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Abstract

Understanding animal movement provides informatii@t helps design effective conservation initiagivé/e
intuitively understand that the way animals moviagaie scales determines the extent of their h@nge and their
migratory patterns — and we know that these featare relevant to decisions about the locatioe, @
distribution of protected areas. It is less intity obvious that knowledge of movement charadiesst finer
scales can also have conservation implicationsnBgelling the small to intermediate scale moveniéro 16
metres) of a large marine predator in a shallovs@a&nvironment, we show how different assumptaimsut
movement patterns influence estimates of speciasdamnce derived from field observations. Foragigigaviour,
statistical properties of the swimming path and-age speed exert the greatest impact, suggesth¢ghese
should be the focus of further experimental wdsletter data would inform our understanding and wtarably
reduce the uncertainty in abundance estimation;aaipg conservation-related decision making.
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Highlights

* Assumption about fine scales (1-1000 m) movememtheave a considerable impact on estimation
of animal abundance.

* This also applies to estimates of abundance uncgrta

* We demonstrate this by modelling shark movementegig/-flights and correlated random walks

» Foraging behaviour, statistical properties of twevsming path and average speed have the largest
impact.

«  We demonstrate the approach on real data from eemoderwater video surveys of sharks in
coastal waters.

I ntroduction

Estimates of the abundance of large predators h&imsn choices about which species and which aneasl
protection, and monitor the effectiveness of pridad1, 2]. The abundance of large predators cansoally be
observed directly, but can only be inferred indisefrom counts of individuals, which is usuallytained from
very sparse spatial and temporal sampling. Estmgatbundance from individual counts is further cboaped
because predators move and it can be difficuligorininate between different individuals. It fmNs that the way
predators move affects i) the probability of déterain individual at a given location during a aérttime interval
and ii) the probability that two separate detedtiare due to two different individuals, rather tlaasingle
individual seen twice.

Detailed understanding about how marine predatongens still lacking so we need to make some assong
Often, this is done without making the assumptiexicit. The aim of this paper is to show how #es
assumptions affect estimates of marine predatanddnce obtained from camera surveys, using remote
underwater video surveys of sharks (e.g. [3]) seestsystem. Identifying which assumptions havegtieatest
influence on estimates of abundance provides irdtion about which components of a predator's momweme
deserve more experimental attention, and the etdemhich this will help conservation decisions.

Computer models of animal behaviour have been wssihulate field surveys in order to assess specie
abundance and distribution or to test survey dg@ii]. Depending on model complexity, these apphes



require the modedeveloper to make explicit (in the computer code) a nunddfeassumptions about movement
patterns. Very simple models may approximate anim@alement by Brownian motion leading to diffusidkel
area cover [12]. A modeiser may then need to provide the size and centresmok ranges. As an output, the
model may provide, say, the probability of detegi@m animal at different positions in space. Toisjiously,
depends on the assumed movement type (in thisBrasenian motion). Howevehow detection probability
depends on the assumed movement type may or maerodear to the model user. At the other extrenwe
complex models may allow the user to control adargimber of movement parameters, including thenal's
speed, the type of movement (e.g. Brownian vs Guaee Random Walk), preferential directionalityné
dependence, space dependence, and so on. Theeneguirto provide many parameters entails moreaaipri
biological knowledge, which is often lacking. Sousers may feel that in these circumstances, umcgria
model outcomes increases with model complexity. élaw, these requirements highlight that if movement
assumptions are not made explicitly by the modet,ubey are made implicitly by the model desidtermleaving
the user unaware of both these choices and thplications. Only once these assumptions are mapleixvill
the user be able to appreciate the potential inpase choices can have on the model’s behaviour.

In this work we provide an example of how uncetain some parameters controlling animal movemant ¢

affect estimates of species abundance. We descntiedel to simulate the movement of blacktip réeflkss
(Carcharhinus melanopterus) in coastal reefs. We then use this model in aarsemode [13, 14] to estimate shark
abundance. By showing which movement parameters aiffest abundance estimation and uncertainty, la@ a
provide information on which of these parameterthier experimental work should focus.

We describe all equations used in the model andgedhe information needed to reproduce our res\iite
emphasise visual description of our results withdpecific aim of the development of an intuition iow features
of a species' movement patterns influence estintdtelsundance. We start by reviewing some appr&che
commonly used to model animal movement. We theat thee estimation of predator abundance as ansaver
problem and show how a model of animal movementieansed to fit observations from underwater video
cameras. We proceed by describing the model ustisinvork and show how parameters controllingrttoglelled
predator movement impact visitation patterns amdiiin, abundance estimation. In doing so, we moehistic
settings in shallow reef environments from Westustralia and apply our results to a real data\d%et.conclude
by discussing the implications of our results ime of future experimental work and its potentmpact on
decision-making in marine conservation.

Analysis of animal movement

Animal movement can be analysed at a number ofdegach characterised by its own implicit tempawad
spatial scale [15-20]. Here we consider four lewélanalysis. At the finest level, we have what][dé&fine as
‘fundamental movement elements’, which animalsqgrenfin their daily activities (e.g. stepping, spegd
lounging, stopping, standing) and which are modéiermined by the physical and physiological chieratics of
the species. At the next level, fundamental moverakements are combined to carry out specifio/diets (e.g.
habitat choice, foraging, avoiding predation, mgtiresting). These represent ‘decisions’ and reastcarried out
at scales of fractions of seconds to minutes andeaseen as incorporating the ‘causal’ mechaeggsonsible for
animal movement. At the third level, longer timeiag of unit movements result in geometric patternthe scale
of minutes to days and meters to kilometres, deipgrah the species. These geometric patterns aglys
analysed in terms of shape, spatial extent covaneldsearch and foraging efficiency, which can berpreted as
global properties emerging from actions at fineas. While the first level describes the mechaantsthe second
level supposedly includes the immediate ‘causeghi@fement, the third level can be seen as providing
additional evolutionary feedback resulting fromdtfaptive efficiency [21-31]. In the literature tfirst and second
levels ?f analysis are usually referred to as ‘raagdtic’, while the third level is often referremlds ‘statistical’
[32, 33].

The fourth level is represented by the actual fadddervations. Data collection is usually carrietia a scale
intermediate between the mechanistic and statisécals, but at a resolution considerably spatisan both. This
is where much of the debate on whether the stalstiovement patterns of large predators are lesstrithed by
Lévy flights, Brownian Motion or Correlated Randakfalks arises [34-37]. In most circumstances, inicigdhe

! This terminology may lead to the misleading cositn that the ‘mechanistic’ processes are detestitrand algorithmic
and that stochasticity belongs only to the stati$tiramework. Nevertheless, here we decided tptithis terminology out of
consistency with current literature.



datasets we have collected, discriminating betweese statistical distributions is difficult [24,38, 39] because
they are affected by how the animal movement dependhe local environment and the distributiopraly, as
well as by distortions imposed by the resolutiomate of measurements [11, 40-44]. As a resul,ithportant to
think of field observations as a product of the ptem interactions between an animal's actions heddatures
which constrain (e.g. physical obstacles) or dkay. prey-predator distribution, habitat distribat currents,
winds) these actions [15].

Information about movement of large marine predai®mostly derived from studies of oceanic species
undertaken in the open ocean, which can be corsld=ysentially unbounded [45]. In coastal reefystems this
is rarely, if ever, the case. When information do@sie from coastal ecosystems, the constraintssaghon
animal movement by physical obstacles are rarghji@tty discussed. Even if we had high resolutabservations
and their impact was discussed, unravelling thensitained movement patterns from the effect ottrestraints
would be very difficult. As a result care shouldused in adopting statistical movement charactesistoserved in
one environment (open ocean, say) to a very diffavae (coastal ecosystems).

Estimating population abundance from field observations

In a previous study [3], we cast the assessmesttaxk abundance as an inverse problem. Observations
individual animals do not provide direct estimadégsbundance. However, given a suitable model®f th
individual's behaviour, the model can be fittedh® observations, thus indirectly providing anraatie of
abundance, among other parameters, and the assbaratertainty. Several algorithms could be usezhtry out
the inversion numerically [13, 14, 46]. The res@in the inversion could also be visualised tgphbE user gain
insights into model parameter uncertainty and caatyan approximate sensitivity analysis [47-48]ternatively,
parameter uncertainty and a priori ecological kremlgk could be formally included in the analysisBégyesian
approaches [50, 51], including Bayesian Hierardivadelling [52-56]. An application to a similargdslem can
be found in [57]. Some of these approaches camimpatationally very expensive, in particular whearge set
of model parameters needs to be inverted. In tbikwe extend the approach used in [3] by usingralination
of visual and fairly simple statistical analysisdetermine which feature of an individual's movetmaast
influences the estimates of density.

Figure 1 summarises the approach (see [3] for met&ils). Figure 1a shows a shallow water envirartmehere
black is the land (coast and reef crests) and dohaewhite water (white corresponds to an assumedjifeg habitat
which will be introduced below). This spatial domagépresents a realistic habitat for blacktip sefrks, and is
based on a location within the Ningaloo Marine Rar®/estern Australia (within the Mandu Sanctuaoné,
approx coordinates 113.52E, 22.05S), where thisispés abundant [3] (see Figure 16 below). Themadks
show the position of underwater video cameras witecbrd for 1 to 3 hours. The camera view is deitrgethby
the camera orientation, the aperture angle (whieimeasured at 45 degrees) and the maximum distammeehe
camera at which predators can be discriminatedydsed below). In dark blue we see the simulatéuosp 2
individual sharks, as obtained via the movementréttyn we describe below. For each shef$=1...S and each
camere (c=1...C) we calculate the timig. the sharls would theoretically be visible on camerand we define

ZSC S,C
Finoa = % ) 1)
whereT is the duration of the simulatio@,the number of cameras and the subsongat indicates ‘modelled’
results Frno thus estimates the average length of time we éxpesee a shark in the video recording. Similarly
we analyse the actual underwater video cameradeaad we calculate the time the actual sharksisitde, from
which we obtain an analogue meashsg (whereobs indicates ‘observations’).
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Figure 1. (a) The test area used in the simulatiiemissed in the study. It corresponds to a lonatithin the
Mandu Sanctuary Zone within the Ningaloo MarinekHarWestern Australia, The red pixels show theaare
covered by the camera'’s view. The blue lines sthevwstvimming paths of two sharks, starting fromdyen dots.

(b) Fiog plot. For a given shark density (X axis) we pldtatient values oF o (Y axis) resulting from multiple
simulations of different parameter combinationse hibrizontal dashed line indicategsobtained from
observations. This line intersects theahd 95' percentiles of th€& . distribution for shark densities of 58 and 88
sharks/kr respectively. (c) Cumulative probability distrilmrt over different shark densities for the spediig
obtained from observations. The yellow and red Baosv the 50, 5 and 95 percentiles, respectively.

FmoaiS @ function of the density of individual sharlssveell as of a number of parameters controllinghesarks’
behaviour (see model description below). We cdaintan estimate of the distributionBf via a Monte Carlo
approach, by running our model for different pareaneombinations. To account for the inherent sasthity in
the simulations, we can carry out multiple runsdach parameter combination. An example of thisidigion is
shown in Figure 1b, where for each shark densitthernX axis, we plot the corresponding distributad g
resulting from the simulations.

The last step in our approach involves determimihgch densities correspond to valuespfy~ Fops AS an
example, in Figure 1b, the horizontal liRg=6€° intersects the 5th and 95th percentiles ofRlg distribution
corresponding to densities of 58 and 88 sharksflspectively. This gives us an indication of tkely shark
density in the area as well as an approximate asobmof its uncertainty. The cumulative probapitiistribution
over the shark densities fBg,.=6€° is also shown in Figure 1c, where the yellow agdilvars show the 50, 5 and
95 percentiles, respectively. In the rest of theuthent we refer to this adaq plot. For sake of simplicity, we
temporarily assumE, is a precise measurement with zero error, a requgnt we will relax later on.

A mode of movements by large marine predators

In this section we describe a model of movementsitge marine predators (that could also be exetalether
fauna). It consists of four modules: i) unoriensgokchastic movement, ii) oriented stochastic moveni)
obstacle avoidance and iv) interaction with otinelividuals of the same species.

The unoriented stochastic movement module genesat@sdom walk and aims to simulate the pathsvieatb
within a constrained area, usually represented dpeaific habitat. The level of correlation in tamdom walk,
together with other statistical properties of tesulting path, is controlled by a number of adjbistgparameters
and is described in Section 4.1. In this modulenowy is represented in a fairly abstract sensénéyime lag
within which the animal movements are correlated.

The oriented stochastic movement module generatesiented path between two locations and aimgalate a
‘purposeful’ movement towards a specific area. Heeenory is modelled explicitly as the animal’s apito
remember how to reach the target location.

The obstacle avoidance module is used to stear aldéxed obstacles like the coastline and expaseds. Finally,
repulsion or attraction towards other individualgplements a simple form of interaction with othesmbers of the
same species.



4.1 Unoriented stochastic movement

The path generated by an animal movement can bghihof as a series of individual steps, each ab@gisting of
a straight segment, where the angles between taiglst segments are defined as turning angleseieifit
distributions of step lengths and turning anglesresult in very different movement paths. Mosnaadi
movement models described in the literature caorbadly divided into 2 classes, depending on whdtieemain
focus is on the distribution of step lengths oning angles. Models belonging to the first claasally choose the
step lengths according to a specific statisticstriiution and assume random, uncorrelated turanges. Lévy
flights are a common example of this class of medalwhich the step distribution is self-similareo a number of
spatial scales [39, 58-60]. Models belonging togkeond group choose the turning angles accordiagpecific
distribution and employ constant or random uncateel step lengths. Brownian motion and various $oom
correlated random walk belong to this class of nwde

Viewing these two classes as arising from two diffit generating processes is both intuitively aathematically
meaningful since the resulting movement patterasiat equivalent. For example, in the first classathly-
curved paths are extremely unlikely to arise sthegturning angles are uncorrelated, while in #aad class they
can be generated by a suitable distribution ofitigrangles, as we will see below. Similarly, in tase of Lévy
flights, extremely long steps are rare but likelyotcur, but are unlikely to occur in the secongragch given that
they would require extremely long series of zeraihg angles.

To implement correlated random walks we follow éipproach described in [30]. The turning anglechosen
from the following circular distribution [61]:

P’Y,K(e) _ (cosh(yx)+sinh(yk) cos(e))l/Y

Equation 2

ZnPl/y(cosh(yK))

where 0 is the turning angle and /s the associated Legendre function of the finstllof order O and degreeyl/
For a given turning angke Equation 2 gives the probability of the predator making argi&in swimming
direction of angl®. This probability distribution depends on two paeders so<y<oo andk=0. By varying these
two parameters, Equation 2 generalises most dftdrelard symmetric circular distributions [61, B®2jluding
some employed to model certain types of animal nmeve [63]. Fork=0, Equation 2 generates the uniform
circular distribution, which leads to Brownian nati

[25] show a number of different movement paths sation of differenty andk combinations in Equation 2, as
well as some properties of the resulting pathsuahing the mean cosine angie(cos (6)) and the correlation
lengtht = —1/In(p). The mean cosine angle gives an indication ofittextional persistence of a path (the closer
to 1, the more linear the path is) while the catieh length, which represents the amount of catigis in
successive steps along the path, gives an indicafithe directional memory. For a more generalyasigof the
types of behaviours arising from Equation 2 werrtfe reader to [61]. In this work, we chose simbinations of

y andx leading to different values pfandt and thus to six qualitatively different movemeaths, which we refer
to as JP1-JP6 in the rest of the document (JPatediche initial of the authors in [61]). As dissed above,
Brownian motion (BM) is obtained by modelling adiBtribution withk=0.

As modelled in [7], the self-similar distributiof step lengths for the Lévy walks follows

P(T)'vr'_'u for re [lmin' lmax]
Equation 3

whereP(r) is the probability of occurrence of a step of lbng |, andl. are the minimum and maximum step
lengths, respectively ([45, 64]) and u is the swaéxponent, which determines how step lengthsdliatebuted
within this range. Following [7], we chose threesiévalk exponents u=[1.7, 2, 2.3], to represergehalternative
forms of Lévy walk. Empirical observations suggbsit Lévy flights resulting from these exponents suitable
for modelling foraging animal behaviour ([65-68h)¢luding sharks ([45, 64, 69]). These values agiduted
around p=2, which some studies suggest providep@mal search pattern ([45, 64, 69-72]). In th&t i the
document we refer to these Lévy walks as LW1-LW3.



When it comes to numerical implementation, JP aldaths can be generated by very similar algorithaigen

a specified,,, in Equation 3, a step in a Lévy flight can be ggléntly seen as i) a single steg |, length
between two changes of direction omiyteps of length,, without a change of direction. The latter is eqigwt

to a sequence @k1 0° turning angles. This also provides a simple wagaimpute the mean cosine angle for Lévy
flights.

This overall approach provides 10 alternative pygples (JP1-JP6, BM, LW1-LW3). Because we lack tkxtai
empirical information about which of these bestotibgs the movement &. melanopterus, we employ all 10
alternative path types to reflect uncertainty iarks’ movement behaviour and study their impadthenestimation
of shark abundance. Table 1 summarises the panenaate resulting statistics for each path type,Figdre 2
shows the angle distribution for JP1-JP6.

Table 1. Parameters and mean cosine angle of swignpaiths resulting from the 10 path types.
Modes @ Equation | Parameters Mean cosine angle

JP1 Equation 2| y =-.1;k=5.01 p=.93

JP2 Equation 2 y =-1;k=1.86 p=.73

JP3 Equation 2 y =0.03;x=6 p=.9
JP4 Equation 2 y =-2;k=1 p=.43
JP5 Equation 2 y =1;x=3.8 p=.5
JP6 Equation 2 y =1.95;k=.93 p=.29
BM Equation 2 k=0 p=0
LW1 Equation 3| pu=1.7 p=.82
LW2 Equation 3| p=2 p=.73
LW3 Equation 3| pn=2.3 p=.62
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Figure 2. Circular distributions of turning angfes path types JP1-JP6, showing the probabilityagiurrence (Y axis) of a
given turning angle (X axis).

Figure 3 shows an example of the path of an indalidhark for each path type, where the plots laoa/s at
different resolution in order to allow the visuaspection of the path’s small scale details. Figus@iows the paths
of 10 sharks, each starting from the same positierg the paths are plotted at the same scaligtrate the
spatial extent of paths encompassed by individiadtswving different path types.
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Figure 3. Path of a single shark (1000 time step&nming in an obstacle-free area for the diffengath types. Plots are

shown at different resolution to highlight the patbimall scale details.
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Figure 4. Paths of 10 sharks (1000 time steps) s&eting at position (0,0). Plots are shown atshme resolution to
highlight the area cover resulting from differeatiptypes.

Figure 5 shows the pattern of site visitation gatext by modelling 9 sharks (equivalent to a derwfity40
sharks/krf) swimming for 6 hours, in an obstacle-free arba filue background indicates water). Locations

visited by a shark are coloured according to thalmer of times the pixel has been visited (red ttowetones map
lower to higher visitation rates; blue means ndaii®n). A simple visual inspection shows how taion patterns
differ between some path types. Brownian MotiomFé 5g) provides the most clustered visitationgpat which
results in larger areas of low or no visitation. éuyg the correlated random walks (JP1-6) JP1 andel® in the
most homogenous visitation pattern, and JP6 istiegeclosest to Brownian Motion (BM). Among the Lévglks,

the visitation patterns become less homogenousimgtieasing exponent p (LW1 to LW3). By comparihig t
with Figure 4, we see that these visitation pagieme related to the spatial extent of the sharkement as, a
function of the mean cosine angle
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Figure 5. Site visitation distribution for 9 shagwimming (equivalent to a density of 40 sharksikfor 6 hours. The blue
background represents an obstacle-free area. Aptree (red to yellow) maps the number of times ibcation has been
visited by a shark, with hotter tones reflectingtr visitation rates (blue maps no visitation).

Figure 6 shows 160 sharks (equivalent to a den$it20 sharks/kiA) for the test area in Figure 1a, which includes
reef crests and coastline. The visitation pattévasd in Figure 5 can also be recognised in Figungith JP1, JP3
and LW1 giving the most homogenous visitation patend JP6 and BM the most clustered.
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Figure 6. Site visitation distribution for 160 ske(~20 sharks/kf swimming for 6 hours, in the study area.



For each of the 10 different path types, Figurédins theFoq plots arising from 20 virtual cameras located ia th
same test area. Given a fictitiobgsvalue (2e-3 in this example) it shows how estimafeshark density, as well
as the associated uncertainty, can vary considegatd function of the movement mode. The uncdytainthe
estimates varies dramatically from JP1(~28-48 sifknk) at the lower end to BM where the uncertaintyaigiést
(~ 33-116 sharks/kh
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Figure 7.Fq plots for different path types. A fictitious obsedvvalue of .~ 2e-3 would result in different shark density
estimates (yellow vertical bar) and uncertainty (vertical bars) depending on the assumed path type

So far we have performed a visual analysis of tiensing paths, visitation rates and estimated sharisity
along with associated uncertainty. The visual aislguggests that the path types have a considémphct on
these variables. A simple statistical analysishefgimulation results supports this initial conias For each
combination of two path types, we carry out a page Kolmogorov—Smirnov test (KS test [73]) betwélea 2
sets ofF 4 Values. The results are seen in Table 2, whek\lmdlies show statistical significance (p<0.05). It
shows that, for this specific experimental settihg, three Lévy walks cannot be differentiated frmme another,
JP2 cannot be differentiated from JP3, JP4 fromaifeSinally JP2 and JP3 cannot be differentiatechfany of
the LW path types.

Table 2. p values from Kolmogorov—Smirnov test beswthe=, 4 generated by the different path types .
JP2 JP3 JP4 JP5 JP6 BM LW1 LW2 LW3
JP1 2.8e-03 1.5e-05 6.4e-11 3.6e-10 7.5e-20 2.9e-54 2.0e-07 1.1e-06 6.4e-05

JP2 6.8e-01 | 8.6e-04 4.7e-03 3.8e-09 3.4e41 1.6e-01 2.0e-01 8.8e-01
JP3 1.1e-02 7.6e-02 | 2.7e07 2.2e-39 6.0e-01 9.1e-01 9.4e-01
JP4 6.8e-01 | 3.3e-02 8.2e-24 1.1e-01 | 2.1e02 1.3e-03
JP5 1.3e-03 3.5e-30 9.8e-02 2.5e-01 | 2.5e-02
JP6 1.7e-15 7.1e-06 1.1e-06 1.8e-08
BM 2.6e-32 6.1e-34 1.3e-37
LW1 9.7e-01 4.4e-01
LW2 6.0e-01

Different experimental settings, including diffeterumbers of cameras, varying camera locationsldfetent
geographical features, will have an impact on thityato discriminate between some path types.Wilereturn to
this issue in the Discussion.

4.2 Obstacle avoidance

A shark’s path in shallow water is necessarily t@nsed by the coastline and reef crests. We mobstacle
avoidance as gravitational repulsion (the oppadigravitational attraction). This is carried oytdssigning a
gravity value to the land pixels in Figure la aederating the corresponding gravity field overéhére spatial
domain [74, 75] (see Appendix 3 for implementati@tails). Figure 8a shows this gravity field. Clos¢he
coastline or a reef crest, the swimming directipresulting from the unoriented swimming module dibsa
above, interacts with the gravity field resultimga new swimming directiodi away or parallel to the obstacle.



Figure 1a shows how the gravity field generatethieyreef crests allows the two individuals to swairound these
obstacles in their path to the foraging area (Wduits).
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Figure 8. (a) Gravity gradients generated by coestland reef, as described in Section 4.2. Thegsad the sharks and
ensure obstacle avoidance. Notice that the donwaiheb is treated as a coastline to prevent shaoks éntering or
leaving the model domain. (b) For each map locatimection towards the foraging area, (white raegioFigure 1a)
as described in Section 4.3. This is pre-calculadespeed up the computational effort during a tin.

4.3 Oriented stochastic movement

Some species of large predators visit specificcaataertain times of the day, often to foragehia work, we
model this movement component via an addition#d fiehich is superimposed to the spatial domairkigure 1a
the white area represents reef flat habitat, assumbe a desired foraging habitat €rmelanopterus. A
parameteky;, is used to orient an individual's movement towdhils area as

0= (1 - kdir)e + kdirBr kdir € [0'1]

wherep is the direction towards the reef flat. kgr=0 the movement is unoriented and an individudbfes a
path along a directiof, as described above, while fgr>0, the movement is adjusted towards the reef flat.
0.05<%,<0.3 has been suggested to provide a realistigigésa of animal movement [76] and the valkgs=[O0,
0.05, 0.1] are used in this work.

The parametéty, can be used to model a species' behaviour atetitiéimes of the day, under the hypothesis that
some species of sharks do not tend to forage at tk@e=0), and they are more active at dusk [g}%0). Here,
choosing the two valudg;;=[0.05, 0.1] allows us to represent the uncertaimtyow individuals move towards the
target area.

As an example, Figure la shows the path of tworiddal sharks following a JP3 path type, with=0.1. The
sharks start swimming outside the reef (cyan dwig)swim towards the reef flat (white) avoiding thef crest. At
each step, the direction chosen by each shariweghted sum of the stochastic value drawn fromJ®@ turning
angle distribution, the repulsion from the coastlamd the attraction towards the reef flat.

For each location in the model domain, the directean areaf) is calculated with the algorithm described in
Appendix 2. This algorithm can be computationakpensive. However, sindeis not affected by an individual's
movement (and thus does not change in time) pibssible to pre-calculate a fidkk B(x,y) for each map position
(x,y) and store it for later use. This leads tmasiderable increase in the speed of simulaticigsir& 8b shows the
field B=B(x,y) for the spatial domain in Figure 1a.

Figure 9 shows the visitation rates for 160 shéekgiivalent to a density of ~20 sharksfknas in Figure 6, with
kgr= 0.1. Following the KS test results in Table 2Figure 9 we show the visitation patterns for dhlyath types.
The impact of the spatial constraints on the shadihis now becomes evident. Because the sharkstaesvim
around the reef crest to reach the reef flat,atisib rates are higher close to the reef edgesdiffegence in
visitation rates between these locations and tsteofehe domain is particularly evident for patpes JP1 and
Lw2.
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Figure 9. Site visitation distribution fa6C sharks (~20 sharks/Kyswimming for 6 hours in the study area wkdir=0.1.

I nteraction with other sharks and video camer as

We know very little about hownd at what frequencylacktip reefsharks interact with one anot. We have
modelled interactionketween individual sharks in a similar fashasobstacle avoidance. Sharks are assigr
fictitious mass valugvhich generates a fictitious gravitational fieldh&h two or more sharks happen to s\
within each other’s gravitational figltheyareinfluenced by this gravitational field and theiriswning path i<
altered. Details about the implementation are ided in Appendix 3 By choosing the si, magnitude and spatial
extension of the gravitational fieldharks can be relled or attracted to one another may interact at different
distances.Obviously, a 0 gravity value imjes that sharks do not interact.

Figure 10a shows the influenoéthe gravity fieldin the case of sharkepelling each oth, for the JP1 path type.
Here we used a fairlyrsing gravity fieldand a large field of influence (20 metresgtophasise the effe
Obviously, thempact of shark interactic is stronger where the shark density is high and isquéarly noticeable
where the individuals swim aroutitereef as shown in the zoomed in panel in Figuitle The lack of
information about interactions among shéin nature prevents us from assessitgther thepatterns shown in
Figure 