baited cameras. We use unbaited 

does not indicate any clear tendency for sharks 
occur, can however also be modelled 

camera interactions over 

sharks/km2) swimming for 6 hours with 
) Zoomed in region close to the lower reef, where local shark density increases due to the sharks swimming 

around the reef to reach the foraging area. Here the interaction between the sharks is higher and it impacts the sharks 



6 Impact of swimming types on estimates of density 
 
In Section 4.1 we showed how different path types affect estimates of shark abundance. In this section, we use the 
same approach to analyse the impact of other movement parameters.  
 
In our model sharks move at a constant speed, although the algorithm could be easily modified to include variable 
speeds. As for other parameters, we have only sparse information on the swimming speed (or distribution of 
speeds) of sharks in shallow coastal environments. In this section, we represent this uncertainty by using 3 speeds 
(0.5, 0.7, and 1 m/s) based on literature on C. melanopterus and other species of carcharhinid sharks ([77-79]). 
 
Figure 11 shows the Fmod plots for the 3 different speeds for JP1. Density estimates and their uncertainty decrease 
with increasing swimming speed.  In other words, misjudging the sharks average speed can result in over-
estimating (if the sharks are faster) or underestimating (if the sharks are slower) their abundance. There are two 
interacting reasons for this result. First, the faster the shark, the larger the area covered during the simulation time, 
thus the more likely it will cross a camera view. Second, the faster the shark, the quicker it will cross the camera 
view. Pair-wise KS tests between the sets of Fmod values result in the difference between these swimming speeds 
being all statistically significant (p<0.05, numerical results not shown).       
 
 

 
Figure 11. Fmod  plots for different swimming speeds. The fictitious observed value of Fobs ≈0.002 would result in shark 
density estimates ranging from 37-62 sharks/km2 at lower speed to 18-36 sharks/km2 at faster speeds.  

 
Figure 12 shows the Fmod plots for the 3 different unit step length lmin (1, 2 and 3 m). Recall that the role of lmin 
changes according to the path type. For correlated random walks (JP1-6) and Brownian motion, lmin is the length of 
a step between two turning angles. It thus acts as a scaling factor in these swimming modes. In the Lévy walks, lmin 
is the minimum step length (and the most likely step length in the Lévy distribution in Equation 3), but the 
distribution is scale free between the minimum and maximum step lengths. Notice that lmin controls only the step 
length of unoriented stochastic movement (Section 4.1). For directed movement (Section 4.3), obstacle avoidance 
and interactions among individuals (Section 4.2), the resolution is determined by the model domain grid spacing 
(see Appendices 2 and 3). As a result the effective length of a step taken by a shark can be shorter than lmin if its 
path is altered by oriented movement, obstacle avoidance or interaction with other individuals. In other words, lmin 

scales only the unoriented stochastic movement of a shark.  
 
Figure 12 shows that density estimates increase with increasing step length, but that the influence of step length is 
smaller than the influence of speed and path type. Furthermore, the uncertainty remains approximately constant 
with varying step lengths. According to the pair-wise KS tests the difference between these step lengths are all 
statistically significant (p<0.05, numerical results not shown).       
 

Figure 12. Fmod  plots for different steps lengths. The fictitious observed value of Fobs ≈0.002 would result in shark density 
estimates slightly increasing from 23-45 sharks/km2 to 30-54 sharks/km2 with increasing step length, while the uncertainty 
varies comparatively less. 
 
Figure 13 shows changes in density estimates for an increasing radius determining the extent of interactions 
between sharks. There is no statistically significant difference between estimates from no interaction (Figure 13 
top) and shark repulsion within a 10m radius (Figure 13 middle), while these estimates increase slightly for shark 



repulsion within a 20m radius (Figure 13 bottom).  Since it is unlikely that sharks may interact with a 20m radius, 
we tentatively conclude that shark interaction may have an insignificant impact on shark density assessment.  

 

Figure 13. Fmod  plots for different levels of shark interaction. The fictitious observed value of Fobs ≈0.002 would result in 
shark density estimates of 25-47 sharks/km2 for no interaction (top), 27-49 sharks/km2 for sharks interacting within a 10m 
radius (middle) and 28-60 sharks/km2 for sharks interacting within a 20m radius (bottom). 
 
 
Finally, Figure 14 shows the impact of kdir, that is of whether and how individuals are attracted towards the reef 
flat.  The difference between kdir =0.1 and kdir =0  is so large that the uncertainty ranges between the two do not 
overlap. The difference between kdir =0.05 and kdir =0.1 is much smaller, but still statistically significant (p=5e-05).  
In [3], different values of kdir were used to model the paths followed by individuals at noon (kdir =0) or dusk (kdir 
>0), a decision that received some support from patterns obtained from acoustically-tagged individuals.   Figure 14 
shows how the accurate determination of this parameter can have the largest impact on shark density estimations.        
 
 

Figure 14. Fmod  plots for different values of kdir. Shark density estimations vary dramatically from kdir =0 (no attraction 
toward the foraging area) to kdir >0. Estimates range from 63-117 sharks/km2 for from kdir =0 to 27-60 sharks/km2 for kdir 
=0.1 (bottom). 
 

7 A field example 
 
In this section we employ the visualisation tools we described above to assess the uncertainty in shark abundance 
estimation arising from a number of field surveys carried out in 2013 in the Ningaloo Marine Park (see  
 
 
Figure 16). We first describe a survey in the Maud Sanctuary Zone, on reef flat habitat which is typically shallow 
(<3 m) and dominated by tabulate coral of the genus Acropora. The survey was carried out before dusk with the 
use of 8 underwater cameras (Sony DCR-HC15E) in a housing mounted on a concrete block. Cameras recorded for 
around 3 hours. In the laboratory, video footage was then viewed on a computer screen and the amount of time 
spent by all sharks in the field of view was recorded. From these recordings, we calculated the observed frequency 
of shark detection, Fobs as described in Section 3. Like all measurements, estimates of Fobs are necessarily noisy. 
Recall that Fobs is a function of the time sharks are visible on the video. While current technology provides for a 
very accurate analysis of the visual recording (25 frames per second for our equipment), the visual field of a camera 
changes as a function of visibility, which depends on the time of the day, weather conditions, turbidity, currents etc. 
Since we do not have sufficient information to estimate the impact of these factors on a camera visual field, here 
we account for ± 10% noise to the  Fobs estimations. A careful analysis of the variation of visual field under 
different survey condition could improve on this estimate.       
 
Figure 15 shows three Fmod plots for the Maud Sanctuary Zone field survey. Because this field survey was carried 
out at dusk, like [3] we assume the sharks were preferentially swimming towards the foraging area and thus we set 
kdir=0.1.  Figure 15a shows the shark density estimates for all path types. Because of uncertainty on the value of the 
swimming speed, each path type was run with multiple swimming speeds (0.5, 0.7 and 1 m/s) and each swimming 
speed was considered equally likely. The confidence range in the plots in Figure 15a thus account for the 
uncertainty in swimming speeds. As expected, shark abundance assessment varies considerably, ranging from 11-
31 (median≈18) sharks/km2 for JP1 to 13-111 (median≈53) sharks/km2  for BM.  



 
Figure 15b shows the density estimates separately for each swimming speed (0.5, 0.7 and 1 m/s), where each 
swimming speed was run for all path types. Here too each path type was considered equally likely. Because the 
uncertainty on the path types has a much larger effect than the uncertainty on the swimming speed, in this panel the 
shark abundance assessments show less variability, ranging from 13-71 (median≈33) sharks/km2 for swimming 
speed of 1 m/s, to 15-99 (median≈40) sharks/km2  for swimming speed of 0.5 m/s. Finally, Figure 15c shows the 
overall uncertainty accounting for all path types and all swimming speeds, with a shark abundance assessments 
ranging from 14-85 (median≈37) sharks/km2.  
 

(a)  

 

(b)  

 
 

(c)  

Figure 15. Fmod plots for field data collected at Maud Sanctuary Zone with kdir=0.1, that is assuming sharks were foraging 
during the survey. (a) Shark density estimates for each of the path types, including the variation in swimming speed. (b) 
Shark density estimates for each of the three swimming speeds, incorporating varying path types. (c) Overall density 
estimations for varying swimming speeds and path types. 
 
 
Finally,  
 
 
Figure 16 Figure 16 shows the Fmod plots for seven different field surveys carried out in 2013 in the Ningaloo 
Marine Park.   For each survey, Figure 16 shows the survey location within the Ningaloo Marine Park and the Fmod 

plots for path types JP1 (top survey panel) and BM (bottom) to provide extreme ranges in density estimation and its 
uncertainty. As in Figure 15a, each path type accounts for uncertainty in swimming speeds by including sharks 
swimming at 0.5, 0.7 and 1 m/s. The results show a wide range in estimates of density among the survey locations: 
the lowest estimates were recorded at Bundegi, and the highest (and most uncertain) estimates were recorded at 
Cloates. The confidence intervals for several locations did not overlap (e.g. Bundegi vs Osprey, giving high 
confidence that the different locations support different abundances of sharks). 
 
 
 



 

 
Figure 16. Abundance estimation for a number of 
Australia. 
 
 

8 Discussion and conclusions  
 
Assumptions about small scale movement characteristics of large predators can have a considerable impact 
density estimates and the uncertainty associated with these estimates
which affect the population behaviour (like predator interactions) and of characteristic
individual behaviour, like speed and site preference
 
Our results show that, of characteristics of an individual's
estimates of abundance: i) average swimming speed
particular locations (possibly dependent 
and step lengths which determines the larger scale statistical property of the swimming
length (longer memory in directional changes, as in JP1) lead to lo
range; conversely, low (or zero) correlation length (shorter or no memory in directional changes, as in JP6 and BM) 
lead to higher density estimates and much larger uncertainty range. 
to JP1 (lower density estimation and smaller uncertainty). 
shark density assessment, but to a comparatively lesser extent. 

As a result, an improved understanding
considerably improve our assessment of shark abundance and deserves further research effort. We believe that this 
effort should follow two directions. First, 
provide larger amount of data at higher temporal and spatial resolution
information currently available on animal movement.
greatly improve our understanding of habitat preference and foraging habits, thus leading to a better definition of 
the kdir  parameter, which has the largest impact on abundance estimat
swimming speed, thus providing further impr
Section 2, the accurate assessment of the path types (JP1
for a number of reasons which include the context dependence of swimming behaviour. 
the second research direction should focus on 
(see Table 1) is related to abundance estimation

for a number of of field surveys carried out in 2013 in the Ningaloo Marine Park

ssumptions about small scale movement characteristics of large predators can have a considerable impact 
associated with these estimates. This is true of movement characteristics 

affect the population behaviour (like predator interactions) and of characteristics which only affect 
site preference.   

characteristics of an individual's movement, three have by far the largest 
average swimming speed; ii) whether or not individuals movement is oriented to 

ependent on the time of the day) and iii) the correlation length in the 
the larger scale statistical property of the swimming path. H

length (longer memory in directional changes, as in JP1) lead to lower density estimates 
range; conversely, low (or zero) correlation length (shorter or no memory in directional changes, as in JP6 and BM) 

and much larger uncertainty range. Lévy walk distributions 
to JP1 (lower density estimation and smaller uncertainty). Other factors affecting shark movement

a comparatively lesser extent.  

improved understanding of these three features of shark movement in natural environments can 
considerably improve our assessment of shark abundance and deserves further research effort. We believe that this 
effort should follow two directions. First, improvements in tracking devices and remote 

at higher temporal and spatial resolution. This is crucial given the paucity of 
information currently available on animal movement. In the context of this work, this type of information can 

ove our understanding of habitat preference and foraging habits, thus leading to a better definition of 
parameter, which has the largest impact on abundance estimates. It may also help better define the 

swimming speed, thus providing further improvement to the abundance estimates. However, as discussed in 
the path types (JP1-6, BM, LW1-3) is difficult even with very good datasets

the context dependence of swimming behaviour. 
the second research direction should focus on more theoretical work. Our work suggests 

abundance estimation, via its influence on the path correlation length and spatial extent 

field surveys carried out in 2013 in the Ningaloo Marine Park, Western 

ssumptions about small scale movement characteristics of large predators can have a considerable impact on 
This is true of movement characteristics 

which only affect 

movement, three have by far the largest influence on 
whether or not individuals movement is oriented to 

the correlation length in the turning angles 
path. High correlation 
 and smaller uncertainty 

range; conversely, low (or zero) correlation length (shorter or no memory in directional changes, as in JP6 and BM) 
ibutions lead to results similar 

factors affecting shark movement can impact on 

natural environments can 
considerably improve our assessment of shark abundance and deserves further research effort. We believe that this 

 sensing technology can 
. This is crucial given the paucity of 

In the context of this work, this type of information can 
ove our understanding of habitat preference and foraging habits, thus leading to a better definition of 

s. It may also help better define the 
However, as discussed in 

en with very good datasets, 
the context dependence of swimming behaviour. As a result, we suggest that 

suggests that the mean cosine angle 
via its influence on the path correlation length and spatial extent 



covered during the movement. Other large scale statistical properties of movement (return time, first passage time 
and diffusion coefficient) are worth investigating since they may be easier to measure in experimental settings and 
may provide indirect information about the path types. Given the magnitude of the impact these factors have on 
density estimates, even a relatively small improvements in their estimation may lead to considerable reduction in 
uncertainty.  In our future work we will focus on both these research directions.  
 
In this work we chose to emphasise the visual representation of our modelling results. This choice was driven by 
the belief that in the medium to long term, animal density estimates will necessarily continue to be largely 
uncertain and a visual appraisal of such uncertainty (and of how different parameters contribute to it), can help 
guide data analysis and further survey design as much as a purely numerical estimation of such an uncertainty, 
especially for users with little modelling expertise. This does not imply that further computational advances should 
not be pursued at the same time. In fact, computational and theoretical developments can not only provide better 
density assessments but also improve the very visual analysis we discussed above. From a theoretical point of view, 
this approach offers itself naturally to be extended via Bayesian Hierarchical Modelling [52-56] as explored in [57]. 
The promise is not only to make a formal use of a-priori ecological knowledge on shark behaviour, but also to 
provide probability distributions over the density assessments. From an implementation point of view, the approach 
requires a considerable computational effort which may force approximations or shortcuts in the model. We expect 
a combination of better instrumentations, further understanding of shark behaviour and computational advances 
will improve population density estimations and provide more accurate information for conservation decision 
making.  
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Figure 1. Model Flowchart. 
 

2. Appendix – the path-finding algorithm 
 
The aim of this module is to guide the predator to a target location while avoiding local physical obstacles like reefs 
and coastlines. Different types of algorithms are available in the literature to address similar problems, including 
ray-tracing algorithms used in computer vision to model light diffusion, reflections and refractions, ray-tracing 
algorithms used in seismic modelling to model underground acoustic wave propagation and motion tracking 
algorithms used in robotics to control the movement of autonomous agents. The algorithm we describe here 
belongs to the latter class.  
 
In general, most of these algorithms work by i) generating feasible paths from the source, ii) following the paths 



until the target is reached and iii) if more than one path reaches the target, choosing the one which is optimal 
according to specific criteria (distance covered, travel-time, cost, etc). In principle we could implement this scheme 
via a gravity field, as we did to avoid the coastline in Section Error! Reference source not found. and described 
in Appendix 3, by i) placing the source of a gravitation field at the target location, ii) assigning a gravitational field 
of opposite sign to obstacles and iii) letting the predator navigate this gravity field. However, this way a predator 
could get trapped in a gravity local minima, as shown in Figure 2a, thus being unable to reach the target. This could 
be circumvented only by allowing the predator to explore alternative paths, with considerable increase in 
computational effort.    
 
 
Figure 2. Schematic description of the obstacle avoidance algorithm. The blue dot is the predator starting location, the red dot 
the target and an obstacle is placed along the way. 
 
Here we implement an alternative approach which consists in i) first drawing a direct path to the target (this path 
may not be viable since it may cross an obstacle) and then ii) modify the path until it becomes viable. The 
algorithm can be summarised as follows: 
 

1) Draw a straight line from the starting point to the target as in Figure 2b; call this current path;  
2) For each obstacle, generate its convex hull and store it as the effective border of the obstacle. 
3) If an intersection exists between the current path and an obstacle, we first check whether it is faster to 

circumnavigate the obstacle along the convex hull clockwise or counter-clockwise; we call this detour. 
Then, we remove from the current path the section within the convex hull and replace it with the detour, as 
in Figure 2c. This represents the new current path. 

4) Finally, if the current path is viable along its full extent we straighten unnecessary irregularities, as in 
Figure 2d.  

5) The current path may now cross a new obstacle, in which case we go to point 2. 

The algorithm does not guarantee that an optimal path is found. For the purpose of this work, optimality is not 
specifically required (we do not know if predators follow optimal paths) but we want to ensure that the target is 
reached at the end of the path. In Figure 3 we show some particularly challenging applications of the algorithm, for 
demonstrational purposes.  
 

 
Figure 3. Examples of swimming paths in very complex environment, for demonstrational purposes. Sharks start from the blue 
dot and aim to reach the target at the red dot.  
 
 

3. Appendix – Gravity field use in obstacle avoidance and shark interaction  
 
Given the gravitational potential V at point (x,y,z) due to a body of mass ρ (Source), where G is the gravitational 
constant [1]  
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Equation 1 
 
the horizontal gravitational attraction over the X axis (and similarly over the Y and Z axis) is given by  
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Equation 2 
 
The strength of the gravitational attraction thus depends on i) the mass of the source (ρ), ii) its shape over (x’,y’,z’)  
and iii) the distance from the source.  
 
Our model is two dimensional since we do not account for depth, so in principle we have z=z’.  This can generate 
singularities in the computation of the gravity attraction [2]. We thus calculate the gravity attraction at a fictitious 
height z=z0 from the source as in Equation 3.  
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Equation 3 
 

Naturally, the larger z0, the smoother the field 
x

V

∂
∂

 
 (same over the Y axis) [3].  

In our model the gravitational attraction is used both to allow a shark to avoid physical obstacles (repulsion from 
land and reef crests) and to interact with other sharks (attraction or repulsion). As a result, the source of the 
gravitational field can be the land and reef crests as well as near-by sharks. Equation 3 allows us to control the 
shape of the gravitational attraction via two parameters: i) ρ (mass of the land, reef or near-by shark) controls the 
strength of the attraction as well as its sign (attraction or repulsion) and ii) z0 controls how fast the attraction 
diminishes with (horizontal) distance from the source, effectively determining the range over which gravitational 
attraction acts on the shark.  
 
   
 
References: 
 
 
 
1. Blakely, R.J., Potential theory in gravity and magnetic applications. 1995, Cambridge England ; New 

York: Cambridge University Press. xix, 441 p. 
2. Trompat, H., F. Boschetti, and P. Hornby, Improved downward continuation of potential field data. 

Exploration Geophysics, 2003. 34(4): p. 249-256. 
3. Hornby, P., F. Boschetti, and F.G. Horowitz, Analysis of potential field data in the wavelet domain. 

Geophysical Journal International, 1999. 137(1): p. 175-196. 
 
 


