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1 Abstract

In a mixed strategy, game-theoretical scenario mimicking the behaviour of fishing vessels com-

peting for a limited renewable resource, agents following either a Collective Intelligence or a

purely selfish strategy quickly outperform fully-cooperative teams as well as agents not planning

for future action by acting randomly. The stable balance between fully selfish agents and the

Collective Intelligence depends subtly on the ratio of instantaneous demand to instantaneously-

available resource as well as on the dynamics of the resource itself. This suggests use of ratio

of strategies as an indicator of the level of resource exploitation. The Collective Intelligence

performance proves to be extremely robust to uncertain information, especially when longer

records of historical catch are accounted for.

Key words: Minority Game, Collective Intelligence, Game Theory, Optimisation.

2 Introduction

The growing impact of human activity on the natural environment is making it increas-
ingly difficult for policy makers and managers to achieve sustainable-use objectives.
At the root of this difficulty is a poor understanding not only of both renewable re-
source dynamics and the dynamics of human demand but also the nonlinear, and often
counter-intuitive, interplay between human demand and renewable resource response.
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2 Introduction

We assert that an improved understanding of these things will be gained by examining
the social-ecosystem as a whole, drawing from some of the lessons of complex systems
science.

Technically, devising sustainable resource-use policies can be seen as a mathematical
problem, and a very difficult one for at least three reasons: a) it is complex, b) it is
an inverse problem and c) it is ill-posed. It is a complex problem because the action
taken by one agent affects the future behaviour of all other agents and, in turn, the
future of the original agent itself. This self-referentiality results in complex cycles of
positive and negative feedback loops that make predicting the global outcome of a
given policy particularly difficult. It is an inverse problem because for a given global
management goal, no method is available to directly determine the action each player
needs to take in order to achieve that goal. Finally, this problem is ill-posed because
the final management goal is rarely unique; rather it often represents a compromise
between several competing sub-goals. In the jargon of applied mathematics, this is a
complex, multi-objective optimisation problem.

As a consequence of these difficulties this kind of problem rarely, if ever, has a closed-
form analytical solution; rather a considerable amount of trial and error, helped by
experience and specific expertise, is often needed. A reasonable way to address this
trial-and-error approach is via numerical modelling. This allows one to simulate the
counter-intuitive global outcomes arising from the agents’ interaction, thereby providing
a tool to explore, and hopefully to understand, its inherent complexity. Once a model is
built, experiments are very easy to perform, effectively making available to the manager
a virtual laboratory in which several policy scenarios can be tested quickly to determine
not only the policies which are most suitable for achieving a specific required outcome,
but also their resilience and stability to external perturbation.

The present paper describes one such model and is aimed at studying the way a
renewable resource is harvested in a competitive human society.

Given renewable resources which are distributed over different locations, and a num-
ber of agents with the same potential harvesting capability, we should expect that the
best individual harvests are obtained by the agents who access the least-exploited lo-
cations; that is, the areas where competition is lowest. This is a generalised version
of what is called a Minority Game in the Econophysics literature [1]. Basically we
cast the exploitation of a renewable resource within a game-theoretical framework, in
which agents aim to predict which areas will be least exploited at the next iteration.
Despite its apparent simplicity, the Minority Game displays a number of complex fea-
tures [2]. The fundamental driver of this complexity is the following self-referential
and self-defeating loop [3]: a) a strategy is a winning one if it leads an agent to be in
a minority group (a group which accesses the resource in an underexploited area) b)
winning strategies are reinforced and are adopted by more and more agents c) agents
cease to be in the minority and form the majority group once a winning strategy is
adopted by a large enough number of players and d) at that stage the strategy becomes
a losing strategy.

In a previous work Boschetti [4] showed that a Collective Intelligence [5] approach
can achieve almost optimal resource exploitation even under self-defeating scenarios,
in which fully competitive or fully collaborative strategies fail to achieve policy goals.
Most important, the Collective Intelligence (COIN) approach allows the team of agents
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3 Problem Setting

to adapt to resource variability faster than other methods. The crucial feature of COIN
is that agents try to optimise their individual return not directly but indirectly: that is,
by approximating how their action increases the return of the entire community. This
subtle referential change results in the agents implicitly seeking strategies which account
for the overall team performance as well as for their own individual return, which
depends on community performance. With a slight abuse of terminology, there is a sense
for which a COIN approach attempts to solve a problem (optimal resource exploitation)
accounting for both global (community) and local (individual) requirements. The end
result is that the agent community manages, very quickly, to spread its harvesting effort
proportionally to the resource distribution, despite having no direct information about
it, by allowing an equal share of the resource for each agent and a consequent maximum
(or optimal) global exploitation.

Boschetti [4] left two main sets of questions unanswered; first, how robust is COIN
performance? Is it also successful in a scenario where other strategies are present as
well? Is it sensitive to agents’ cheating (that is behaving selfishly)? How does noise
affect its performance? Second, how does COIN behave under a more realistic (not
fully renewable) resource dynamics? In the present paper we address the first set of
questions. In particular we allow agents to competitively choose what strategy to adopt
and check whether COIN can co-exist with other strategies in an evolutionary stable
configuration. As a by-product of this analysis, we suggest that the final balance of
strategies can be used as a rough indicator of the ratio between resource availability
and resource demand. This indicator has the potential to be of considerable use for
policy making.

3 Problem Setting

Following the modelling framework employed in [4] we mimic a fishery scenario in
which a fleet composed of a number of competitive vessels accesses a fish stock at
different locations. The model can be extended to the exploitation of different renewable
resources in a straightforward manner.

We consider our fishery to be divided into a number of fishing zones i = 1, ..., z, each
containing a population of Zi units of fish. N fishing vessels exploit these zones in the
following way. Let us assume that ni(t) of the N =

∑
i ni(t) vessels exploit zone i at

time t and let each of the vessels have a limited transport capacity Cmax: that is, Cmax

limits the maximum catch for a vessel. In this setting, the catch of vessel j that fished
in zone i at time step t is given by

Cj
i (t) = δj

i Min(Zi/ni(t), Cmax), (1)

where δj
i = 1 if the vessel fished in zone i and δj

i = 0 otherwise. This means that
all the vessels accessing one zone share the available catch equally. According to Eq.
(1) the total catch of all vessels is Ctot(t) =

∑
j Cj(t). The fish stock in each zone is a

fully renewable resource. Here, we assume that the fish population always fully recovers
before the next fishing haul. From a population dynamics perspective this equates to
modelling a large external migration which replenishes the fishery at each time step.
Clearly, this is not a realistic assumption and we adopt it here only to discriminate
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the effect of the vessels’ behaviour from that of the resource dynamics. More realistic
resource dynamics will be included in future work.

The fleet’s catch depends crucially on how the vessels distribute their effort over
the fishing zones. For example, if all vessels access the same zone, they will not be
likely to catch at their maximum capacity, as the limited stock of fish available in
that zone is shared by the whole fleet. On the other hand, if the vessels distribute
themselves proportionally to the stock of fish available in each zone, the maximum
allowable catch can be harvested by each vessel. This ’optimal’ distribution is difficult
to achieve for two reasons. First, the fish resource is unknown. Second, there is no
global coordination among the vessels; each vessel must choose where to fish using only
information about its previous catch; no information sharing, nor centralised decision
making exists which processes the global information and directs the vessels to a pre-
assigned fishing location.

As in [4], a vessel i’s decision on where to fish next is stochastic and is based on
a probability table W i

j (t), which represents the vessel’s own perception of the world,

that is, the perception of the fishing potential of each zone. W i
j (t) is proportional to

the catch vessel j expects to obtain should it access zone i in the next time step. By
construction, one has

∑
i W

i
j (t) = 1.

A vessel’s perception is not fixed in time, but will change according to its past catches.
We call a strategy the approach a vessel uses to change perception; that is, the way it
accounts for past catches. In the present paper, we examine four different strategies:

• MG (minority game): a fully competitive and selfish approach. This strategy
is equivalent to the one commonly used in the traditional minority game (cf.
[6]), from which the name comes; a vessel uses only information about its own
previous catch to determine its next fishing zone and aims solely to maximise its
own return. Information about the past Tmem

1 time periods is discounted linearly
with time and summarised as (cf. [4])

W i
j (t) =

∑Tmem−1
t′=0 Ci

j(t − t′)Tmem−t′

Tmem∑
j

∑Tmem−1
t=0 Ci

j(t)
T−t′

Tmem

. (2)

• TG (team game): a vessel bases its decision making on the past overall perfor-
mance of its team. We assume that a vessel cooperates with the n other vessels
following the TG strategy. The catch of the team is shared equally by the mem-
bers of the team. The basis of modifying the probability table is then not the
individual catch, but the discounted team catch per team player.

• COIN (Collective Intelligence): a vessel bases its decisions on the impacts of its
historical catches. A vessel’s impact is the difference between the overall catch in
the zone accessed and the overall catch in the same zone that one would expect
had the vessel not gone fishing:

Ei
j(t) = δi

j (njMin(Zj/nj , Cmax) − (nj − 1)Min(Zj/(nj − 1), Cmax)) . (3)

1In most of the following experiments we set Tmem = 20.
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Because part of the catch of vessel j could have been caught by other vessels
in the vicinity, the catch of the fleet without vessel j is not necessarily equal to
the overall catch of the fleet minus the catch of vessel j (we refer the reader to
[4] for the derivation of the expression). Basically this cost function discourages
vessels from fishing in areas in which their catch could be caught by others (areas
which are either overexploited or already close to maximum exploitation) and
instead prompts them to choose areas which would otherwise be underexploited.
In COIN the discounted impact rather than the discounted catch is the basis for
the modification of the probability table.

• RAND: a vessel chooses its next fishing zone randomly, without any regard to its
historical catches. We implement this by setting

W i
j = ωi

j/
∑

j

ωi
j , (4)

where the ωi
j ’s are random numbers chosen from a uniform distribution over [0, 1].

On average, the vessel will select each of the available fishing zones with equal
probability. This strategy is chiefly used as a baseline to compare with the other
strategies.

Previous results [4] have been reported for a scenario in which all vessels follow just
one of the above four strategies. These results show that a community of vessels using
COIN has two major advantages. First, the total catch Ctot can be optimized without
negative impacts on the individual catches. Second, the process of adaptation to the
fish population distribution is markedly more efficient than for communities using the
other strategies. This appears especially important when changes in the distribution of
fish over the zones occur.

The scenario described in [4], in which all vessels follow just one of the above strate-
gies, is built on a simplified assumption, which will only hold in a highly regulated
world. More realistically, the agents’ behaviour will be heterogeneous, with some ves-
sels following COIN, some being team players, others behaving utterly selfishly and,
possibly, some moving in a random way. It is thus important to test whether the re-
sults in [4] are stable under these conditions. Going one step further, one might also
inquire how the competition of agents employing different strategies affects the distri-
bution of strategies in the agent population. Both problems will be addressed in the
following section by using approaches from evolutionary game theory ([7, 8, 9]), which
have already been applied to the minority game in different contexts (see [10] for an
example). The results in [4] augment previous results in [10], and here we explore more
in depth the interplay of different strategies and the process which leads the agents to
distribute their effort over the different fishing zones.

4 Competing Strategies

4.1 Interactions of Different Strategies

As in [4], we consider a scenario, where 250 units of fish are distributed over z = 4
fishing zones. Three of the zones host a total stock of n0 = n1 = n2 = 50, whereas
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Figure 1: Zz 6=b = 50, Zb = 100, b changing randomly every Tchange = 2000 timesteps.
Other parameters are N = 50 and Cmax = 5. (left) Homogeneous population
of vessels following just one strategy. (right) Equal proportion of vessels
follow the strategies COIN,MG,TG, and RAND. Mutual interactions influence
the performance of the strategies. Averaged over 100 independent runs.

a fourth hosts n3 = 100 units of fish. These resources are exploited by 50 vessels,
each of which has a maximum fishing capacity of Cmax = 5 units at each timestep.
After every Tchange iterations, 50 units of fish migrate from the most populated fishing
zone to another, randomly selected, zone. The migration timescale Tchange allows us
to control the dynamics of fish migrations. A large Tchange approximates an essentially
static scenario, a small Tchange describes a faster changing environment for the fishing
fleet. We will employ this basic setup for all of the following experiments. Tests of
other scenarios indicate that our main results are robust and are not affected by this
specific choice.

In Figure 1, we show some simulation data for a migration timescale of Tchange = 2000.
On the right hand side, we show a mixed population with equal numbers of vessels fol-
lowing each strategy and compare it to previous results obtained with a homogeneous
population in [4]. From the simulation data, one clearly recognizes the effect of the
mixing of strategies. COIN no longer results in optmimum catches (as a result of the
fact that it no longer distributes the vessels optimally over the fishing zones), but still
adapts faster than the other strategies to the migrations. Over time, however, its ad-
vantage is reduced as the other strategies gain in relative performance 2. Similarly, the
selfish MG strategy still performs as second best. However, unlike with the homoge-
neous fish populations, RAND outperforms TG when fish stocks differ across zones. A
random assignment of fishing locations results in only a relatively small yield loss after
a migration (due to the other strategies over-exploiting some zones), and eventually
performs much better than in the scenario with random-players only, displayed in the
left hand figure. This is due to the fact that, in this mixed-strategy scenario, it is
less likely for randomly-behaving vessels to overcrowd a fishing zone because the other
vessels adapt to the changing resource landscape.

2In fact, we find that, however different the transients, for this ratio of strategies asymptotically TG,
COIN and MG approach the same catch (data not shown)
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The worst affected by the presence of other strategies is the team game strategy. In
the presence of other strategies, team players tend to focus on the zone with highest
resource stocks. Consequently, they suffer most heavily from changes in the fish distri-
bution following a migration (cf. Fig. 1 (right)). Also, they no longer react rapidly to a
new scenario, only reaching their stationary value after all other players have adapted
to the new environment.

Some conclusions can be drawn from this first experiment. First, the interaction
of different strategies changes their performance. For example, RAND performs very
poorly if it is the only strategy used, but it performs much better when competing
against other strategies. Random players force other players to try to adapt to their
erratic behaviour, thereby gaining on them. TG vessels adapt only after the other
players have settled in and even then barely outcompete RAND players.

Second, despite the ranking of the two best performing strategies, COIN and MG,
not being affected by interactions with other strategies, their relative performance is
altered to the advantage of MG and COIN no longer achieves optimum performance.

So far, we have investigated the interaction of strategies in fixed proportions (i.e.
each strategy is adopted by one quarter of the vessels). However, in a real life situation,
a poorly performing vessel would most likely attempt to improve its performance —
probably by adopting a different strategy. Pressures to do so could be economic in
nature (poorly performing players are forced to exit the market and are replaced by new
players) or might result from social interactions and peer pressure (seeing a ‘neighbour’
with a different strategy perform better can induce a player to copy it). In essence this
means that the mix of strategies would change over time.

4.2 Dynamics of the Strategy Mix

To investigate the effect of changes in the dynamics of players following each strategy, we
allow agents to change their strategies over time. There are several ways of doing this;
here we follow an approach developed in ‘Evolutionary Game Theory’ [7, 8, 9]. Each
player is assigned a fitness value from its past performance. Independent of whether
we model an economic or a socially driven process, we assume that agents are able to
spread their strategies proportionally to their fitness values. Better performing strate-
gies will thus spread faster and outcompete those that perform worse. This results in an
evolutionary process operating at timescales longer than harvest-dynamics timescales.

More precisely, we consider the following evolutionary process:

1. In a strategy mix {ni} (i.e., ni players follow strategy i, where we label the
four strategies corresponding to the order in which we introduced them), perform
T ≫ Tchange periods of resource harvesting. Each vessel is assigned a fitness,
proportional to its overall catch.

2. Each vessel can generate offspring in proportion to its fitness.

3. With a small probability pinv, strategies can ‘reinvade’. That is, the strategy of a
randomly-selected vessel is replaced with a randomly-selected new strategy.

4. Iterate 1 to 3 until the achievement of stationary dynamics.
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Figure 2: Evolution of interacting strategies. Zz 6=b = 50, Zb = 100, N = 50. Initially
an equal proportion of vessels share the four strategies COIN, MG, TG, and
RAND. In the first two panels, the x-axis gives the number of evolutionary
steps (each corresponding to 10×Tchange fishing time periods), the y-axis gives
the numbers of players following each strategy. The left panel represents
a static environment with no fish migration. COIN quickly replaces most
other strategies, only a small proportion of MG and TG occasionally reinvade,
whereas RAND is completely abandoned. The middle panel displays a very
dynamic scenario where fish migrate frequently between zones (Tchange = 200),
resulting in a balance between COIN and MG vessels and a few TG. The faster
the rate of change, the more MG players, while TG stays approximately
constant at around 4. In the right hand panel average numbers of vessels
following each strategy depends on the migration timescale. The fitness of
individuals was determined by averages over 10000 time steps

An important point to note is that the dynamics work at the players’ level, not at a
strategy level. In the latter case, the strategy with the best average performance would
always win. In the case we model, however, differences among individual vessels play
an important role. A strategy might result in a very good average fitness, from a mix
of very successful and unsuccessful vessels. A competing strategy, may attract players
of similar fitness with an average performance slightly worse then the first strategy.
Players following the second strategy, while outcompeted by superior performers of the
first strategy, can still outperform poor performers of the first strategy. The result is
a balance between numbers of players adopting both strategies. The first strategy can
dominate only if its worst performer can outperform the best performer of the second
strategy.

Another important point is that the re-invasion probability (this is, the probability
that a strategy may be re-adopted after it has been abandoned) defines the level at
which populations are statistically meaningful. In our simulations with N = 50 agents
we used pinv = 1/50. That means, on average at each step of the evolutionary dynamics,
one player will be set to a new randomly-selected strategy. We should thus expect
that even a strategy that is outcompeted by all others will be followed by a baseline
average number of players nmin = 1/4 when the dynamics are stationary. Larger values
ni > nmin imply that strategy i can at least occasionally beat one other strategy.

In Figure 2 we summarize the results of these experiments. We started with simu-
lations of a stationary fish distribution (no migration, Tchange = ∞). As can be seen
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Figure 3: Zz 6=b = 50, Zb = 100. Histograms of the performance of the strategies for
two migration timescales Tchange = 200 (left) and Tchange = 500 (right). The
data were obtained modelling 15 COIN, 30 MG, 4 TG and 1 RAND vessels
(optimal setup for Tchange = 200, cf. Fig. 2) and averaged catches over 2000
time steps. The histograms are constructed from 5000 runs.

in Fig. 2(left), COIN outcompetes the other strategies. Whereas players abandon the
random strategy completely, a small number of selfish MG players and a small team
of four TG players survives3. This result is interesting in the light of the observation
in section 4.1 that in a mixed-strategy setting with equal numbers of players following
each strategy, RAND can outcompete TG. This seems to confirm the notion that TG
performances improve for smaller teams [11], making the 4-player team more efficient
than the 12-player team in section 4.1.

In Fig. 3 we display the average performance of the strategies (in terms of catch
distributions) for two migration timescales. In both cases, it is noteworthy that TG
and MG players perform very unevenly. For both strategies there is a long tail of worse
than average players. In both scenarios —apart from a few strongly underperforming
TG and MG players— RAND is outcompeted by all other strategies. Note the shift of
the maxima of COIN and TG players from Tchange = 200 to Tchange = 500 that marks
the transition from MG to COIN dominance.

We also find that the final stationary strategy mix depends on the timescale of fish
migrations Tchange. Figure 2(middle) shows the evolutionary dynamics for a fast migra-
tion timescale Tchange = 200. In this scenario MG players dominate and relegate COIN
players to a second place. Finally, in Fig. 2(right) the average populations for all the
strategies for Tchange = 50...1000 are given. We essentially find that COIN dominates
in very slowly changing scenarios whereas MG performs best for short timescales.

The experiments presented so far were all carried out for a balanced resource sit-
uation, over which an optimal distribution of vessels would guarantee the maximum
possible catch. The performance of the strategies, however, also depends on the ratio
of the total vessel capacity NCmax to the available catch

∑
i Zi, i.e. the exploitation

3The size of this team does not scale with the number of players, i.e. teams of approximately four TG
players form also in a scenario with twice the stock of resources and twice the number of players

9



4 Competing Strategies

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3000  3200  3400  3600  3800  4000

ca
tc

h 
pe

r 
ve

ss
el

time

COIN
MG
TG

RAND
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  500  1000  1500  2000

ve
ss

el
s

Tchange

COIN
MG
TG

RAND

Figure 4: Zz 6=b = 50, Zb = 100, N = 80 and Tchange = 1000. In the left hand panel time
evolution of the average catch per vessel is displayed for 43 COIN agents, 17
MG agents, 4 TG agents and 16 RAND agents. Note that COIN does not
start at a peak after the migration at T = 3000, but benefits from very fast
adaptation. The panel on the right displays the proportion of COIN, TG,
MG and RAND as a function of Tchange.

ratio

r =
NCmax∑

i Zi

. (5)

This ratio defines the amount of vessel space per unit of available fish, given an optimal
distribution of the vessels over the fishing zones. Clearly, for very large ratios, most
fishing zones will almost always be overcrowded. Under these conditions, individual
contributions very seldom lead to an impact on the global catch of the fleet and the
behaviour of COIN is expected to become more erratic.

In Figure 4 we summarize some simulation results for a fleet of N = 80 vessels over
the same fishery scenario displayed above.

The average catch per vessel for different strategies differs from the previous scenario.
In this overcrowded scenario (the ratio is r = 80× 5/250) COIN can dominate only by
adapting faster than all the other strategies. COIN adapts very quickly to a migration,
thereby benefitting from it compared to the other strategies. With time, however,
vessels with different strategies gradually adapt to the new fish distribution and COIN
vessels are pushed away (all resources tend to be overcrowded). With longer migration
time scales, thus with less migrations to take advantage of, COIN vessels cannot achieve
high impacts and their performance approaches that of a vessel adopting RAND. Also,
depending on the migration, RAND has the potential to perform well in comparison to
TG.

In Figure 5 we show the results of simulations in which we systematically altered
the exploitation ratio. This was done by keeping the available units of fish in the
zones fixed, but changing the number of vessels exploiting them. In strongly underex-
ploited scenarios, the importance of a balanced arrangement of the vessels over zones

10



5 COIN and Uncertain Information

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

pe
rc

en
t s

tr
at

eg
y

exploitation ratio

COIN
MG
TG

RAND

Figure 5: Dependence of the mix of strategies on the exploitation ratio. Tchange = 1000
and the fish distribution is modelled as above. Every data point is averaged
over 100 runs.

is low. Many otherwise suboptimal configurations yield satisfactory average catches;
all strategies fare rather evenly. As the resource availability gets tighter and the actual
arrangement of players over the zones becomes more important, the fraction of COIN
players rises until it reaches its maximum for an exploitation ratio of around one. Past
this point competition for scarcer and scarcer resources increases. As a result COIN
players are driven away, because they are unable to achieve an impact on the global
catches. Finally, for very large exploitation ratios, fluctuations, i.e. movements of ves-
sels from one zone to another that are unrelated to changes in the resource distribution,
become more and more frequent. Because COIN players can no longer achieve impacts,
their behaviour approaches that of RAND players; at this stage, the fraction of COIN
plus RAND players almost equals the fraction of those adopting the MG strategy.

5 COIN and Uncertain Information

As observed in the introduction, an agent adopting the COIN strategy requires more
information about its environment than an agent that behaves completely selfish (MG).
Whereas an MG agent only requires a record of its own historical catches to determine
its next action, a COIN agent needs to know about its impact history. Calculating
the impact, however, requires information on how many other vessels accessed the
same fishing zone (ni) and the size of the fish-stock available in that zone (Zi)

4. This
additional information requirement could leave the COIN strategy vulnerable to false
information.

4Actually, in our somewhat artificial model setup Zi6=b = 50, Zb = 100, N = 50, an agent can deduce its
impact from its own catch. This, however, is not true for more general fish distributions.
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Figure 6: The panel on the left displays the effects of uncertainty on the performance
of COIN. Different curves correspond to different lengths of the history used
for decision making (Tmem). Remarkably, the performance of COIN is not
affected strongly, even for noise levels comparable to the maximum allowed
catch (no impact larger than the maximum catch is possible). The panel
on the right displays averaged time series for COIN and different levels of
uncertainty for Tmem = 20. For comparison, with the same setup but no
uncertainty, MG yields 4.77 ± .06, TG 4.5 ± 0.013 and RAND 4.15 ± 0.018.

Uncertainty in the information required by COIN stems from two sources:

1. Uncertainty in the amount Zi of resource available in the fishing zone. Information
about Zi is hard to obtain for vessels in real life scenarios and will mostly be based
on a very error prone estimate.

2. Uncertainty about the number of other vessels in the same zone. Reasons for the
lack of such information might be bad weather or communication problems.

In the following we include uncertainty into our model without discriminating its
sources. After determining a vessel’s impact as described in section 3 according to Eq.
(3), we add to it a random number Ξt drawn from a uniform distribution over [−Γ, Γ],
i.e.

Ei
j(t) → Max(Ei

j(t) + Ξt, 0), (6)

where the parameter Γ allows us to tune the magnitude of the uncertainty. Next we
calculate the average catches of a fleet comprised of only COIN vessels, see Fig. 6.

We find that COIN is remarkably robust to noise. Even by applying uncertainty levels
much larger than the noise-free maximum possible impact, the COIN performance is
not strongly affected. Only for noise levels Γ ≈ 2Cmax a gradual deterioration sets in.
However, even noise levels Γ ≈ 10Cmax still allow COIN players attain much better
performance than RAND players.

Why is COIN so remarkably robust? The reason appears to reside in the strong
impact of history in the decision making process. When choosing its next fishing zone,
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6 Summary and Discussion

an agent effectively assesses a weighted average over its last Tmem = 20 catches. This
means that, even though individual pieces of information might be heavily corrupted,
the fluctuations are smoothed out in the final calculation, cf. Eq. 2. Only when
the uncertainty is large or biased enough to impact the averaging process does noise
considerably affect COIN’s performance, cf. Fig. 6 (left).

The inclusion of uncertainty in the model affects COIN’s optimal memory length.
Without noise, memory length needs to compromise two different trends. It has to
be long enough to enable COIN to ‘learn’, but not too long, in order to allow for fast
adaptation to migration. Large uncertainty shifts the balance towards longer memory
requirements.

6 Summary and Discussion

Originally, COIN was conceived as an numerical optimisation tool to address engineer-
ing problems involving the coordination among a large number of components [5]. In
[4] we showed that the COIN algorithm is simple enough (and we simplified it further)
to be used by real human agents using only primary-school level calculations. Clearly,
the real world adoption of a technique depends not only on its ease of implementa-
tion but also on its robustness. In this application, robustness needs to be assessed
against uncertain or insufficient information and against explicit and illicit (cheating)
competition.

In this paper, we addressed these challenges by testing COIN against three differ-
ent approaches in a mixed strategy environment, under different scenarios of resource
variability and with increasing levels of data uncertainty.

First, we learned that the performance of a strategy changes considerably in a mixed
strategy scenario: that is, when it needs to compete directly against other strategies.
In these cases, we found that random behaviour is not viable and that only very small
teams of cooperating players can survive. The dominant strategies are always either
the Collective Intelligence (COIN) or a fully selfish one (minority game, MG). Which of
these performs better depends on two parameters: a) the exploitation ratio; that is, the
ratio between available resource and demand and b) the frequency of variation in the
resource distribution. In balanced scenarios with an exploitation ratio of around one,
COIN dominates for intermediate and large migration timescales, while MG prevails in
fast-changing scenarios. For overexploited systems, the converse is found to hold.

Our second main result is that COIN proved to be extremely resistant to incorrect
information, which we modelled as noise in the determination of vessels’ impacts on the
overall community performance. The performance of COIN subject to noise is strongly
dependent on the length of the record of past catches used in the decision making
process. In the context of the model, accounting for past information corresponds to
a weighted average over past results, hence a longer memory tends to provide stronger
resistance to noise. The problem-dependent optimal history length is determined by a
trade-off between a) the minimum length of time required for COIN to learn, b) the
requirement for fast adaptation to change in the resource distribution and c) the need
to account for incorrect information. In a very uncertain environment, where impacts
can only be determined approximately, allowing for long histories of catches is expected
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to achieve a better result.
As a by-product, our experiments suggest that the above mentioned dependency of

the stable balance between COIN and MG on the exploitation ratio, may be employed
as an indication of the exploitation ratio itself. Poor performance of vessels following a
COIN strategy, effectively behaving randomly, may be an indicator of an overexploited
resource. This flags the possibility that COIN vessels could not only improve resource
exploitation, under favourable circumstances, but also act as a monitor of the efficiency
of a management policy. We plan to explore this option further in our future work.
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