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A Turing test for emergence

Fabio Boschetti and Randall Gray

1.1 Introduction

Dealing withcomplexsystems present a particular challenge to many traditionalen-
gineering approaches. The pertinant assumption inherent in these approaches is that
component parts of a system can be neatly partitioned and that their interactions have
limited, predictable effects. This assumption is not always tenable, and has an impact
both on degree of overall control attainable and on the robustness of the resulting sys-
tems. A traffic controller does not need to give exact instructions to each vehicle on
the road, and a Treasurer does not need to control each singlebusiness in a country;
rather they both provide general guidelines which aim at a desire global outcome; they
both rely on the local organisation inherent in road traffic and business interactions to
account for local details. Similarly we would like a designer to specify broad guide-
lines in order for a complex system to act according to a general requirement. Since the
inherent organisation we wish to exploit is often a dynamical and stable configuration,
a system designed to capitalise on this may also display a robustness and adaptivity
which is currently beyond our engineering abilities.

In the parlance of complex system science, the global outcomes arising from broad
guidelines on a system’s components, including robustnessand adaptivity, are often
defined as emergent features. Because design inevitably requires a trial and error pro-
cess, it is natural to expect that our community will need to develop methods to:

• detect emergent features when they arise;
• categorise them in order to understand what classes of processes arise as a result of

different initial conditions;
• experiment with various configurations in order to optimisethe emergent pro-

cesses.

Experimentation is something which is often carried out viacomputer simulation;
however, computers are a perfect example of a ‘traditional’engineering apparatus,
and consequently display the very same features (lack of robustness and adaptivity,
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and a requirement for detailed instructions) which we are trying to circumvent. In this
chapter we explore this apparent paradox and ask what kind ofemergent features can
be generated (and thus modelled) in a computational framework. We will show that this
question directly relates to the other two items listed above, that is to the experimental
detection of emergence and its classification.

1.2 Background

The concept of emergence evolved to capture our intuition that when a large number
of entities interact, the resulting system can display features and behaviours which are
not displayed by the individual constituents. The human body possesses behaviours
and functions which are not expressed by our individual cells; metals show properties
not displayed by individual atoms; societies undergo dynamics which transcend indi-
viduals. Basic examples can also be modelled very easily on acomputer; famously,
Conway’s Game of Life (18) shows how very simple local rules generate features
whose dynamics is not explicitly coded in the algorithm. Examples are so ubiquitous
in Nature that some scientists suspect that all structures we see ‘emerge’ from under-
lying simpler levels (34).

Nevertheless, emergence raises considerable intellectual and scientific challenge.
Despite a vast literature, going back several decades (13),no agreement can be found
on a definition, nor on a framework for its study, nor on whether emergence is a ‘real’
natural phenomenon or merely a by-product of our perception, or a convenient way to
make sense of processes otherwise too hard to comprehend (15; 35).

Why should a process which appears so obvious and easy to modelprove so hard
to define and conceptualise? The fundamental reason is that in an emergent process it
is very hard to discriminate ‘who does what’. When I decide to listen to music, is it
my ‘emergent’ self which takes the decision or my cells? My body depends on cellular
activity for its functioning, so cells must be the controlling entities. However, no cell
decides to listen to music since listening to music is not something cells ‘do’. This
leads straight into old and unsolved philosophical problems of causality, determinism
and freewill.

Crucially, this is also a technological problem. Today, probably for the first time in
history, technological developments in many applicationsdepend on the understanding
of emergent phenomena. Advances in Information Technology, Epidemiology, Ecosys-
tem Management, Health Science, just to name a few, depend onapproaches which go
beyond traditional reductionism and address the understanding of how emergent prop-
erties arise, what they ‘do’ and how they can be controlled.

It thus seems natural that when we ask whether emergence is ‘real’ or merely lies
‘in the eyes of the observer’, or whether emergence is a distinct process of its own
or encompasses different processes among which we are not yet able to discriminate,
the answer needs to account for what these processes ‘do’. Inother words, we need
to account for causal relationships and causal power. It mayappear that we are try-
ing to address a slippery problem (emergence) via one which is even more slippery
(causality). This does not need to be so if we constrain what we mean by causality
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and we adopt an ‘operative’ definition. Following Pattee (1997) and Pearl (2000) we
associate causal power with control: a process has causal power if, by acting upon it,
we can change the effects it produces. Pattee (1997) describes this very simply: ”Use-
ful causation requires control. .... Clearly it is valuableto know that malaria is not a
disease produced by ”bad air” but results from Plasmodium parasites that are trans-
mitted by Anopheles mosquitoes. What more do we gain in theseexamples by saying
that malaria is caused by a parasite ..? I believe the common,everyday meaning of
the concept of causation is entirely pragmatic. In other words, we use the word cause
for events that might be controllable. In the philosophicalliterature controllable is the
equivalent of the idea of power. In other words, the value of the concept of causation
lies in its identification of where our power and control can be effective. For example,
while it is true that bacteria and mosquitos follow the laws of physics, we do not usu-
ally say that malaria is caused by the laws of physics (the universal cause). That is
because we can hope to control bacteria and mosquitos, but not the laws of physics.”

Building from this observation and from the work of Shalizi (2001), Crutchfield
(1994b; 1994a), Rabinowitz (2005), among others (6; 5; 10; 19; 1; 21; 45; 39; 4; 16;
17), we propose to discriminate between three types of emergence, depending on in-
creasing level of ‘causal’ power: pattern formation, intrinsic emergence and causal
emergence.

Despite the philosophical halo of the above discussion, ouraim is utterly practical.
In a scientific culture in which understanding is increasingly synonymous with com-
puter modelling, we ask what forms of emergence can be studied by simulation and
what we can gain from doing so. We will see that computationaland ‘causal’ barriers
are strongly related. This may lead to new insights into the limitations and future of
the computer modelling of complex processes.

1.3 Formal Logic and Computation

There exists an equivalence between the workings of formal grammars, logical systems
and computation (11; 42; 29; 32). All these start from some fundamental set of strings
(starting symbols, axioms or input data), a set of rewritingrules (production rules,
rules of inference, computer instructions), and they generate outputs (strings, theorems
and computational results) which are obtained by transforming the a priori set via the
rewriting rules.

In a formal system, true statements are almost always eithertheorems or tautologies
(Kurt Gödel demonstrated that there are true statements which are not accessible from
the axioms and rules of logic. These true statements are not theorems since they are not
derived from the axioms). This is so because, given a set of axioms and inference rules,
these statements are necessarily true (they are true for allpossible scenarios and cannot
be otherwise). Given a set of axioms and inference rules, these statements necessarily
follow and are true for all possible scenarios and cannot be otherwise. Consequently,
these statements do not provide any information about the real world (any information
such a string may seem convey is a result of correspondences we see (or think we see)
between the real world and the fundamental system, and is wholly dependent on our
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perception of these correspondences). An example clarifiesthe concept: the statement
‘ it’s raining’ may be true today and may or may not be true tomorrow; it depends on its
agreement with the vagaries of the real world. Assessing whether the statement is true
or not provides information about the real world. Pythagoras’ theorem, in contrast, is
true independently of Nature’s vagaries, it must be true andalways will. The fact that
Pythagoras’ theorem is useful to us and matches our perception of reality is due to the
clever choices of the basic axioms of geometry. It is becauseof the appropriateness of
axioms collected in Euclid’s work that the properties of triangles match our perception
of reality.

Given Euclid’s axioms and our rules of mathematical reasoning, Pythagoras’ the-
orem is an inevitable consequence. It helps us to understandNature better by simpli-
fying geometrical considerations, by putting place holders in our geometrical thinking
so we do not always need refer back to the axioms, and it helps us to communicate this
understanding, but it does not provide any information which is not already implicit
in the our axioms and rewriting rules. Theorems are transformations of information,
not new information. In some sense, all the theorems of Euclidean geometry could
be compressed, with no loss of information, into the basic axioms and inference rules
(this is formally proved in (11) and is the base for Kolmogorov/Chaitin’s complexity
measure). It could reasonably be argued, though, that any decompressor which could
reproduce the theorems of Euclidean geometry through its decompression would need
to be at least as complex as a mathematician and, like a mathematician, would stand a
reasonable chance of passing the Turing Test (which we discuss later).

The PCs on our desks are equivalent to a finite tape Turing Machine (TM), an ab-
stract and general computational device commonly employedin theoretical computer
science. Because the execution of a TM is equivalent to the application of produc-
tion rules in a formal grammar, and to proof in a formal system(42), it follows that
the result of running a TM is equivalent to a theorem or a validstring: the results are
independent of reality.

It thus also follows that the outputs of any of our computer models are similarly
dictated by their initial state and the rewriting rules embodied by the program (tech-
nically, this is correct provided the PC does not allow for interaction with the outside
world, see (45; 24)); a computer model transforms the information contained in its
input via its coded algorithm, but does not generate information. Clearly, a model’s
output helps our finite mental capability to see consequences of what we coded (which
at times we cannot envisage), but its truth status and relevance to the real world is lim-
ited to the truth and relevance of the user code and the input fed to the computation.
No actual information about the real world is produced by a simulation. Information is
generated solely by the writing of the code and the choice of the input. In this way, our
choices about how we model a system are much like Euclid’s choices and the compar-
ison of the results of our simulations to what we observe in Nature tells us about the
appropriateness of the rules we implement and the input we choose.
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1.4 Algorithms and Physical Laws

In our perception of reality, causality manifests itself asphysical laws (conversely, a
physical law can represent both causal relations and mere correlations, from which it
arises the philosophical dilemma behind causality. For thepurpose of our discussion it
is important to stress that causality can be represented only as a physical law, such as
”for every action there is a corresponding equal and opposite reaction”). Our computa-
tional representation of physical laws involves algorithms which are essentially trans-
formation rules (sequences of instructions). Since we haveseen that transformation
rules of this sort are constrained to produce results which are members of a set which
is totally determined by these rules and the initial conditions, we need to conclude that
the running of algorithms which represent physical laws canonly produce similarly
deterministic results. Any physical law (rule) which an algorithm can generate must
already be implicit in the physical laws (rules) represented in the coded algorithm. No
new physical law (or representation of it) can be generated by modelling.

When faced with the question ”can genuinely novel causal lawsemerge from lower
level causal laws?” or ”can causal laws which transcend the causal power of their
constituents exist in Nature?” we can envisage two possibleanswers:

1. either emergent, genuinely novel, causal laws can not exist and are only apparent
and perceived as such because of the limitations in the representation we use;

2. or emergent causal laws must arise via natural processes which are non-algorithmic,
fundamentally different from the workings of a formal logicsystem and conse-
quently not computable in classical sense.

1.5 Three Levels of Emergence

In this section we examine three levels of emergence, often discussed in the literature.
Our analysis focuses on the relative causal power of the emergence features they can
generate.

1.5.1 Pattern Formation and Detection

Pattern formation captures the most intuitive view of emergence. The interaction of low
level simple entities, leading to symmetry breaking, generates a coordinate behaviour;
this is expressed by patterns which are novel and identifiable as such by an external
observer. ”The patterns do not appear to have specific meaning within the system, but
obtain a special meaning to the observer once (and if) he/sheis able to detect them.
When this happens, the patterns become part of the tool-box the observer can employ
to describe and study the process” (15). Examples include the Game of Life discussed
above, spiral waves in oscillating chemical reactions, convective cells in fluid flow and
fractal structures in fractured media.

For the purpose of our discussion, pattern formation does not, in itself, imply causal
power. Let’s consider the Game of Life and the emergent gliders. Detecting their pres-
ence is useful for an observer to comprehend the effect of thelocal rules, to highlight
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the potentially universal computational capability of thesystem and possibly to devise
a language able to compress their description (37; 35). The question relevant to our dis-
cussion is whether the gliders can ‘do’ something or are simply ‘passive’ expressions
of internal dynamics; can we exert any causal control on the gliders? What should we
do to affect the behaviour of the gliders?

The obvious answer is that we could manipulate the Cellular Automata (CA) local
rules. This however acts at the lower level (the CA cells) notat the level of the gliders.
By doing so, gliders are still merely a representation of ourmanipulation of the local
rules. Can we act on the gliders themselves? We believe that this could happen only via
re-writing the CA code, that is via an external interventionand a complete redesign of
the system. We will discuss this more extensively in Section1.6.3. For now we suggest
that pattern formation, per se, does not imply causal power.

1.5.2 Intrinsic Emergence

Intrinsic emergence refers to features which are importantwithin the system because
they confer additional functionality on the system itself.These emergent features may
support global coordination-computation-behaviour likethe motion of a flock of birds
or stock market pricing (15). Examples with immediate relevance to modelling are Mi-
nority Game models (2; 3): agents must take local decisions on actions which result
in an economic outcome but they are not able to communicate, so they have no infor-
mation about other agents’ behaviour. If they identify an emergent feature, providing
information about the global dynamics of the population’s economy, then they can use
this measure to decide what actions to take (7). This featurenow acts as an avenue
for global information processing and provides to the system the possibility for coor-
dinated behaviour. Clearly, the agents’ behaviour influences the global measure, but
now the global measure affects the behaviour of the agents bydetermining their future
actions. Self-referentiality becomes a fundamental ingredient for complex dynamics
and intrinsic emergence.

Discriminating whether intrinsic emergence implies causal control is more chal-
lenging and is surely not as clear cut as for pattern formation. In a real world we could
externally affect the stock market (with some sort of governmental intervention, for ex-
ample) thereby changing indirectly the dynamics of the agents, who would respond to
the sudden external change by altering their future behaviour. This intervention is not
possible in the case of pattern formation described above, since we cannot intervene
on a convective cell (for example) without acting directly on the molecules’ motion. In
the case of a simulation, we could affect the future behaviour of the model by chang-
ing the values of the emergent feature (market), without having to re-program the code.
However, this is not fully satisfactory since, in a classic Turing Machine, no interaction
with the computation is allowed and, consequently, the distinction between algorithm
and input data is blurred.

1.5.3 Causal Emergence

The relation between emergence and causality has been studied under the term ‘down-
ward causation’ or ‘strong emergence’ (19; 6; 20). Roughly,‘a feature is emergent
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if it has some sort of causal power on lower level entities’. Like all topics involving
causality, this is a subject open to considerable controversy (see (35)). Here we refer to
it as ‘causal emergence’ to highlight the fact that we employthe weaker definition of
causality involving control and consequently our conclusions do not necessarily gen-
eralise to the global problem of downward causation. Another suitable name could be
emergence of control.

With causal emergence we define the arising of structures on which we can exert di-
rect control without manipulating, nor concerning ourselves with, the lower level con-
stituents. As an example, we assume again that the ultimate cause of human behaviour
lies in the biochemical process arising at a molecular and cellular level. Suppose I
want to ask my friend Jim to play some music for me. I can do so byaddressing him
directly, for example by speaking or writing a message. Oncea message is received,
my friend will employ his biological machinery to accept theinvitation, but I do not
need to concern myself with it. I do not need to re-program complicated instructions
into Jim’s cellular sub-stratum. For all practical concerns, my friend acts as an entity
with emergent causal power.

1.6 Modelling Causal Emergence

In the previous section we proposed to subdivide emergence into three classes depend-
ing on the causal power of the features they can generate, ranging from pattern forma-
tion, which generates features with no causal power, to intrinsic emergence, displaying
limited, indirect causal power to causal emergence, empowered with full causal power.

In Section 1.4 we claimed that the generation of causal powercannot be modelled,
since an algorithm cannot produce novel rules. If this statement is correct, then we
deduce that while we can model pattern formation, and we may or may not be able to
model intrinsic emergence (depending on whether we allow for interaction with data
rather than instructions), we should not be able to model causal emergence. If true,
this is quite a bad piece of news, since a large component of research on Complex
Systems is today carried out via computer modelling and emergence is considered to
be a crucial ingredient of complex systems.

This is a potentially important claim. For a claim to be meaningful, however, it
needs to be relevant and falsifiable. In this section we discuss why this claim is relevant
to current scientific investigation by addressing applications to biological and ecolog-
ical modelling, Artificial Intelligence, Artificial Life and the mining of large scientific
data sets. This will lead us along the difficult path of falsification via a variant of the
Turing test, applicable to emergence processes. A full discussion of the falsification
of this claim requires addressing much subtler issues of thephilosophy of science and
meta-mathematics which are beyond the scope of this paper, but which we touch upon
briefly in the final Discussion.

1.6.1 Is This Relevant?

Pattern formation is usually considered the most trivial form of emergence. Neverthe-
less, its relevance to our scientific enquiry is beyond doubt. An inspiring exposition
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on the relevance of intrinsic emergence to the understanding of Nature can be found
in (15), to which we refer the reader. Here we discuss the possible relevance of the
concept of causal emergence. As mentioned above we distinguish causal emergence
from Downward Causation in this work. Ample discussion of the related concept of
Downward Causation can be found in (1).

Following our discussion in Section 1.4, the relevance of causal emergence de-
pends essentially on whether we believe uncomputability can be found in Nature. On
this topic, the scientific community is broadly divided intotwo groups. The first group,
by far the largest, believes that uncomputability exists only in the abstract world of for-
mal logic and pure mathematics, not in the natural world. A common justification of
this view is that no example of uncomputability has so far been detected in Nature nor
is there a specific need to include it in our descriptive tools. A smaller community be-
lieves that uncomputability can be found in Nature. Among these we can cite Penrose’s
famous claims about the super computability of the human brain (33; 32; 39; 22). Ac-
cording to Penrose we can easily envisage real implementations of the abstract concept
of a Turing Machine, so there is no reason to believe that uncomputability cannot be
generated in Nature. For a further discussion on this topic see also (12; 9). A natural
observation for supporters of the latter view is that, if alltools enabling us to study Na-
ture are based on computation (i.e. algorithms), then it follows that no uncomputable
process can be detected. This observation leads to a possible third view of the problem,
according to which Nature may or may not include uncomputable processes, but we
will never be able to detect or access them because of the inherent limitation in the
language we use to interpret it. We will come back to this possibility later.

1.6.2 Biological/Ecological Modelling

The idea underlying any computer modelling is to create a virtual laboratory where a
researcher can perform experiments and scenario testing which would be impossible,
impractical or too costly to carry out in the real world. The relevance of these experi-
ments depends on how well the virtual laboratory resembles the real world. Nineteenth
century physics has taught us that perfect accuracy is beyond our reach (Heisenberg
Uncertainty Principle, for example), and this teaching is today well accepted. Nine-
teenth century mathematics has taught more fundamental concerns (G̈odel Theorem,
for example), which, curiously, are more easily dismissed.

A considerable experience in engineering, physics and chemistry has shown im-
mense practical benefits and, when the general limitations are carefully accounted for,
has proved how useful computer modelling can be. When portingthe approach to bi-
ological and ecological modelling it becomes tempting to employ the same method
for studying processes like evolution, adaptation, and creation of novelty and diver-
sity. However, we believe that these processes involve the same causal emergence we
discussed above and it thus becomes necessary to ask whetherthe virtual laboratory
has a similar functional relation to the real world to that enjoyed by physical systems.
The same question can be framed as follows: to what extent cana biological agent be
modelled within the same framework used to model non-livingobjects and processes?
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To give a practical example of where the challenge may reside, it is useful to re-
member that a crucial concept in biological and ecological studies is the existence
of multiple levels of organisation (cells→ organs→ individuals→ communities→
species→ ecologies, etc.).

According to our current understanding, these structures self-organise (they do not
follow explicit external direction templates (21)) and arelinked by two-way (upward
and downward) interactions. Many real world problems (ecological and renewable re-
source management for example) depend on our understanding(i.e., modelling) of
this supposedly spontaneous generation of organisation and two-way interactions. Ob-
viously, the more complex the questions we ask, the more complicated the models
we need to develop, and the more levels of organisation we mayneed to include in
the model. For example, in a fishery management problem we maywant to study how
individual fish organise themselves in schools or how individual fishers organise a fish-
ing fleet. This represents one level of organisation. If the specifics (or the scale) of the
problem requires so, we may also need to model how schools of different fish interact,
or how a school of fish interacts with a fishing fleet; this represents a second level of
organisation. In our model we can design a set of rules (a module) which controls the
behaviour of the individual fish and vessels and a set of modules for the behaviour of
fish schools and the fleet. However, if our purpose is to understand how these multiple
levels arise and interact, then we would like the dynamics ofthe different levels to be
shared or at least related. In principle we may want to code a single module (of the
lower level) and see how higher levels of organisation ariseas a result; after all, this is
what we conjecture happens in Nature.

Here, in our opinion, a fundamental discontinuity is revealed. In order to model
this nesting of organisation, the schools and fleets need to be more than mere patterns
arising form the lower level; they need to be able to ‘do’ something. In particular, they
need to be able to causally interact with other entities. Following our discussion in
Section 1.6, this equates to asking whether we can exert control on the system with-
out needing to ‘refer back’ or manipulate the rules controlling the individual fish and
vessels. In other words, as we are able to ask our friend to play some music (with-
out needing to concern ourselves about his ‘lower level’, local, biochemical rules) by
merely interacting with him at a higher level similarly, we would like to be able to exert
control on a school or fleet without having to concern ourselves with the lower level
rules governing them. If we cannot do that, then we must conclude that the school/fleet
system is merely a pattern, which we can identify and analyse, but which does not have
any causal power. Thus the question is, can we exert such control?

1.6.3 Artificial Life and Artificial Intelligence - A Turing T est for Emergence

We believe the answer to the previous question is negative. We also believe this is
merely a conjecture and that it cannot be proved. We also believe this issue is highly
debatable since it mostly depends on potentially differentinterpretations of causal con-
trol, as we discuss in this section.

In Section 1.5.1 we expressed our opinion that the gliders inthe Game of Life are
mere patterns with no causal power and we asked ourselves whether we can interact
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with the gliders without re-coding their local rules. Answering this is not trivial, mostly
because it depends on how much ‘purpose’ is placed in the original local rules.

We explain what we mean by ‘purpose’ with an example. Let’s take a flocking
model (Reynolds). Birds fly in flocks by ensuring they maintain certain constraints on
the position between each other. Suppose we now place an obstacle on the route of the
flock. The flock will circumvent the obstacle. It thus appearsthat we were able to exert
control on the behaviour of the flock; the flock appears to havecausal power. However,
we ask ourselves whether the flock has actually done anythingwhich was not explicitly
coded in the lower level rules. After all, all the flock did wasto maintain flight by
following a lead bird which avoided the obstacle. Is there any emergent behaviour in
this? Is there any causal power which was not purposely coded.

Can we causally control the flock in any different way? Reasonable arguments can
be given in both the affirmative and negative in answering this question. Interestingly,
this is not particularly important. Let’s consider once again my friend Jim playing
some music. It is beyond ours current understanding to discriminate to what extent our
verbal instruction interacts with his underlying biochemistry. Similarly, it is beyond
our current knowledge to grasp how our higher level invitation (spoken request) is pro-
cessed at his lower (biochemical) level for the task to be carried out. For our discussion,
what matters is only our perception of causal control on Jim’s behaviour. By analogy,
we are led to conclude that in the Game of Life or flocking example, what matters is
the perception to which we believe we can exert causal control over the higher level
emergent features. Does it look as if those features possesscausal control? Does it
look like they do more than the limited number of behaviours purposely encoded in
the local rules? Do system entities behave as if they were autonomously interacting
with external processes and respond accordingly?

These new questions have the flavour of a ‘Turing test for emergence’. Famously,
the Turing test (for related variations, see the series of paper contained in (36; 40))
was designed to circumvent the difficult question of definingwhat intelligence is and
to detect when a computer can be said to have achieved it (one of the original purposes
of Artificial Intelligence at its very conception). Turing suggested as testing whether
a human (an intelligent agent) was able to discriminate blindly between another hu-
man (another intelligent agent) and a computer. Should he/she not be able to, then we
should conclude than the computer and the human act as intelligently as each other,
and therefore they are both similarly intelligent. Following an analogous reasoning, we
conceive an ‘emergent’ version of the test and we ask whethera process empowered
with autonomous causal emergent properties (a human) can discriminate between an-
other causal emergent process and a computer program. Should he/she not be able to
do so, then we should conclude that the computer displays causal emergence.

We are not actually suggesting that the test be carried out inearnest. Rather, we
would like to refer to and build upon the vast body of work (both conceptual and
practical) carried out on the Turing test over several decades and extend some of the
conclusions which may be relevant to the study of emergent processes and computer
modelling. In this regard, notice that intelligence is itself often considered an emergent
feature of the processing occurring in a nervous system. If we accept this view, then
the ‘Turing test for emergence’ can be seen as a generalisation of the traditional Turing
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test. Consequently extending the discussion of the traditional Turing test to emergence
becomes more than merely exploiting an imaginary analogy.

The traditional Turing test has been subjected to considerable theoretical discussion
and criticism. Nevertheless, practical implementations of the Turing test are carried out
annually in the form of the Loebner prize (Rosenzweig). So far, it is widely accepted
that improvement in the test performance over the years has not been particularly sig-
nificant and ‘passing the test’ does not seem to be a likely short term outcome. The
entire artificial intelligence community has, therefore, revisited its own role, scope and
measure of success. Far from being a proof, this observationdoes somehow reinforce
our conjecture that modelling causal emergence via computer simulation should, at the
very least, not be taken for granted.

On a more positive side, this suggests a reason for the Complex System Sciences
(CSS) community building more closely on the extensive experience accumulated
along the difficult path followed by artificial intelligence. After a few decades of pes-
simism, a new breeze of optimism can be felt in both the artificial life and artificial
intelligence community. This renewed confidence is not based on the infrastructure of
logical programming or the complications of expert systems(as in the past), nor on
hopes of super computability brought to us by quantum computing. Rather it depends
on more down-to-earth, often biologically inspired, approaches. As an example, in a
series of papers (45; 43; 26; 25; 24; 23; 44), van Leeuwen and Wiedermann show for-
mally that agents interacting with their environment have computational capabilities
which supersede classic computation. There are a number of reasons why interact-
ing agents can achieve these acrobatics: they run indefinitely (as long as the agent
is alive), they continuously receive input from a (potentially infinite) environment and
from other agents (unlike a classic machine for which the input is determined and fixed
at the beginning of the calculations), they can use the localenvironment to store and
retrieve data and they can adapt to the environment. In particular, the agents’ adapta-
tion to their environment means that the ‘algorithm’ withinthe agents can be updated
constantly and in (26) it is shown how super computability can arise from the very
evolution of the agents. Also, in an interactive machine, the traditional distinction be-
tween data, memory and algorithm does not apply, which results in more dynamical
and less specifiable computational outcomes (27). Other classes of relatively down-to-
earth machines which seem to guarantee to break classic computation barriers include
fuzzy Turing machines (44).

Today human-computer interactions are standard in a large number of applications.
Usually, these are seen as enhancing human capabilities by providing the fast compu-
tation resources available to electronic machines. Shouldwe see the interaction in the
opposite direction, as humans enhance the computational capabilities of electronic ma-
chines? In (23) it is speculated that today personal computers, connected via the web
to thousands of machines world wide, receiving inputs via various sensors and on-line
instructions from users, are already beyond classic computers. Today sensors monitor
several aspects of the environment routinely and some have even been installed on an-
imals in the wilderness (38). Can we envisage a network computing system, in which
agents (computers) interact with the environment via analog sensors, receive data from
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living beings, and instructions from humans to deal with unexpected situations? Could
this be the way forward to understand emergence?

More intriguingly, could these systems potentially already sit on our desks?

1.6.4 Data Explosion and Scientific Data Mining

In a recent issue of Nature (8; 28; 41), the picture was drawn of a near future when
improved instrumentation and extensive sensing will provide us with exponentially in-
creasing quantities of data for scientific enquiry. This implies more information but
at a considerable cost. It promises more and better information about a vast range of
things, from space to ocean depths, from ecologies to the human body, from genomes
to social behaviour. However, the data explosion may go beyond our ability to pro-
cess and analyse it. Unravelling new mysteries of Nature will then be jeopardised by
something as mundane as lack of time and resources. It is hypothesised that this will
be circumvented by clever software able to supervise the instrumentation, detection of
new interesting patterns and possibly use rule extraction algorithms that uncover new
processes and biophysical or social laws; a very difficult task, but (supposedly) merely
a technological one.

This picture relies on 2 assumptions:

1. that all natural processes we may wish to study or detect are algorithmic;
2. that the process which allows us to understand and study Nature is also algorith-

mic.

Neither of these assumptions has been proved and both are open to debate. The
first statement has been discussed above. The second one requires some clarification.
First, a computational system which scans a data set in orderto find patterns of in-
terest must be algorithmic, by definition. Similarly, a system which, upon detecting a
pattern, performs some rule extraction in order to attract our attention and suggest an
interpretation also needs to be algorithmic. It seems evident that any algorithm capable
of sifting through a stream of data and picking out just thosenovel patterns which are
of interest to a human being, is more than a few steps along theway to passing the
Turing test. Similarly, the second of the two systems bears aremarkable resemblance
to the Halting Problem. An algorithmic system cannot, by definition, process a non-
recursive language, from which it follows that if Nature displays a non- algorithmic
process, this will not be detected by a fully automated computational system.

It is interesting to note that the rigors of formal logic apply not only to computa-
tional systems, but to the broader scientific method as well.The scientific method re-
quires experiments to be reproducible. This implies that anexperiment needs to follow
a quite detailed and rigorous procedure in order to be replicated by different observers
under inevitably different experimental settings. Basically, an experiment is reduced
to an algorithm (39, page 122), and consequently scientific experimentation suffers
the very same limitation of formal logic and computer systems, and thus is, by itself,
unable to detect truly emergent processes. Curiously, the same desire for a rigorous,
quasi-algorithmic approach affects scientific communication, with scientific journals
often requiring a quasi-algorithmic way of writing. However, it is often suspected that
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the large leaps in scientific understanding are fired by a brilliance which may be non-
algorithmic. While further considerable work needs to be done to understand this cre-
ative process, it seems that over-relying on formal logic not only to model, but also to
detect and analyse Nature may come with the risky consequence of preventing us from
seeing the very processes we want to discover.

1.7 Conclusions

Our aim is by no means to suggest that computer modelling is a purposeless activity.
Rather, that clarity is needed to discriminate the means (computer modelling as a tool)
from the aim (acquiring knowledge about Nature). In this framework, confusing the
means with the aim equates to carrying out a scientific program (including experimen-
tal and formal analysis) in the virtual world of a computer model as if this was the
‘real world’ and then extend the ‘virtual’ results to the ‘real’ natural world, under the
assumption that the two are, to some degree, isomorphic. Here the old Chinese saying
“if all you have is a hammer, everything looks like a nail” nicely highlights possible
dangers and could be translated as ‘if all you have is a computer, everything looks
computational’.

We can thus summarise our proposed guidelines as follows:

1. Care should be used to discriminate among: the processes which are ‘naturally’
amenable to computer modelling; the processes which are numerically or theo-
retically intractable (large combinatorial problems, NP-hard problems, chaotic
problems) but for which useful approximations can be found (either in terms of
non optimal solutions or large scale approximations); and processes which may be
fundamentally intractable.

2. The widely accepted conjecture that intractable problems do not exist in Nature
should (at least) be carefully studied, rather than accepted dogmatically.

3. The rigors of the algorithmic approach do not apply only tothe world of for-
mal systems and computer languages. Scientific investigation (the iterative testing
of hypotheses) is also subject to these constraints due to its algorithmic nature
Recently, a new scientific tendency is to call for a more free and creative way
of reporting and discussing science. Complex System Science, which naturally
mixes experts ranging from pure mathematics to social science, seems to be in
a particularly fortunate development for thorough exploration of the potential for
reintroduction of artistic and other creative contributions to science.
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