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EXTENDED ABSTRACT 

It is largely understood that the contribution which 
scientific research can provide to the management 
of limited renewable resources includes not only 
the study of the dynamics of the resource itself, but 
also the understanding of how humans interact 
with the resource and ultimately manage its 
exploitation. For long the realm of qualitative 
social science, the last decade or so has seen the 
pioneering of quantitative study of certain aspects 
of human behaviour and, despite still at its infancy, 
interesting applications start to appear (Little et al, 
2004, Dreyfus-Leon 1999, Varis 1998). 

One instance of such effort, applied to the 
competition for limited resources, has been 
pioneered by Arthur (1994) and later generalized 
in what is now called Minority Game (MG, see 
Challet and Zhang 1998). This tool has allowed 
scientists to highlight unexpected behaviours 
displayed by the community as a whole. 

The fundamental reason for the complexity of the 
MG (and of the competition for limited renewable 
resource in general) is its self-referential and self-
defeating nature (Batten, 2005). Imagine a group 
of individuals who routinely has to choose where 
to access a limited resource. The amount of the 
resource an individual can obtain depends on how 
many other individuals choose to access the 
resource at the same location (since the resource is 
limited and needs to be shared). How many 
individuals choose a specific location depends in 
turn by the expectation that the location will be 
more or less exploited. Such expectation will guide 
the individuals’ choice and consequently its final 
level of exploitation. Consequently, the 
expectation actually determines the outcome: this 
is the self-referential aspect. Also, the more 
individuals expect a location to be profitable, the 
more will access it and the less profitable the 
location will result. The expectation actually 
determines the opposite outcome: this is the self-
defeating aspect.  

The self-referential and self-defeating nature of the 
MG has lead some authors to suggest that optimal 

exploitation of a limited resource is not possible 
under purely competitive pressure (Hardin, 1968). 
The purpose of this work is to show that, at least 
under specific circumstances, this may not be 
necessarily so. The tool we employ is called 
Collective Intelligence (COIN, Wolpert and Tumer 
1999). It has been proposed to address a number of 
engineering problems (mostly in computer science, 
see Tumer and Wolpert 2000, Wolpert et al, 2004) 
and has already shown good result on a 
generalized from of the MG (Wolpert et al 2000, 
Wolpert and Tumer 2001).  

Our contribution is to simplify this method with 
the view of a possible use by actual human 
communities. We show that a COIN could 
potentially be employed by real people with no 
need of computer aid, by simply performing 
elementary calculation with pen and paper. We test 
its potential on a fishery exploitation problem and 
compare the results to different algorithms 
traditionally used in the MG literature, in which 
individuals act either randomly or rationally and 
can evolve their behaviour.  The important result is 
that the use of COIN leads to improved resource 
exploitation not only for the overall community 
but also for each individual (on average), that is, 
no personal sacrifice is required for the good of the 
community. This may be a crucial factor in 
opening the road to a possible use of COIN in real 
applications. The results could naturally be 
extended to the exploitation of resources other than 
fisheries.  

1. COMPETITION FOR LIMITED 
RESOURCES: PROBLEM SETTING 

 

In this section we describe our test problem. We 
model a fishing fleet composed of competitive 
vessels, targeting a limited resource of a single fish 
species.  

In our virtual fishery we employ N fishing vessels 
Nn ..1= (agents in the general CAS literature). At 

each iteration of the game, each individual vessel 
needs to choose where to fish among Z available 
zones (only one zone can be chosen by a vessel at 
each iteration). In each zone a certain amount of 



fish ZzFishz ..1, = is available. This amount can 
change from zone to zone but, unless otherwise 
stated, is fixed in time. This means that we are not 
modelling the population dynamics of the fish 
species and we assume a constant amount of fish is 
present in the zones at each iteration, 
independently of how much has been caught in the 
past.   

The amount of fish available at a particular zone is 
shared equally among all the vessels which chose 
to operate in that specific zone. Consequently, the 
catch of each vessel depends on the action of all 
other vessels. Also, each vessel has a maximum 
fishing capacity, that is, it is not able to catch more 
than a predetermined amount (the same for each 
vessel). Thus the catch for each vessel is given by:  
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where nCatch  is the amount of fish caught by 
vessel n, nzone is the fishing zone chosen by 

vessel n, 
nzoneFish is the amount of fish available 

in nzone , 
nzone

Crowd  is the number of vessels 

which chose to fish in nzone  and MaxCatch is the 
fishing capacity of each vessel. 

Naturally, the total catch of the fleet is given by 
the sum of each individual catch, 
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that is, the fleet can catch the maximum allowed 
amount of fish only provided the vessels spread 
their fishing effort strategically among the 
different available zones. In this work we explore 
whether the vessels are able to adopt a strategy 
which allows the fleet to maximize TotalCatch. 

2. THE MINORITY GAME (MG) 
 

In the last few years a considerable body of work 
has been published on the study of the Minority 
Game (Zhang 1998), mostly within the physics of 
condensed matter community (see also 
http://www.unifr.ch/econophysics/minority/ for an 
exhaustive collection of papers on the subject).   

The crucial component of the MG is the process 
used by the vessels to determine which zone to 
fish. In our work, we modelled this by a method 

proposed Chau and Chow (2003). At the beginning 
of the simulation, a set of strategies is assigned 
randomly to each vessel. At each iteration, 
different criteria are used by the vessels in order to 
select which strategy to employ among the ones 
available. The different criteria determine different 
algorithms which play the MG. In our work we 
tested 3 implementations: 

1) ‘Simple MG’ ( simpleMG ): during the 

simulation each vessel keeps track of how 
many times in the past each strategies guessed 
correctly the next most profitable zone 
(independently on whether the zone was 
actually chosen by the vessel). At each 
iteration, the strategy which has accumulated 
the highest score is employed to determine 
where to fish next. This implementation is the 
closest to the ‘standard MG’ discussed in the 
literature (Challet and Zhang, 1998). 

2) ‘Random MG’ ( randomMG ): at each iteration 
each vessel picks a zone totally randomly. 
This implementation is useful as ‘null’ test 
case to evaluate the performance of other 
MGs. 

3) ‘Evolutionary MG’ ( evolMG ): every M 
iterations, each vessel’s strategy set undergoes 
an optimization step via a Genetic Algorithm 
(GA) (see Boschetti et al 1996 for a 
description of the specific GA used in this 
work).  

 
For the sake of clarity and conciseness, in the rest 
of the paper we will use the shorthand MG(s) to 
refer to the three algorithms described above, not 
to the Minority Game itself.  

3. OPTIMISING THE WORK OF A 
COMMUNITY: THE COLLECTIVE 
INTELLIGENCE 

 

In this paper we ask what strategy individual 
vessels should employ in order to achieve the best 
global exploitation of a resource (and possibly best 
individual return too). This can be cast as an 
optimization problem. Here the word optimization 
has a broader meaning that just maximizing an 
economic return. Rather we refer to the search, 
within the space of all possible vessels’ strategies 
for set(s) which results in a specific global 
outcome (in our case best global catches).  

One of the main challenges in numerical 
optimization is how to design a suitable ‘cost 
function’, that is a measure of how good a certain 
outcome is, compared to the outcome we wish to 
achieve. In our problem, one option for a ‘cost 
function’ could be to maximize the catch of each 



individual vessel. This option in represented by the 
MGs described above.  

Another natural choice for a cost function could be 
to assign to each individual vessel a share of the 
global catch (that is, the better the global catch, the 
more each vessel is rewarded). In game theory, this 
is called a ‘team game’. This solution would work 
well with small fleets. When the number of vessels 
increases, ‘team game’ performances tend to 
worsen quickly (Wolpert and Tumer, 2001). The 
reason for this lies, once again, in the self-
referential nature of the problem. When many 
vessels are modelled, it is hard for an individual 
vessel to determine how much its own action has 
affected the global catch. Vessel n1 may have 
taken a very unprofitable action, but the actions of 
all other vessels may have compensated for it by 
still producing a good global catch. Vessel n1 may 
thus ‘think’ its action was profitable and may 
adopt it again in the future, thereby preventing the 
fleet to improve its performance. In Wolpert et al. 
(2004) this problem is called lack of ‘intelligence’, 
and is referred to the inability of the vessels to 
obtain useful information (‘intelligence’) about the 
problem. 

COIN addresses both problems (‘greed’ and lack 
of ‘intelligence’) and, remarkably, the solution it 
proposes is very simple. Here we illustrate briefly 
the method, while we refer the reader to Wolpert 
and Tumer (1999) for a detailed description of the 
mathematics, together with the theorems which 
give a solid base to the theory and their proof. 

COIN overcomes the ‘team game’ problem by 
attempting to estimate the contribution of each 
individual vessel to the global catch. This can be 
achieved by calculating what the catch of the fleet 
would be if a specific vessel n1 (say) did not exist. 
In the rest of the paper we will use the superscript 
‘-n’ to refer to values calculated for the fleet as if 
vessel n did not exist. For example 

1nTotalCatch− is the (hypothetical) catch of the 
entire fleet in the absence of vessel n1. Notice that, 
in general, this is different from calculating a 
quantity for the entire fleet minus the same 
quantity for vessel n1: 

1
1

n
n CatchTotalCatchTotalCatch −≠− . Rather, the 

effect of vessel n1 to the total catch should be 
calculated as: 

1
1

n
n TotalCatchTotalCatchE −−=                    (4)  

In Wolpert and Tumer (1999) it is proved that any 
difference function of the form of Equation 4 is 
aligned, that is, by increasing 1nE we can not 
decrease TotalCatch. It results that if we could 
optimize Equation 4 for each individual vessel 

then we would automatically optimize the catch of 
the entire fleet.  

In practice, this approach would be extremely 
complicated to implement, if not impossible. 
Because of the self-referential nature of the 
problem, it is very hard to calculate what the 
behaviour of the fleet would be if vessel n1 did not 
exist. This is because the behaviour of each vessel 
in the fleet is affected by the presence/action of n1. 
Basically, we would have to account for the 
dynamics of the game and rerun the entire 
simulation from the starting point 

It turns out that a remarkable (computationally 
feasible) simplification is possible which allows 
for the general idea to be useful. In Wolpert and 
Tumer (1999), it is shown that the effect of a set of 
agents can be approximated by simply replacing 
their action with a fixed one. In COIN jargon this 
operation is called ‘clamping’ and different options 
for such clamping operation are discussed 
(Wolpert and Tumer, 2001). This means that we 
can disregard the dynamics of the problem and still 
implement the idea with meaningful results. The 
simplest option for this approach (and the one 
which make more sense in our application) is to 
use 0 as ‘clamping’ value. In our example 
(Equation 4), this corresponds to vessel n1 not 
going fishing and calculating the resulting 

1nTotalCatch− . Notice that this calculation is 
fictional, because in our model (as in most realistic 
applications) vessel n1 can not choose not to go 
fishing. In the COIN literature this approximation 
is given the fanciful name of Wonderful Life 
Utility (WLU), in the name of an old famous 
movie.  

Since the WLU is aligned and avoids the ‘team 
game’ problem, both self-referentiality and self-
defeatingness are circumvented. The WLU also 
has a few other important features; first, unlike a 
‘team game’ scenario, it involves only events 
happening in vessel n1’s own fishing zone,  over 
which n1 has easier access to measurements. Most 
important though, the optimization of the global 
catch is obtained while each individual vessel tries 
to maximize its own return, since each vessel looks 
for underexploited zones. The vessels are still 
acting selfishly, but they are acting much less 
competitively than in the MGs. Also, unlike in the 
‘team game’, no obvious sacrifice needs to be 
asked to each vessel in the name of a better 
community goal. This promises best outcomes for 
the fleet coinciding with best results for each 
individual vessel. Our experiments in section 
‘Numerical Results’ below will verify whether this 
promise holds true.  



4. COIN IMPLEMENTATION 
 

In our COIN implementation, a strategy is 
represented as a set of weights, one for each 
fishing zone ZzWz ..1, = . zW  gives a measure of 
the expectation of obtaining a good catch at zone z. 
At each iteration, the vessel performs a random 
pick among the Z zones, with the probability of 
selecting zone z proportional to zW . Basically, the 
more a vessel expects a specific zone to provide a 
good catch, the more likely the zone will be 
chosen. This parameterization allows for a balance 
between exploration and exploitation. In the 
statistical physics parlance, this corresponds to a 
Boltzmann sampling with no temperature decay. 

At each iteration t, each vessel evaluates the 
catches it obtained in the past T iterations and it 
uses this information to set zW (that is, to predict 
which will be the most profitable fishing zone at 
time t+1). In order to account for non stationarity 
in the predictions, the past catches at times 

tTtt p ...1+−=  are discounted proportionally to 

pd ttt −= , that is, the longer ago the catch was 

taken the less it influences the prediction.  This 
implementation can be seen as a simplification of 
the ones proposed in Wolpert and Tumer (1999) 
and Wolpert and Tumer (2001).  

Finally, in order to better evaluate the performance 
of the COIN, a ‘team game’ implementation is also 
tested, in which the ‘cost function’ for each vessel 
is simply a share of the global catch (vessels are 
neither selfish nor competitive, rather fully 
cooperative).  In the rest of the paper this 
algorithm will be referred to as TG.  

 

Figure 1. Mean Global Catch for the different 
algorithms in the test with N=50, Z=4, 
MaxCatch=5, The curves are averaged over 10 
runs 

5. NUMERICAL RESULTS 
 

In this section we compare the performances of the 
different algorithms we introduced above. In the 
first test we model a fleet of 50 vessels (N=50) and 
4 available fishing zones (Z=4). The resources 
available in each zone differ: zone 1, 3 and 4 can 
provide 50 units of fish ( 502 =≠zFish ), while zone 
2 can offer 100 ( 1002 =Fish ). Each vessel can 
catch at most 5 units (MaxCatch=5). Following 
Equation 3, we can estimate the maximum 
possible catch for the fleet: 

250)*,(
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units.  

A summary of the results can be seen in Table 1. 
For each algorithm, we show: 

1) the mean catch for the vessel which caught the 
largest amount of fish (column 1), 

2) the mean catch for the vessel which caught the 
smallest amount (column 2); 

3) the total mean catch of the entire fleet over the 
entire simulation (column 3); 

4) the mean catch of the entire fleet at the last 
iteration step (column 4) and  
 

In order to account for stochastic fluctuations 
inherent in the algorithms, all results are averaged 
over 10 different runs. 

  

Table 1. Summary of the comparison of the 
different algorithms in the test with N=50, Z=4, 
MaxCatch=5, 502 =≠zFish 1002 =Fish . All 
values are averaged over 10 runs. In the table Max 
IC= maximum Individual catch, Min IC= 
minimum Individual catch, GMC=Global Mean 
Catch, FGC=Final Global Catch. 

 Max IC  Min IC GMC FGC 

COIN 4.89 4.80 242.40 250.00 

TG 4.77 4.53 232.33 237.50 

simpleMG  4.23 4.07 207.63 204.50 

evolMG  4.23 4.06 207.08 210.00 

randomMG  4.23 4.07 207.58 207.00 

 

We can notice the following: 

1) COIN provides the best catch for the entire 
fleet as well as for each individual vessel: the 
worst performing vessel obtains a better catch 
than the best performing vessel with any other 
algorithms. This suggests that no individual 



sacrifice is necessary in order to achieve best 
global catches when using the COIN 
approach. 

2) The second best catches are provided by the 
Team Game. The TG approach of putting the 
fleet’s interest above the individuals results in 
circumventing the self-defeating nature of the 
MGs, and thus outperforms them.  However, 
the inability of the TG vessels to discriminate 
the effect of their own action from the ones of 
all other vessels results in performing worse 
than the COIN. 

3) The performances of the three MGs are quite 
similar and considerably worse that on the 
COIN and TG. 

 

It is also worthwhile to analyze the time series of 
the Global Mean Catch (GMC) produced by the 
different algorithms (Figure 1): 

1) The MGs’ curves oscillate around a fixed 
exploitation baseline. This in characteristic of 
the Minority Game behaviour (Arthur, 1994). 
No global adaptation can be seen as a function 
of time, not even for the algorithm employing 
evolution ( evolMG ). 

2) The TG quickly reaches good performance 
and slowly improves for the rest of the run, 
with oscillations of much smaller amplitude 
than the three MGs. This shows a certain level 
of adaptation to the modelled conditions. 
Despite the oscillation, the TG’s GMC is 
always well above the MGs’ ones. 

3) The COIN’s performance is the worst at the 
very beginning, but within 10 time steps it 
overtakes all other algorithms. It then keeps 
on improving, converging towards the 
maximum allowed catch (250) with oscillation 
of decreasing sizes. 

  

 
Figure 2.  Mean Global Catch for the different 
algorithms in the test with N=50, Z=4, 
MaxCatch=5. At the beginning of the run we have   
and 502 =≠zFish  and 1002 =Fish .. After 200 
steps the fish stock distribution changes to  

503 =≠zFish  and 1003 =Fish   . The curves are 
averaged over 10 runs. 

 
In the second test we examine how the algorithms 
adapt to change in resource distribution. We use 
the same fishery scenario as in the first test (N=50, 
Z=4, MaxCatch=5). At the beginning of the run 
we set 502 =≠zFish  1002 =Fish . However, after 
200 time steps, we modify 502 =Fish  and 

1003 =Fish , while we leave zones 1 and 4 
unaltered. Basically the larger stock moves from 
zone 2 to zone 3.  The time series of the Global 
Mean Catch can be seen in Figure 2. Obviously, 
the behaviour of the curves in the first 200 steps is 
similar to the one described in Figure 1. Soon after 
time step 250 the catches of both COIN and TG 
decrease suddenly and sharply. Naturally, the 
COIN and TG fleets had ‘trained’ themselves to 
exploit more heavily zone 2 and its drop in stock 
affects negatively their catches. Both COIN and 
TG are able to adapt to the new resource 
distribution and adjust their fleet allocation to 
exploit it. However, the COIN fleet is much faster 
in retraining itself to the new scenario and its 
GMC recovers faster than the TM’s one. This 
explains the final better performance displayed in 
Table 2.   

Table 2. Summary of the comparison of the 
different algorithms in the test with N=50, Z=4, 
MaxCatch=5. At the beginning of the run we have 

502 =≠zFish  and 1002 =Fish . After 250 steps the 

fish stock distribution changes to 503 =≠zFish  

1003 =Fish . All values are averaged over 10 runs. 
In the table Max IC= maximum Individual catch, 
Min IC= minimum Individual catch, GMC=Global 
Mean Catch, FGC=Final Global Catch. 

 Max IC  Min IC GMC FGC 

COIN 4.87 4.61 237.74 250.00 

TG 4.80 4.25 225.74 237.00 

simpleMG  4.26 4.09 208.49 210.50 

evolMG  
4.23 4.06 207.04 210.50 

randomMG  4.22 4.07 207.46 204.50 

 

6. IMPLEMENTING COIN WITH PEN 
AND PAPER 

 

Conceptually, the core of the COIN approach lies 
in Equation 4, which implements the idea of 
evaluating the effect that vessel n1 has on the fleet 
by comparing the catch of the fleet to that of a 
hypothetical fleet without n1.  Computationally, 
the crucial step lies in mimicking the behaviour of 



the hypothetical fleet without vessel n1 by using 
the Wonderful Life Utility with clamping factor 0.  
The fact that this (very rough) approximation 
works, immensely simplifies the approach and 
makes the conceptual idea behind COIN actually 
implementable. In this work, we simplified the 
COIN algorithm further by imposing some (albeit 
minor) modifications.  In particular: 

1) unlike in Wolpert et al. (2000), the weights 

zW  are not adjusted, but rather reset, at each 
iteration according to previous catches; 

2) in previous applications of COIN to the 
Minority Game (Wolpert et al., 2000, Wolpert 
and Tumer, 2001) the return R of each agent 
for attending a certain zone is given 
by )/exp(* cyyR −= , where y is zFish in our 
problem. In this equation, c plays the part of a 
pre-determined ‘ideal’ number of agents 
attending each zone. The presence of the 
parameter c helps to guarantee a balanced 
allocation of the vessels among the zones. In 
order to simplify the calculation, we did not 
use this option; 

3) finally, in Wolpert et al. (2000) and Wolpert 
and Tumer (2001), in order to account for non 
stationarity in the predictions, the past catches 
are discounted by an exponential function 
while we used a simpler, linear one.  

 

The net result of these modifications is that all is 
needed in order to implement a COIN strategy are 
some basic bookkeeping and a handful of 
elementary operations (+,-,*,/). While this makes 
little difference when COIN is run on a computer, 
it may make a difference if real human agents want 
to test/use the procedure. Basically, the entire 
COIN approach could be performed with pen and 
paper by agents with only primary school training. 
This may not be relevant to modern fishing fleet in 
developed countries (which are geared with 
sophisticated equipment), but it could broaden the 
application to other resource management 
problems in the developing world.  In particular, 
here is the ‘pen and paper’ pseudo-algorithm 
which vessel n1’s crew needs to perform: 

1) keep a record of the day catch, and of how 
many other vessels fished in the same zone. 

2) Calculate the WFU function 1nE and store it. 
3) Retrieve the values 1nE  from the last T 

fishing days/periods and call 
them TtE t

n ..1,1 = where t is day/period, with 
t=1 being the most recent day/period and t=T 
the least recent.  

4) Calculate the weights zK as 

       �
=

+−=
z
nchoicet

t
nz T

tT
EK

1

1
1 ,   (6) 

where z
nchoicet 1= are the days in which vessel 

n1 fished in zone z. 

5) Normalise the cumulative sum of the weights 
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6) Pick a random number r between [0,1]. 
7) Find the smallest z for which rCumKz ≥ .  
8) Next day/period, fish in zone z. 
 

7. DISCUSSION, LIMITATIONS, AND 
DIRECTION FOR FURTHER WORK 

 

The results we presented are very encouraging. 
Nevertheless, before some serious expectations can 
be placed on this technique more detailed 
modelling needs to be done. Here we present a 
(short) high priority list of items for further work: 

1) the resource dynamics needs to be included 
into the simulations. How the fish population 
responds to the COIN exploitation and how 
the COIN approach can adapt to the 
population dynamics itself is a crucial factor 
which needs to be carefully explored. 

2) Human behaviour also needs to be modelled 
more accurately. Although our vessel crews 
are not the ‘perfectly rational’ actors of many 
economic theories (that is, they do not act 
completely selfishly, they do not have perfect 
knowledge of their environment and they do 
not act fully rationally) many possible human 
behaviours are not included in the model. For 
example, we should explore what would 
happen if one or more vessels in the COIN 
behave greedily (by following standard MG 
strategies), or communication between nearby 
vessels was disrupted (either purposely or 
accidentally). 

3) The potential receptivity of real communities 
to a COIN approach needs to be assessed. To 
our knowledge, no experience is reported in 
the literature on this subject. 
 

We conclude by discussing by far the most 
important concern: in this work we assumed that 
the resource is fully renewable. In many resource 
management scenarios, maximizing the 
exploitation of a limited resource is often not what 
we want, especially in environments under 
considerable ecological pressure. In a certain 
sense, this issue is not directly related to whether 
COIN is a valuable approach, unless a less 



effective fishing strategy is seen as a management 
tool for stocks control. What is important is that 
COIN is an optimization technique. This, as 
mentioned before, does not necessarily imply 
maximizing exploitation, rather finding a best 
strategy for a goal of our choice. From this 
perspective, the challenge is to formulate an 
ecologically responsible and economically 
valuable goal and see whether COIN can help 
achieving it. Technically, this means finding a 
WLU ‘cost function’ which would result, at the 
same time, in a sustainable behaviour for the entire 
fleet and an individual ‘selfish’ goal which is 
worthwhile for each vessel to pursue. The results 
we presented suggest that such combined aims are 
not necessarily contradictory, rather they may be 
aligned and COIN can offer a valuable approach to 
finding such alignment. This is surely the single 
most important direction for future work we aim to 
address. 

8. CONCLUSIONS 
 

We propose a simplified version of the Collective 
Intelligence which can be easily employed by a 
community of human agents in order to plan the 
exploitation of a limited resource. We compared 
COIN against other game theoretical approaches 
on a number of virtual fishery scenarios, 
characterised by varying fleet size, fish stock 
distribution and fishing capacity. In all tests the 
COIN not only guaranteed optimal global catch 
but also maximised the catch of each individual 
vessel. Achieving this in a competitive 
environment may be a key factor in this method’s 
acceptance by real communities. In the view of 
actual implementations, we described a pseudo 
algorithm, which allows the COIN to be carried 
out by ‘pen and paper’, with minimum 
bookkeeping and only elementary calculations.  
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