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Abstract 

 
Given an exploitation problem, in which a number of agents compete for a limited 
renewable resource, the optimal harvesting strategy depends on the ratio between 
resource availability and exploitation effort. For scarce resource a purely competitive, 
greedy strategy outperforms a more collaborative approach based on the Collective 
Intelligence, while for more abundant resource the opposite holds. The rationale for 
this behaviour lies in the amount of information each strategy is able to provide and a 
combined strategy is possible according to which agents choose dynamically the most 
informative strategy according to a minimum entropy criteria. This approach, which 
provides best performance for both under and over exploited scenarios, can be used to 
monitor the resource status for management purposes and is effective in both 
centralised and decentralised decision making.     
 

1 Introduction  
 
Several natural phenomena can be cast within the framework of competition: living 
beings compete for survival, species compete for niches, humans compete for 
financial resources and, adventuring ourselves into more questionable conjectures, 
cultures compete for supremacy, ideas compete for our attention [1], and natural 
selection is even suggested to act the cosmos [2].  These ideas are linked to different 
versions of Darwinism: best competitors will survive and thus dominate in the long 
run. Competition is thus linked to the concept of optimisation: via competition agents 
will ‘improve’ at required tasks.  
 
This framework is intuitively appealing, so much so that it can be easily exported to 
man-made problems and in particular to engineering and numerical optimisation. 
Either explicitly, as in the case of Evolutionary Computation and Particle Swarm 
Optimisation or implicitly, as in standard gradient-based techniques, many methods 
employed for computer-driven optimisation rely on some sort of competition between 
components of the optimisation algorithms.      
 
However, competition can express itself at different levels: a short–term winning 
strategy may fail in the long-term and a locally winning strategy may fail globally. 
Game theory, as well as everyday experience, shows that the outcomes of competition 
can be much less intuitive and at times so unintuitive to force us to turn Darwin’s 
conjecture upside down: the ones who survived must have been the best competitors. 
Optimisation practitioners are well aware of these problems, which manifest 
themselves in the challenge in finding global solutions among local ones.   
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When the process to optimise can itself respond to the optimisation and adapt to it, the 
dynamics can be even more complex, in which case modelling may be the only 
avenue for us to unravel, predict or control the process under analysis. 
 
In recent years we studied one such system. We modelled a fishery including fishing 
vessels harvesting several fishing zones of constant resources [4]. Vessels compete by 
aiming at underexploited areas, thereby avoiding sharing the limited resource with the 
majority of other vessels. This is an example of a Minority Game [3,8] and in the 
Game Theory literature it is known that this apparently simple process can generate 
complex dynamics. Next, we included a resource dynamics by simulating population 
growth in the target species [6,7]; this imposed on the vessels the additional 
complication of accounting for the evolution of the resource abundance in response to 
fishing. Finally, we included fleet managers and resource managers, who can impose 
constraints of the fishery either by regulation [7] or by centralised fleet control [8]. 
Each step increased considerably the overall complexity of the problem. 
 
For each scenario, we studied how different fishing strategies perform both in a single 
strategy setting (in which all vessels in the fleet adopt the same strategy) and in an 
evolutionary economic setting (in which strategies spread in the population according 
to their past performance). Of particular interest is the comparison between the 
following strategies: a purely competitive approach, which we call MG in this paper 
(since this is the strategy normally adopted in Minority Game studies), in which 
agents aim to optimise their individual return, and a more collaborative approach, 
called Collective Intelligence (Coin in the rest of the paper), in which agents try to 
optimise their impact on the fleet return.  It seems reasonable to consider MG as the 
‘null hypothesis’ against which we test the Coin performance.  
   
One of the most important results of our previous work is that the effectiveness of 
Coin depends on the ratio between available resource and fishing effort. In particular, 
the transition from Coin to MG dominance in the fishing fleet coincides with the 
transition from under-exploited to over-exploited resource status.  In [6] we have 
speculated that this transition could, in principle, be used by a resource manager to 
detect the level of resource exploitation and decide on possible intervention. The 
purpose of this work is to explore this idea further and discuss some steps towards a 
possible implementation.  
 
We start by setting the problem and describing the Coin approach. We then 
summarise the results from our previous work most relevant to this paper and analyse 
our new results. We conclude with a discussion of the possible future development of 
this research. 
    

2 The model 

In this paper we report on a model of a simplified, non-spatially explicit fishery, 
although the model could easily be extended to the exploitation of other renewable 
resources. We imagine N fishing vessels Nn ..1=  and Z fishing zones in which an 
amount ZzFishz ..1, = of resource is available. The vessels do not have information 
about the global distribution of zFish and decide where to direct their effort according 
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to the discounted returns of past catches in the different fishing zones (see [4] for 
details).    

Each vessel has a maximum allowed quota (which alternatively can be interpreted as a 
limited fishing capacity). At each fishing period, a vessel targets a single fishing zone 
and the resource available in that zone is shared equally among all vessels targeting it. 
Thus, the catch of a vessel n is given by 

),/( QuotaFleetFishMinCatch
nn zonezonen =        (1) 

 
where nCatch  is the amount of fish caught by vessel n, nzone is the fishing zone chosen 
by vessel n, 

nzoneFish is the amount of fish available in nzone , 
nzone

Fleet is the number of 

vessels which chose to fish in nzone , with which vessel n has to share the available 
resource.  We do not model fishing costs (navigating to the zones, equipment 
renting/buying, etc) though these could easily be included if needed. 
 
The total catch of the fleet is obviously given by the sum of each vessel’s catch, 

∑=
n

nCatchTotalCatch         (2)  

The maximum possible catch of the entire fleet is given by either the total amount of 
resource in the fishery or the sum of the maximum allowed quota per vessel, if the 
resource is abundant: 

∑=
z

zFleet QuotaNFishMinMaxCatch )*,(         (3) 

Notice that, because each vessel has a maximum allowed quota, we have: 
 

FleetMaxCatchTotalCatch ≤           (4) 
 
that is, unless the vessels spread their effort wisely, the fleet may not be able to catch 
to its full capacity.  
 

3 The Minority Game 
 
Given a resource distributed over different zones and a number of vessels with the 
same fishing capability, we expect that the vessels which access the least-exploited 
zones will undergo less competition and thus share the local resources with the least 
number of competitors, catch the most fish and consequently perform the best. 
Basically the problem can be cast within a game-theoretical framework, in which 
agents aim to predict which areas will be least exploited at the next iteration. This is a 
generalised version of what is called a Minority Game in the Econophysics literature 
[3,9] (see also http://www.unifr.ch/econophysics/minority/).  
 
Despite its apparent simplicity, the Minority Game displays a number of complex 
features, which arise directly from the following self-referential loop [5]: a) a strategy 
is a winning one if it leads an agent to be in a minority group (a group which accesses 
the resource in an underexploited area), b) a winning strategy tends to be imitated and 
thus is adopted by more and more agents, c) consequently a winning strategy will 
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soon be adopted by the majority of the agents and d) at that stage it becomes a losing 
strategy. 
 
It is easy to see [4] that, given sufficient resources, optimal resource exploitation in a 
Minority Game scenario can be achieved by spreading the agents’ harvesting effort 
proportionally to the resource distribution. However, achieving this optimal allocation 
without centralised control is not trivial. Most of the Minority Game literature 
assumes fully competitive agents which always try to maximise their return. In this 
scenario, the self referential loop described above results in oscillations around the 
optimum distribution; these oscillations correspond to a waste of resource [4] and 
never dissipate [3].    
 

4 Collective Intelligence 

The resource exploitation problem described above can be seen as a decentralized 
optimisation task, in which we aim to allocate the fishing effort of N vessels 
proportionally to the resource zFish .  

From an optimisation perspective, we could choose to optimise two quantities: a) the 
‘private’ return for each vessel and b) the ‘global’ return of the entire fleet. 
Optimising either of them in isolation is known to be sub-optimal, either because the 
average catch is sub-optimal or because the distribution between individual agents is 
not balanced. In the previous section we discussed the outcome of optimising the 
‘private’ return. The ‘global’ return is optimised in what is called a ‘team game’ in 
which each agent obtains an equal share of the global catch, independent of its 
individual performance; it is known that this approach reaches an optimal exploitation 
distribution only for very small problems [12].  

The Coin approach [12,14,15,16,17] can be seen as a sort of compromise between 
these two. It is based on each vessels aiming to optimise a differently defined ‘private’ 
return, which is a function of how each vessel influences the ‘global’ return. In 
particular, each vessel tries to maximise its impact on the global return, where the 
impact is defined as the difference between the global catch for the fleet and the catch 
that the fleet would have caught had the vessel not being present. 

Let’s assume we have a fleet of N vessels. We define the impact of vessel n on the 
overall fleet as the difference between the global catch of the fleet and the catch the 
fleet would have caught if vessel n had not gone fishing: 
 

n
n TotalCatchTotalCatchIMpact −−= ,                 (5) 

 
where the superscript ‘-n’ refers to values calculated for the fleet without vessel n. 
Notice that, because the catch of each vessel is limited by physical constraint or quota 
restrictions, we may have: n

n CatchTotalCatchTotalCatch −≠− , which makes Eq (5) non-
trivial.   
 
Thankfully, we do not need to calculate Eq (5) exactly (which would be impossible in 
most cases); the Coin literature shows that a remarkable simplification is effective, 
thereby the impact can be approximated by simply removing vessel n from the fleet 
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and, leaving everything unchanged, approximating nTotalCatch− . Let’s suppose vessel 
n targeted fishing zone z. Clearly it could not have any impact on any of the remaining 
zones, so we need to concern ourselves only with zone z. It thus follows that:  

),/(*

),/(*

QuotaFleetFishMinFleet

QuotaFleetFishMinFleet

TotalCatchTotalCatchIMpact

n
zz

n
z

zzz

n
n

−−

−

−

=−=

     (6) 

 
where zFleet  is the size of the fleet which targeted zone z and the possible catch per 
vessel is constrained by the quota.  
Since 1−=−

z
n

z FleetFleet , we have thus have: 
 

)),1/((*)1(
),/(*

QuotaFleetFishMinFleet
QuotaFleetFishMinFleetIMpact

zzz

zzzn

−−
−=

    (7) 

This is the equation used in our calculation (see [4] for more details).  

Importantly, Eq 7 can be calculated using only local information about the area 
targeted by the vessel, without any need for global information. 

 

5 Previous Results – Evolutionary Game Theory 

In [4] we described a number of virtual experiments mimicking a fishing fleet 
operating in areas of different fishing capacity, but fully renewable resource. In that 
scenario, Coin provides optimal catches for the fleet while, at the same time, each 
individual vessel also maximizes its own profit; this shows that although, in principle, 
Coin requires fishing vessels not to act greedily, no individual sacrifice is imposed on 
the vessels by achieving the common goal. We also showed that a fleet following a 
Coin strategy adapts much faster to change in resource distributions, promising 
increased benefits over standard approaches in volatile environments.  

These results were extended to scenarios in which the resource dynamics were 
explicitly modelled [6]. We also explored the trade-off between long and short term 
planning by providing vessels with some knowledge of the time evolution of the 
resource, thereby allowing them to plan their fishing behaviour in light of predicted 
long-term resource behaviour [7].  

Most relevant to the present work, in [7] vessels were allowed to choose dynamically 
one of four possible strategies: MG, Coin, team game and random (each vessel 
decides randomly where to go fishing at each fishing period).  The choice of strategy 
was carried out according to each strategy’s past return, in a typical evolutionary 
economics scenario [10]. The insight gained from these experiments is that the 
balance of vessels choosing the different strategies depends crucially on the resource 
availability. We summarise the results via the sketch in Figure 1, while we refer the 
reader to the original paper [7] for more details and numerical results.  
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Figure 1. Optimal strategy for different levels of resource abundance. Average catch 
per vessel (Y) as a function of resource availably (X). The vertical dashed bars 
indicate which strategy is optimal for different resource abundance; RAND= random 
choice of fishing zone, COINL= Coin with long term projection of resource 
dynamics, COINS=Coin without projection of resource dynamics, MGL= greedy 
strategy with long term projection of resource dynamics, MGS= greedy strategy 
without projection of resource dynamics 

 

In Figure 1 the X axis gives an indication of resource abundance in relation to the 
fishing capacity of the overall fleet, ranging from strongly under-exploited (catches 
have little effect to the resource status) to strongly over-exploited (the fleet can fish 
more than the resource can sustain).  The Y axis represents the modelled average 
catch per vessel (notice that the catch plateaus for abundant resources because of the 
limit in vessel fishing capacity due to physical limitations or quotas).  For different 
levels of resource abundance, Figure 1 shows which fishing strategy dominates in the 
mixed-strategy fleet, that is, which strategy provides the best catches for that specific 
resource state. Starting from the right-hand side and moving leftward we can mimic 
the process of resource decline, as typically happens in real world fisheries; Figure 1 
then shows how the optimal fishing strategy changes at different stages during the 
worsening resource state. When the resource is very abundant (basically unlimited in 
comparison to the fleet capacity) there is no need to put much effort in choosing 
where and how to fish, and consequently a random strategy performs very well. When 
the resource is abundant, but not unlimited, a Coin strategy accounting for long term 
resource dynamics (CoinL) is best; cooperation among vessels and long-term 
planning allows for optimal resource exploitation. From now on, further resource 
reduction favours more and more competitive fishing strategies; when the resource is 
limited but not over-exploited Coin with short-term goal fares best (CoinS), while 
when the resource gets overexploited fully competitive, greedy behaviours become 
optimal and thus dominant in the fleet (MGL, greedy behaviour with long term 
projection and MGS, greedy behaviour with no long term projection).  

Figure 1 is interesting for a number of reasons. If we interpret it within a co-evolution 
framework, in which the resource responds to the level of exploitation and the level of 
exploitation to the resource status, the figure shows that when a resource is abundant, 
cooperation and long term planning, as implied by the CoinL is not only beneficial, 
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but actually optimal. However, if the resource starts declining, either by its own 
internal dynamics or by external pressure, then more and more greedy exploitation 
patterns become optimal and consequently spread in the population. Cooperation is no 
longer viable and the community itself becomes more greedy and selfish.  Effectively, 
the system falls into a Tragedy of the Commons situation [11], in which resources are 
scarce but it is still economically rational to keep on exploiting the limited resource 
competitively. At this stage, resource recovery is possible only if the fishery becomes 
uneconomical before it crashes completely. Within this modelled framework, hardship 
discourages, rather than fosters, collaboration. 

Important for our discussion is the transition from Coin to greedy strategies (MG). As 
shown in Figure 1, this transition coincides with the transition between under-
exploited and over-exploited resources. In principle, this suggests that this transition 
could be used as an indicator of the resource status. Clearly, this information would be 
of great value in resource management. 

Unfortunately, there are several reasons why monitoring the balance between Coin 
versus MG would be unfeasible in practise. Apart from issues related to the adoption 
of the approach in the real world, one obvious hurdle would be convincing vessel 
managers to follow the evolutionary economics principle in order to adopt a strategy 
(Coin or MG) which may be economically viable only under specific resource 
conditions (under or over-exploited) for the purpose of detecting those conditions 
themselves, trusting that this approach will provide best returns in the long-term.  

An option, however, may be available: rather than asking vessels to choose 
dynamically whether to follow Coin or MG according to past returns, we may let 
them use information from both Coin and MG at each period, and choose dynamically 
which one is more likely to offer more accurate information. In order to do so, we 
need to understand the reasons behind the different performances of the strategies 
under different resource conditions.   

 

6 Tuning the fishing strategy to the resource status  

In this section we describe how fishing vessels could use information from both MG 
and Coin dynamically. In order to do so we first need to explain how information 
from past catches is processed. 

In the model used in the previous experiments, the fishing strategy for vessel n can be 
summarised as follows: 
  

1) At fishing period t, store the profit from that period. Here we define 
nn catchprofit = from Eq (1)  for MG and nn IMpactprofit =  from Eq (7) for Coin. 

2) Clearly, vessel n obtained a profit (and thus information) at t only from the 
zone z it targeted. Define t

n
t
z

t profitW
zn

δ=
,

, where 1=t
zδ  if the vessel fished in 

zone z at time t and 0=t
zδ  otherwise. 

3) Store the value of t
zn

W
,

for the last T periods. The value of T can be seen as a  

characteristic memory time for the planning process. t
zn

W
,

now contains 
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information about all zones z which have been visited in the last T fishing 
periods.  

4) In order to account for non-stationarity in the predictions, discount the past 
catches. In this work we use a linear discount rate 

T
tTWW tt

znzn

1
,,

+−
→ . 

5) For each zone z, sum the discounted weights t
zn

W
,

over the T fishing periods 

∑
=

=
T

t

tz
znn

WP
1

,
 and normalise over the Z fishing zones ∑→

z

zzz
nnn

PPP / . z
n

P is now 

interpreted as the probability that zone z  provides the best profit for vessel n at 
the next fishing period and is used, stochastically, by vessel n to choose the 
next zone to target. Should a zone have 0=z

n
P  we assign ε=z

n
P  and 

renormalize, where ε is a parameter chosen to prevent certain fishing zones to 
be ‘forgotten’. Alternatively, ε  can be seen as a factor which allows 
exploitation of yet unexplored zones. 

 
In order to appreciate the difference between Coin and MG it is important to 
understand the difference between nIMpact and nCatch . If vessel n chooses a zone 
which is under-exploited, that is a zone where vessels can fish at their maximum 
capacity (this is clearly a profitable action to take), nIMpact in Equation (7) will be 
large, since vessel n will be able to catch its share without affecting the other vessels’ 
catch. In this case nn CatchIMpact = . If vessel n choose a zone which is over-exploited, 
that is a zone where vessels cannot fish at their maximum capacity (this is clearly an 
action to avoid), nn CatchIMpact < since all vessels need to share the limited amount of 
fish available and no extra catch is possible. Had the vessel not gone fishing, its catch 

nCatch  would have been collected by other vessels which did not succeed in fishing at 
maximum capacity.  
 
In general, we thus have nn CatchIMpact ≤ . Since nCatch  is the contribution of vessels n 
to the overall catch, we see that the impact a vessel can exert on the community is 
always less or equal to its contribution.  The aim of Coin is thus to maximise impact, 
that is to make the impact as close as possible to the contribution. The key to its 
success is its directing vessels where their contribution really ‘makes a difference’ on 
the overall catch.  
 
Let us consider a mildly under-exploited scenario, under which we know Coin 
outperforms MG. We can expect that whichever zone vessel n chooses it will be able 
to obtain a certain catch, that is ZzzCatch zn ∈∨≠ ,,0, . However, it is reasonable to 
expect that there may be zones for which the impact is zero 0,, , =∈∃ znIMpactZzz , or at 
least for which znzn CatchIMpactZzz ,,,, <∈∃ .   
 
Let us now consider an over-exploited scenario, under which we know MG 
outperforms Coin. Here as well we can expect that whichever zone vessel n chooses it 
will be able to obtain a certain catch, ZzzCatch zn ∈∨≠ ,,0, . However, it may now 
happen that vessel n is not able to exert any impact in any zone. This may happen in 
the case in which the fleet would be able to catch all available resource in each zone, 
without the contribution of vessel n.  In this case we may have ZzzIMpact zn ∈∨= ,,0, .  
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When this happens Coin is not provided with any information on the profit from its 
fishing period and thus has to rely only on information from past catches in order to 
direct future fishing effort. Crucially, should this happen for T iterations, Coin would 
be left with no information at all and its behaviour would become random. 
 
From the above analysis it is reasonable to suggest that the strategy which performs 
better is the one which provides most unequivocal information about the likelihood of 
future catches. This is not surprising of course, and suggests an alternative approach: 
 

1) At each fishing period t, compute both nCatch  and nIMpact   
2) Store both values in two separate tables tMG

zn
W

,
 and tC

zn
W

,
, where MG stays for 

the greedy strategy MG and C for Coin.  
3) Discount and normalise both tMG

zn
W

,
 and tC

zn
W

,
and obtain the probabilities 

zMG
n

P  and zC
n

P for both MG and Coin as at point 5 above.  
4) Define the measure of the information content of zMG

n
P  and zC

n
P as their 

entropy )log( zMG

z

zMGMG
nnn

PPE ∑−= and );log( zC

z

zCC
nnn

PPE ∑−=  the choice of the 

entropy as a measure of information content is a cornerstone of information 
theory [18]. 

5) In order to decide where to fish next, choose either zMG
n

P  or zC
n

P depending on 
which one has lowest entropy. In the rest of the paper we call this strategy 
MaxInfo.  

 

In Figure 2a we show the performances of the Coin, MG and MaxInfo strategies as a 
function of relative resource abundance. This is calculated as the ratio between 
available resource and the maximum fishing capacity of the fleet, ranging from .5 
(resource equal to half the fishing capacity) to 2 (resource equal twice the fishing 
capacity). We modelled 50 fishing vessels targeting 2 fishing zones with uneven 
resource distribution, 3/1/ 12 =FishFish . 

The results are given for runs of 100 fishing periods, and include the initial transient 
during which the strategies train themselves starting from initially uniform t

zn
W

,
.  On 

the Y axis we plot the average fishing efficiency, that is the ratio between the average 
and the maximum possible catch per vessel. All results are averaged over 200 runs.  In 
the figure, red lines show the Coin results, blue lines show the results of the MG and 
black line shows the results of the MaxInfo.  

The comparison between Coin and MG confirms the result in Figures 1.  For abundant 
resources (X>1) Coin performs better while for scarce resource (X<1) MG gives 
better catches. The transition from MG to Coin best performance occurs for values of 
the relative resource abundance slightly less than 1.   
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Figure 2. (a) Average fishing efficiency as a function of relative resource abundance 
for the MG (blue), Coin (red) and MaxInfo (black). MaxInfo matches MG for scarce 
resource and Coin for abundant resource and outperforms both for intermediate 
resource status. (b) Ratio of individual vessels for which Coin provides a more 
informative option than MG within the MaxInfo approach. For very scarce resource 
almost all agents choose the MG; for increasing resource more and more agents 
adopts Coin. Coin choice dominates exactly at the transition between over-exploited 
and under-exploited resources. 

In Figure 2a MaxInfo performance matches MG for low resource and Coin for ample 
resource levels, thus following the optimal strategy at both extremes of the plot. This 
suggests that MaxInfo adapts itself to the resource status. Importantly, MaxInfo 
behaves better than both Coin and MG close to the transition from under to over-
exploited resource. This is the resource distribution for which the average fishing 
efficiency is at its minimum [8] since in this configuration the catches are most 
sensitive to the fleet effort distribution. This also suggests that an adaptive strategy is 
particularly beneficial in these difficult scenarios.  

In Figure 2b, for the MaxInfo strategy, we show the average ratio of individual vessels 
for which tC

zn
W

,1
at point 3 above provided the most unequivocal forecast (red line) and 

the ratio of individual vessels which used tMG
zn

W
,

(blue line). Basically, Figure 2b 
shows how many individual vessels chose Coin versus MG for their dynamical 
decision making, as a function of resource abundance. As expected, for very scarce 
resource almost all agents choose the MG; for increasing resource more and more 
agents adopts Coin. Two further features can be noticed. First, the transition from 
Coin to MG dominance occurs for a resource abundance slightly larger than the one 
for which Coin outperforms MG in Figure 2a. Second, the ratio of vessels choosing 
Coin reaches a maximum in the vicinity of the transition from scarce to abundant 
recourse.  
 
Once again, this result confirms the conjecture we already suggested from Figure 1: 
The balance between vessels dynamically adopting Coin versus MG gives an 
indication of resource abundance. However, unlike the previous results, this approach 
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suggests a more direct way in which this information could be used in order to reduce 
the fishing pressure on the resource and we discuss this in the next section. 

 

7 Centralised versus decentralised strategies. 
 
In the previous section we modelled a fleet of 50 independent vessels. As in a typical 
Tragedy of the Commons, should a vessel realise via the curve in Figure 2b that the 
resource is over-exploited, it would have little incentive not to go fishing, because this 
would result in lost income. However, if the vessel is part of a larger fleet, there could 
be an incentive for the fleet manager to prevent the vessel from going fishing, since 
his fleet would obtain the same overall catch with reduced costs. 
 
In the following we thus apply the algorithm described above to a setting in which the 
fleet is subdivided into smaller sub-fleets, each directed by its own manager. While 
the scenario in the previous section describes a totally decentralised fleet, in which 
each vessel takes its own independent decision, here we model various levels of 
centralisation, depending on the size of the sub-fleets. In the limit in which the entire 
fleet is directed by a single manager we have a fully centralised decision process.   
 

 

Figure 3. 50 vessels divided into 10 sub-fleets of 5 vessels each. Decision making is 
carried by the 10 sub-fleet managers, not by the 50 individual vessels skippers. (a) 
Average fishing efficiency as a function of relative resource abundance for the MG 
(blue), Coin (red) and MaxInfo (black). (b) Ratio of individual vessels for which Coin 
provides a more informative option than MG within the MaxInfo approach.  

In Figure 3, we show the results for N=50 vessels divided into 5 sub-fleets of 10 
vessels each. Two main differences can be noted between Figure 2 and 3. First, the 
performances of all strategies worsen for this mildly decentralised scenario. However, 
the MG worsens considerably more than Coin or MixInfo. In Figure 3a, as in 2a, 
MaxInfo combines the benefits of the MG for scarce resources and of Coin for 
abundant resources, giving the best performance in both resource states. Second, 
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while the transition from MG to Coin dominance in Figure 3a occurs for a resource 
balance very close to the one in Figure 2a, the transition from MG to Coin dominance 
in Figure 3b occurs for scarcer resources and thus there is a closer correspondence 
between the transition between Figures 3a and b than between Figures 2a and 2b.  
Finally, while the maximum of Coin use in MaxInfo is still reached for a relative 
resource abundance very close to 1, now the difference between the number of vessels 
adopting Coin versus MG in MaxInfo is much stronger.  

 

Figure 4. 50 vessels behaving as a single fleets under centralised decision making. (a) 
Average fishing efficiency as a function of relative resource abundance for the MG 
(blue), Coin (red) and MaxInfo (black). (b) Ratio of individual vessels for which Coin 
provides a more informative option than MG within the MaxInfo approach.  

Finally in Figure 4 we show the results for a fully centralised fleet, in which decision 
making for all vessels is carried our by a single manager. The main difference, 
compared to the previous figures, is that the dominance of Coin choices in Figure 4b 
occurs for even scarcer resources, suggesting that increasing centralisation favours the 
adoption of Coin behaviour.  
 
 

8 Discussion 
 
The core of the approach we presented in this paper lies in choosing dynamically what 
strategy to employ to carry out a complex task in a competitive environment. Unlike 
previous work in [7], the dynamical choice is not carried out via standard evolutionary 
criteria, that is by evaluating a strategy according to past performances, rather via an 
information theoretical criterion, which is used to evaluate and compare the 
information contents of possible strategies.  The first results seem promising, but a 
number of issues need to be addressed before firm conclusions on the potential of this 
approach can be made. We discuss some of these in this section. 
 
In the view of a potential adoption by human agents, the information based approach 
seems to have some advantages against the one based on performance. The agents 
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need to carry out more book-keeping, since records of both catches and impacts need 
to be stored and calculated, however the processing of this records requires few 
simple operations for which in principle no computation devise is strictly necessary. 
More important, the agents do not need to commit in advance to a specific strategy in 
order to evaluate its returns, nor do they need to trust reports from 
colleague/competitors in order to judge a strategy they have not employed; all they 
need to do is to check which of their own record (Coin or MG) provides a more 
informative instruction. This may make it easier to convince agents in the real world 
to adopt this approach.  
 
However, because of the nature of the problem we address, any decision taken by an 
agent will affect the future behaviour of the community and thus of future resource 
status as well the future behaviour of the agent itself. For example, previous results 
shows that, in the case of slightly over-abundant resource, if most agents follow a 
Coin strategy, and consequently the fleet spreads its effort according to the resource 
distribution, the catch improves. It thus follows that, by following Coin, the difference 
between impact and contribution is reduced. We encountered this very result in the 
discussion of Figure 2b, in which the difference between information content of Coin 
and MG for a fully decentralised approach was unexpectedly low. It is reasonable to 
expect that such an information gap would have been higher, had less agents chosen a 
Coin strategy. We should thus expect that the behaviour of the MaxInfo approach will 
be affected by the history of the simulation and more experiments to evaluate it are 
needed.  
 
The second thread of the paper is the potential use of the MaxInfo approach to monitor 
the resource status. This also shows promising results, but leads to the question of 
what to do with such information should it suggest that the resource is badly over-
exploited.  Decision making in this scenario requires a proper model of exploitation 
cost, as well as alternative employment options for fishers and managers should a 
reduced fishing effort be necessary. We plan to analyse this in future work by casting 
it into an evolution dynamics scenario as in [13]. 
 
In this paper we modelled a fully renewable resource, and perfectly rational agents, 
which not only do not make mistakes, but also never cheat. Both assumptions are 
unrealistic, and have been chosen because of a ‘reductionist’ intent of separating the 
factors affecting a problem and evaluating the MaxInfo approach in an easy to 
understand test case. Clearly the approach will need to be assessed under more 
realistic scenarios as in [6,7], which we also endeavour to do in the near future. 
 
Finally, it is crucial to assess the receptivity of the approach for real agents. It is 
equally important to evaluate what modifications real agents may impose on the 
method, should they adopt it. We initially tested this in a role playing experiment with 
human actors and witnessed the unexpected solutions human subjects may provide to 
given problems. These are very hard to model and forecast in detail. More extensive 
experiments in this setting have already been planned and we believe are crucial to 
properly evaluate this approach and the best adoption path.   
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9 Conclusions 
 
We presented a method which allows agents to choose dynamically between purely 
competitive and collaborative strategies in a mixed-strategy approach. In a minority 
game-like problem, this approach shows improved performance for both centralised 
and decentralised decision making. The balance between agents choosing the 
competitive and collaborative strategy also gives an indication of the resource state 
and may be used for both monitoring and management.   
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