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Abstract 
 
This paper presents a discussion of the possible influence of incomputability and the 
incompleteness of  the mathematics as a source of apparent emergence in complex 
systems. The suggestion is made that the analysis of complex systems as a specific 
instance of a complex process may be subject to inaccessible “emergence”.  
 
We discuss models of computation associated with transcending the limits of 
traditional Turing systems, and suggest that inquiry into complex systems in the light 
of the potential limitations of incomputability and incompleteness  may be 
worthwhile. 
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Introduction 
 
We suggest that what we intuitively define as (strongly) emergent systems may 
include processes which are not computable in a classical sense. We ask how 
incomputable processes would appear to an observer and, via a thought experiment, 
show that they would display features normally defined as ‘emergent’. 
 
If this conjecture is correct, then two important corollaries follow: first, some 
emergent phenomena can neither be studied nor modelled via classical computer 
simulations and second,  there may be classes of emergent phenomena which cannot 
be detected via standard physical measurements unless the process of measurement 
exhibits super-Turing properties in its own right. Borrowing from recent literature in 
computer science we then show that tools which enable us to break the classical 
computational barrier are already available and suggest some directions for a novel 
approach to the problem. 
 
Emergence 
 
Implicit in most approaches to the study of emergence are 3 concepts: 

1) multiple levels of representation: there are classes of natural phenomena 
which, when observed at different levels or resolution, display behaviours 
which appear fundamentally different (Shazili, 2001;  Crutchfield, 1994a; 
Rabinowitz, 2005; Laughlin, 2005; Laughlin and Pines, 2000; Crutchfield, 
1994b; Goldstein, 2002); 

2) novelty: for most complex systems, while we expect the properties of higher 
levels to causally arise from lower levels of representation, how this happens 
appears somehow inexplicable (Bickhard, 2000; Bedau, 1997; Darley, 1994; 
Rosen, 1985; Heylighen, 1991); 

3) inherent causality; while we expect causiality to arise solely from lower levels, 
for most complex systems the higher levels also appear to possess inherent and 
independent causal power (Bickhard, 2000; Campbell, 1974;  see also  Pattee 
(1997), Goldstein (2002), Rabinowitz (2005), and Laughlin (2005) for a 
discussion of the role of causation in Complex Systems). 

 
The dilemma which has kept scientists and philosophers busy for decades is whether 
this novelty and inherent causality are real physical phenomena or merely lie in the 
eyes of the observer; said differently, whether reductionism is the only tool we need 
to understand Nature.   



 
 
The limits of Mathematics 
 
The most efficient language we possess to study Nature is Mathematics. This is used 
not only to describe processes but also, by using mathematical transformations rules, 
to deduce, extrapolate and manipulate novel processes. It is thus crucial to be sure that 
the mathematical machinery we use is consistent and correct. It is also important that 
it is as exhaustive as possible, since the more mathematical rules (theorems) we 
discover, the more options are available to us to interpret and manipulate Nature’s 
workings. These needs motivated mathematicians at the end of the 19th century who 
dreamt of devising a set of axioms and transformation rules from which all other 
mathematical truths could be deduced as theorems. In Hilbert’s dream, this would be 
achieved simply by mechanical manipulation of symbols devoid of external meaning 
(Chaitin, 1993; Chaitin 1997, pp 1-5) . Basically, Hilbert was seeking a consistent and 
complete formal system and an algorithm able to prove all theorems of Mathematics. 
The dream was famously shattered by the work of Gödel (1931) who proved that no 
system in which we are able to do integer arithmetic can be both complete and 
consistent. For the sake of our discussion, Gödel’s Incompleteness theorem can be 
summarised as follows (see Gensler (1984) for a simplified explanation of the 
theorem and its proof).  In a formal logical system: 

1) given a set of axioms and 
2) a set of transformation rules of sufficient complexity1 
3) there exist statements (theorems) which are either true but not provable, or 

false and provable. In the first case the system is incomplete, in the second it is 
inconsistent.  

 
Here we focus on systems which are incomplete, that is, systems which can contain 
statements which are true, but not provable. Saying that a theorem T is not provable in 
system S means that, by following the transformation rules of S, we cannot go from 
the axioms of S to T. Still, T is true within the system, and its truth derives from the 
axioms and the transformation rules themselves. Importantly, Gödel’s theorem 
applies to any system of formal logic. The same result was subsequently confirmed 
and generalised by Turing (1931) in the field of Computer Science (the famous 
Halting problem) and by Chaitin (1997) in Algorithmic Information Theory (Halting 
probability Ω). Chaitin showed that there exist processes and numbers which are not 
computable, where ‘computable’ means that it can be calculated via a mechanical 
procedure (an algorithm) given a certain input. Here, it is important to notice the 
relation between a formal system as described above and Turing machines. They both 
start from some initial conditions (axioms and input data), they both carry out a finite 
number of predetermined ‘mechanical’ operations (mathematical/logical rules and 
algorithmic instructions), they both produce results (theorems and outputs), and they 
both lead to inherently undecidable statements (unprovable statements which are true 
and incomputable numbers).  This is reflected by a formal equivalence between 
computation and formal logic (as described in Penrose (1994) pp. 64-66). In the rest 
of the discussion we will use the words unprovable and incomputable 
interchangeably. 

                                                 
1  In Gödel’s original work, basic number theory (arithmetic) was used and the results can be 
extended to more complex axioms and rule sets. 



 
The Science of Complex Systems 
 
There is quite a body of  work which discusses the philosophical basis and nature of 
complex systems science.  Seeking a deeper understanding of the science of complex 
systems, alternatives to the traditional scientific–reductionist approach are proposed 
and explored (Mitchell, 2004; McKenzie and James, 2004). Several papers have gone 
so far as to address the complexity of complex systems science by either explicitly or 
implicitly casting the problem into the realm of complex systems science itself  
(Medd, 2001; Price, 2004; Cooksey 2001).  In many ways, this parallels the way 
mathematics inspired “metamathematics” which explores the roots of our entire 
mathematical toolbox.  Clearly, advances along this line of inquiry have the potential 
to put complex systems approaches on a more robust footing, broaden the 
applicability of techniques, and conceivably make the analysis of such systems more 
straightforward. 
 
There is a self-referential discourse in our attempts to understand how to “do” the 
science of complex systems which is maddeningly appealing. While using the 
structure and language of complex systems science (or something logically 
equivalent) is probably inescapable,  it gives rise to a self-referential element which 
seems suspiciously analogous to the approach metamathematics takes with 
mathematics.  This sort of approach opens the possibility that some Gödelization of 
the science of complex systems is lurking in the shadows even as we attempt to 
understand and classify these systems .  Far from signalling a flaw in our reasoning, 
this may implicitly be the hallmark of a complex system.  
 
Cilliers (2001), perhaps, comes closest to addressing the fundamental issue in his 
paper “Why We Cannot Know Complex Things Completely”.  He ties the process of 
using the science of complex systems to the fact that the construction of the meanings 
associated with the endeavour is itself a complex system.  He then suggests that the 
systems we deal with operate within boundaries and limits and that since a system 
“can only make representation in terms of its own resources [...] it is difficult to see 
how any intervention in the dynamics of the system can take place.”  He goes on to 
discuss the notion of a limit to knowledge as a means of avoiding what seems an 
inescapable determinism in the “knowledge” in the system which must constructed 
from within.  This is precisely the goal of the mathematical constructionists in the late 
nineteenth century, and to them it seemed that a true statement must inescapably be 
derived from the axioms.  If we take the position that the systems which we consider 
(either complex systems, or indeed the science of complex systems) to possess at least 
the properties of simple number theory (as nearly every mathematical model will), 
then we have proof that there will be elements in the system which are true, but can 
never be apprehended by analysis.  It may seem a very tenuous connection to make 
between Gödel’s theorem and philosophical statements about the nature of the science 
of complex systems, but recall that Gödel’s ingenious proof rested on constructing 
just such a bridge between the language of mathematical logic and numbers 
themselves: the gap between mathematical logic and philosophical discourse is much 
less of a hurdle.  
 
When we say emergent, could we actually mean incomputable? 
 



Here we carry out a thought experiment. We picture a physical process which is not 
computable and ask how that process would appear to us as observers. We follow 
Gödel’s path and consider:  

a set of ‘a priori’ mathematical truths  (our usual mathematical system, for 
example), 
some law or laws of physics (say the relationship between mass and velocity) 
which we can experimentally accept as true2.  

 
With these, we form an extended mathematical system which takes the physical law 
as an axiom of the system.  There is an important point here: Gödel says that our 
system cannot be both complete and consistent — if our law is inconsistent with the 
underlying system, then we cannot necessarily make assertions about what must be 
present (apart from the obvious inconsistencies). For the sake of the thought 
experiment, we will suppose that we have chosen our physical law carefully and that 
it is consistent with the rest of the system. 
 
We take this extended system to represent our ‘physics’, that is to say our scientific 
apparatus;  as a result of Gödel’s Incompleteness theorem, the system may exhibit 
physical laws which are true but not provable, that is, true, but not deducible from the 
basic ‘physics’ we employed. We cannot necessarily say that a given system will 
exhibit properties (laws) which are directly related to the new axiom or axioms, but 
Gödel provides an avenue by which such properties may appear. 
 
How would this system (including its true but not provable physical laws) look to us?  

1) we would recognise different levels of representations, one including the very 
basic axioms and others containing increasingly more complex statements 
resulting from the application of the transformation rules; 

2) we would not be able to understand how some derived physical laws originate 
from the initial ‘physics’  (because they are not provable), and even less to 
predict their existence. These physical rules would look novel to us. 

3) Since they are physical laws, these statements would carry apparent causal 
power; they would look causal to us, and since we cannot see how they 
originate from the basic ‘physics’, their causality would appear inherent and 
autonomous. In fact, this causality results from the basic ‘physics’ (which is 
indeed enough to determine all higher levels’ features) but in ways we cannot 
unravel.  

 
Basically, these physical laws would look ‘emergent’ to us, since they satisfy the 
characterizations commonly used in defining emergence. They would appear to 
transcend reduction because we are unable to comprehend their formal link to the 
basic axiomatic physical laws. However, this (like their causal power) is merely 
apparent. Their properties are inherent in the basic ‘physics’ we started from, but in 
ways which are not deducible/computable in our formal system.  
 
The traditional way to address emergent processes is to study and describe the 
different levels separately and, most of the time, independently, by looking for laws 
                                                 
2  Clearly, the ‘truth’ values of a mathematical axiom and of experimentally defined physical 
laws are very different. Here we take the pragmatic view that this choice is the best available in our 
scientific enquiry and that it is indeed the way (physical) science is carried out. See also footnote 11, 
below. 



which best describe the dynamics of the different levels in isolation. In this way, 
quantum mechanics describe sub-particle physics, chemistry describes molecular 
processes, Newton’s mechanics describes macroscopic physics and so on to biology, 
ecology, sociology, geology, up to relativity theory and cosmology. We ‘know’3 that 
these systems are nested in a Russian doll fashion, and we can describe each doll 
separately, but not their nesting. Along these lines, Shalizi (2001) and Rabinowitz 
(2005) propose information theoretic definitions of emergent levels of representation. 
These are, in our opinion and to our knowledge, the most developed approaches to 
this problem. Shalizi and Shalizi (2004) in particular gives a numerical recipe to find 
the most efficient level to study an emergent system based on a measure of system 
predictability and complexity. The most important limitation of these approaches is 
that they cannot discriminate between causality4 and correlation.  This would make 
little difference if we merely wanted to observe and describe a phenomenon, say in 
the fashion of natural historians of the 19th century. If we wish to manipulate or even 
engineer for emergence, then we need to better understand causal relations in order to 
exert control over it. The obvious question is whether we can describe how the 
emergent levels arise. 
 
Does incomputability exist in Nature? 
 
Since Galileo claimed that the “language of Nature's book is mathematics”5, it has 
been assumed that natural processes (physical laws) are computable6. More recently, 
an increasing body of literature started to question this statement (Kauffman, 2000; 
Penrose, 1994; Calude et al., 1995;  Cooper and Oddifreddi , 2003). Here it is useful 
to discriminate among different kinds of incomputability.  Fundamental limits to our 
ability to understand and model Nature arise from a number of sources which are well 
known to both the scientific and non-scientific community, among which we include 
sensitivity to initial conditions (which leads to chaos), inherent randomness of 
quantum processes, and measurement limitations due to Heisenberg’s principle. 
Closely related to these is the incomputability discussed by Kauffman in 
Investigations, namely our inability to pre-state the initial conditions of certain 
problems7. As Penrose points out there is a fundamental difference between these 

                                                 
3  Crutchfield (1994a) gives a beautiful description of how agents discover structures and laws 
in their environment at different level of complexity and different levels of representation. 
4  In the information theoretical language used by Shalizi (2001), the word ‘causal’ is used 
frequently, but in the sense of  automata in Shalizi and Shalizi (2004). Here we use it as Pattee (1997a) 
does in the sense that would allow an observer to intervene on the causal process and consequently 
exert control on its future behaviour. 
5  “Philosophy is written in this grand book, the universe, which stands continually open to our 
gaze. But the book cannot be understood unless one first learns to comprehend the language and read 
the characters in which it is written. It is written in the language of mathematics, and its characters are 
triangles, circles, and other geometric figures without which it is humanly impossible to understand a 
single word of it; without these one is wandering in a dark labyrinth” (Galileo, 1623). 
6  It is often remarked that all known physical laws are computable. This statement carries an 
underlying tautology, since our current understanding and use of physics relies on and implies 
computability. 
7  Kauffman (2000) refers explicitly to the impossibility to define ‘a priori’ the state space of the 
biosphere and consequently our inability to compute its evolution. This is closely related to the 
fundamental incompressibility of the initial conditions on chaotic processes (page 117) which results in 
apparent randomness when a finite precision is imposed upon it (see Crutchfield and Feldman (2003) 
for a discussion of the effect on observations induced by sub-optimal modelling). 



kinds of incomputability and that derived from Gödel’s theorem8. In the formal 
system scenario described above, there are no dynamics (not even a concept of time!), 
no missing information, no undetermined initial conditions, no inaccuracy in the 
description of the transformation rules. Does this sort of incomputability exist in 
Nature? Penrose, Calude et al. and Kellet suggest it does,  but the issue is surely still 
open to debate9. Unfortunately, this question is often disregarded as irrelevant in 
applied science  (Cooper and Oddifreddi, 2003), and we follow Aronson (2005) in the 
belief that  more attention is deserved, since the potential for scientific breakthroughs 
could be enormous. In the following, we discuss some potential consequences on the 
conjecture we proposed above, namely that there may be emergence which arises 
from incomputability inherent in the system we are modelling. 
 
Some corollaries 
 
It is interesting to discuss some consequences which would arise if our conjecture is 
correct: 

1) Reduction is Nature’s only currency, but it is unable to fully explain Nature to 
us. There are physical laws which are indeed merely the consequences of basic 
axioms, but these basic axioms are not sufficient for us to understand the laws 
themselves10; 

2) There may be (emergent) behaviour which cannot be studied via classical 
computer simulation, since it is not accessible to classic computation tools; 
this contradicts a large portion of literature on emergence; 

3) Standard scientific experimental procedures may not be able to detect 
emergent processes. 

   
The first 2 statements are straightforward. The third one requires some clarification. 
The scientific method requires that experiments be reproducible.  This implies that an 
experiment needs to follow a quite detailed and rigorous procedure in order to be 
replicated by different observers under inevitably slightly different experimental 
settings. Basically, an experiment is reduced to an algorithm (Stannett, 2003) and 
consequently scientific experimentation suffers the very same limitation of formal 
logic and computer systems, and thus is, by itself, unable to detect truly emergent 
processes unless it has access to super-Turing input. It seems that the very strength of 
the scientific method, that is, its unique ability to define objective, reproducible and 
rigorous statements, by following precise measurement and logical procedures, 
backfires on its very purpose, by denying access to some members of the class of 
processes which we instinctively define as emergent. An important question which 
arises in this regard is “Under what conditions is our own involvement in an 
experiment sufficient to raise its computational power to a level which deals with this 
problem?” .  How much does it take to make our experiments super-Turing or super-
Gödelian (Wiedermann and Leeuwen, 2002)? 
                                                 
8  A very simple approximation of Penrose’s argument might be “a chaotic system can be coded 
on a computer, so it must be computable”. Despite the fact that the result of the computation will 
inevitably be imprecise, the statistics of the result will still represent a ‘typical’ possible outcome.  
9  Interestingly, this is closely related to the similarly open debate on why Mathematics is so 
efficient at describing Nature and the philosophical dilemma of whether it is a ‘natural’ language we 
discover or an ‘artificial’ language we develop.  
10  Notice the difference between this claim and the common two sides of the standard debate on 
reduction: a) reduction can explain all working of Nature and one day we will confirm this and b) 
reduction can not explain all workings of Nature and another concept is needed. 



 
Breaking the computational barrier 
 
There are models of computation which are not necessarily equivalent to Turing 
machines. The basic notion of how “powerful” a machine (or model of computation) 
might be is based on the size of the set of languages which can be accepted by the 
machine.  Thus some systems may be beyond the representational ability of a 
particular model of computation, but not beyond that of another.  These alternatives 
may make models of many systems more accessible, but they still cannot resolve the 
fundamental uncertainty raised by Gödel’s Theorem: they still contain the basic 
number theory which gives rise to Gödel’s result.  
 
Graça and Costa (2003), explore the nature of general purpose analogue computers 
(GPACs) which are the continuous analogues to the Turing machine.  They propose a 
continous-time GPAC which, while sacrificing some of the generality of Shannon’s 
original machine in order to exclude undesirable configurations,  maintains the 
significant properties of Shannon’s original machine.  The notion of an analog 
computer has a great deal of appeal since so much of what we model is inherently 
continuous in its nature.  The basic conceptual components of a GPAC map quite 
readily into the usual toolbox of an analytic modeller.  MacLennan (2004) takes the 
approach to its logical extent and derives a mathematical representation of a model of 
continuous computation on a  state-space which is continuous in all its ordinates 
(including time).  This paper presents a mathematical treatment of a model of 
computation which is quite different from traditional Turing machines and 
substantially different from the GPAC of  Graça and Costa.   
 
Fuzzy Turing machines (Wiedermann, 2000; Wiedermann, 2004), for example,  
provide super-Turing computational power: machines can be constructed which 
accept a larger class of languages than a traditional Turing machine is capable of 
accepting.  These less traditional approaches to computation may make accessible 
some of those emergent systems which are inaccessible to ordinary algorithmic 
computation.  However, we are still left considering the possibility that there are 
complex systems which arise from Gödelian truths, and can only be studied by 
stepping outside the system. 
 
Turing never claimed that his definition of computation encompasses all systems in 
which computation may occur. He imagined an abstract machine which, under 
restricted conditions, can access superior computational power (in the form on an 
‘Oracle’) when faced with specific parts of computation it cannot perform.  Surely, 
following Penrose’s argument (Penrose, 1994), the very fact that Nature displays 
supercomputational power (as he admits), while it highlights the limits of formal logic 
and classic computability, also shows that, in principle, processes to surpass those 
limits are available. The obvious questions are what these processes look like and 
whether we can employ them productively11.    

                                                 
11  It is interesting to notice that Gödel believed in a strong analogy between mathematics and 
natural science. Mathematics should be studied similarly to how scientists study Nature and the choice 
of the fundamental mathematical axioms should be based not only on their intuitive appeal but also on 
the benefit they provided to the development of a theory (Chaitin, 2000, pages 89-94). Somehow 
similarly, Chaitin (1997) supports ‘Experimental Mathematics’ (pages 22-26, 29,30)  according to 



 
In Turing’s (1931) seminal work, the computer he discussed was an abstract concept, 
not an actual physical machine. Similarly, several authors have contemplated ideal 
abstract machines (hyper-machines) which could in principle break classic 
computational barriers (Ord, 2002; Aronson, 2005).  As for today, none of these 
machines has been built, nor does it seem likely that any will be built anytime soon. 
More down-to-earth approaches, however, look more promising. In a series of papers 
(Verbaan, et al., 2004;  Leeuwen and Wiedermann, 2003, 2001a, 2001b, 2000), van 
Leeuwen, Wiedermann and Verbaan show formally that agents interacting with their 
environment have computational capabilities comparable to Turing computers with 
‘advice’, a milder form of Oracle. There are a number of reasons why interacting 
agents can cross the classic computational barrier: they run indefinitely (as long as the 
agent is alive), they continuously receive input from a (potentially infinite) 
environment and from other agents (unlike a classic machine for which the input is 
determined and fixed at the beginning of the calculations), they can use the local 
environment to store and retrieve data and can adapt to the environment. None of 
these features in isolation can provide super Turing computability, but, taken together, 
they confer a computability power superior to a classical machine. In particular, the 
agents’ adaptivity to their environment means that the ‘algorithm’ within the agents 
(their program) can be updated constantly and, in Leeuwen and Wiedermann's paper 
of 2003, it is shown how super computability can arise from the very evolution of the 
agents. Also, the traditional distinction between data, memory and algorithm does not 
apply in an interactive machine with the result that the computational outcomes are 
more dynamic and less easily predicted (Milner, 1993). Finally, a number of 
conjectures have been proposed in the last decades over the possible super 
computational power of the human brain (Kellett, 2005; Penrose, 1989). Could a 
human interacting with a classic computer provide some sort of Oracle behaviour? 
Could these systems, possessing super Turing computability, be used to model, if not 
understand, incomputable emergence?   Could this be the way forward to understand 
emergence more generally? Intriguingly, could systems like these potentially already 
sit on our desks? 
 
Today, human-computer interactions are standard in a large number of applications. 
These are usually seen as enhancing human capabilities by providing the fast 
computation resources available to electronic machines. Should we see the interaction 
in the opposite direction, as humans enhancing the computational capabilities of 
electronic machines?  Leeuwen and Wiedermann (2000) speculate that personal 
computers, connected via the web to thousands of machines world wide, receiving 
inputs via various sensors and on-line instructions from users, are already beyond 
classic computers. Sensors now monitor many aspects of the environment routinely 
and are routinely installed on animals in the wilderness (Simonite, 2005).  Can we 
envisage a network computing system, in which agents (computers) interact with the 
environment via analog sensors, receive data from living beings, and instructions 
from humans to deal with unexpected situations?   
 
Further Considerations 
 

                                                                                                                                            
which mathematicians should approach mathematics the same way physicists approach physics, via 
experimentation and statistical inference. 



The purpose of this discussion is not to propose a new definition of emergence nor a 
taxonomy of complex systems. Despite the fact that the subject we address is fairly 
theoretical, our aim is pragmatic. We are not interested in defining what emergence 
‘is’. Rather, we suggest a new direction of research to address a class of processes 
which may be normally labelled as emergent and which so far have evaded formal 
analysis. This is not the first time the concepts of emergence and incomputability are 
jointly discussed (Cooper and Oddifreddi, 2003; Penrose, 1994; Kauffman, 2000;  
Darley, 1994; Goldstein 2002), but to our knowledge a clear relation and a possible 
direct approach has not been proposed.  It is reasonable to ask why we should show 
any optimism or even a pragmatic interest in tackling a problem which is, by 
definition, logically and computationally intractable. Our first reason lies in the 
apparent ease with which incomputability arises. As discussed above, interaction with 
an unpredictable environment and adaptability seem to be enough to evolve super 
computability in simple agents with classic computational capabilities and this 
process seems to be further enhanced by agents’ interaction and information exchange 
(Leeuwen and Wiedermann, 2003).  Second, this seems to confirm the conjecture that 
the human brain does have super-Turing capabilities. Third, viewed within the 
perspective of Gödel’s theorem, incomputability and computability seem to come 
together, in an inseparable fashion12. Designing a set of axioms of sufficient 
complexity and transformation rules carries incomputability as a natural consequence, 
that is, it implies incomputability. In other words, it seems impossible to conceive 
computation without incomputability. Finally, it has also been noticed (Bickhard, 
2000; Laughlin, 2005; Atay and Josty, 2003) that emergent process are robust. 
Despite the fact that they depend on properties of lower levels, emergent processes are 
robust to small variations and errors at such levels13. This has led to the suggestion 
that ultimate causal power does not belong to causal laws, but to the organisation of 
matter (Laughlin, 2005) and processes (Bickhard, 2000). This robustness seems at 
odds with the ‘other’ kinds of incomputability which may be responsible for chaotic 
and unstable processes: namely incomplete descriptions of the system, and sensitivity 
to initial conditions. If emergence is such a robust process, could it itself be harnessed 
as a means of furthering our computation?  
 
So, what does all of this mean for the study of emergence and complex systems in 
general?  We happily pursue models of all sorts of systems, relatively comfortable 
with the knowledge that we are approximating a system. As long as we can control 
the size of the error in our approximations,  we remain relatively content.  This is the 
practical side of the analysis of complex systems.  As participants in a very large 
complex system we hope to be able to predict, or at least understand, our interactions 
with other component systems and as much of the aggregate system as we can.  There 
is a very real survival value in being able to foresee the state of the system.  However, 
in the way that the abstract consideration of non-Euclidian geometry opened the door 
to a number of different approaches in physics and improved our models of the way 
the universe may work,  so the abstract, impractical side of complex systems science 
needs to address some basic problems to smooth the path of the practical models. It 
seems likely that there are systems which exhibit properties which we are unable to 
                                                 
12  As incomputable real numbers seem to arise naturally from computable ones via Cantor 
diagonalisation arguments (see Chaitin, 1997, pages 9-11).  
13  Small atomic imperfections do not change the rigidity of metal bar macroscopic state; the 
actions of a New Yorker only very rarely noticeably affects New York’s everyday life; our cells are 
completely replaced every few days, without changing our personality, appearance and metabolism.   



model well either because the properties they evince are mathematically inaccessible; 
the system is algorithmically impossible; or because we are unable to apprehend the 
true state of the system even though the dynamics of the system are understood.  
Systems which fall into the first category will remain difficult to model until our 
mathematics is capable of dealing with them: in this context, the ball is firmly in the 
metamathematician’s court. The second category is a limitation based on our model of 
computation, and there are alternative models which may be helpful.  Practically, it 
suggests that we should pursue alternatives to traditional digital computers and the 
traditional model of computation as an adjunct in our attempts to model and 
understand systems.  The third category is almost certainly the largest.  Strictly 
speaking, it isn’t more “incomputable”  or “inaccessible” to us than it is impossible to 
find the needle in a haystack.  Practically, we are still looking for a strong enough 
magnet.   
 
We conclude with a note about randomness, which further justifies the need for deep 
enquiry into these problems. Chaitin (1993) shows that incomputability also carries 
complete randomness. As before, this sort of randomness is not linked to incomplete 
information and, like formal incomputability, seems to have a more fundamental 
nature. Since we currently read Nature via a computable language (and experiment 
with a computable means), we are left to wonder how much of what we assume to be 
intrinsic randomness actually arises from the limitations of  the language we use.  
Could an exploration of these metamathematical enquiries to the physical world have 
the potential to change the way we perceive several Natural processes? 
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