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A Turing test for emergence

Fabio Boschetti and Randall Gray

1.1 Introduction

Dealing withcomplexsystems present a particular challenge to many traditienal
gineering approaches. The pertinant assumption inhemethiese approaches is that
component parts of a system can be neatly partitioned amdhiia interactions have
limited, predictable effects. This assumption is not alsvegnable, and has an impact
both on degree of overall control attainable and on the itoless of the resulting sys-
tems. A traffic controller does not need to give exact insions to each vehicle on
the road, and a Treasurer does not need to control each &ingjlgess in a country;
rather they both provide general guidelines which aim atsirdglobal outcome; they
both rely on the local organisation inherent in road traffid &usiness interactions to
account for local details. Similarly we would like a desigte specify broad guide-
lines in order for a complex system to act according to a gémequirement. Since the
inherent organisation we wish to exploit is often a dynamaal stable configuration,
a system designed to capitalise on this may also display estoéss and adaptivity
which is currently beyond our engineering abilities.

In the parlance of complex system science, the global outsarising from broad
guidelines on a system’s components, including robustaedsadaptivity, are often
defined as emergent features. Because design inevitahlireea trial and error pro-
cess, itis natural to expect that our community will needeawaliop methods to:

detect emergent features when they arise;
categorise them in order to understand what classes ofggesarise as a result of
different initial conditions;

e experiment with various configurations in order to optimiee emergent pro-
cesses.

Experimentation is something which is often carried outcaenputer simulation;
however, computers are a perfect example of a ‘traditioeajineering apparatus,
and consequently display the very same features (lack afstobss and adaptivity,
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and a requirement for detailed instructions) which we ar@adrto circumvent. In this
chapter we explore this apparent paradox and ask what kiethefgent features can
be generated (and thus modelled) in a computational framkeWée will show that this
question directly relates to the other two items listed @&btivat is to the experimental
detection of emergence and its classification.

1.2 Background

The concept of emergence evolved to capture our intuitiahwen a large number
of entities interact, the resulting system can displayuiest and behaviours which are
not displayed by the individual constituents. The humanybpassesses behaviours
and functions which are not expressed by our individuakcetietals show properties
not displayed by individual atoms; societies undergo dyinawhich transcend indi-
viduals. Basic examples can also be modelled very easily aonguter; famously,
Conway’s Game of Life (18) shows how very simple local rulenegrate features
whose dynamics is not explicitly coded in the algorithm. Epées are so ubiquitous
in Nature that some scientists suspect that all structuseseg ‘emerge’ from under-
lying simpler levels (34).

Nevertheless, emergence raises considerable intellertdascientific challenge.
Despite a vast literature, going back several decadestib3greement can be found
on a definition, nor on a framework for its study, nor on whe#maergence is a ‘real’
natural phenomenon or merely a by-product of our perceptioa convenient way to
make sense of processes otherwise too hard to compreherbj15

Why should a process which appears so obvious and easy to pradel so hard
to define and conceptualise? The fundamental reason imthatemergent process it
is very hard to discriminate ‘who does what'. When | decideisteh to music, is it
my ‘emergent’ self which takes the decision or my cells? Mgyodepends on cellular
activity for its functioning, so cells must be the contnagjientities. However, no cell
decides to listen to music since listening to music is notetbing cells ‘do’. This
leads straight into old and unsolved philosophical prolslefcausality, determinism
and freewill.

Crucially, this is also a technological problem. Today,kably for the first time in
history, technological developments in many applicatiesend on the understanding
of emergent phenomena. Advances in Information Technokegigemiology, Ecosys-
tem Management, Health Science, just to name a few, depeagmoaches which go
beyond traditional reductionism and address the undetistgiof how emergent prop-
erties arise, what they ‘do’ and how they can be controlled.

It thus seems natural that when we ask whether emergenasalsdr merely lies
‘in the eyes of the observer’, or whether emergence is andisfirocess of its own
or encompasses different processes among which we are tralblgeto discriminate,
the answer needs to account for what these processes ‘dothém words, we need
to account for causal relationships and causal power. It apgear that we are try-
ing to address a slippery problem (emergence) via one wiigvén more slippery
(causality). This does not need to be so if we constrain wheatmgan by causality
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and we adopt an ‘operative’ definition. Following PatteeQ@Rand Pearl (2000) we
associate causal power with control: a process has causef [l by acting upon it,
we can change the effects it produces. Pattee (1997) desctils very simply: Use-
ful causation requires control. .... Clearly it is valualle know that malaria is not a
disease produced by "bad air” but results from Plasmodiunngsites that are trans-
mitted by Anopheles mosquitoes. What more do we gain in theseples by saying
that malaria is caused by a parasite ..? | believe the commewaryday meaning of
the concept of causation is entirely pragmatic. In otherdgpmve use the word cause
for events that might be controllable. In the philosophidarature controllable is the
equivalent of the idea of power. In other words, the valuéhefdoncept of causation
lies in its identification of where our power and control camdffective. For example,
while it is true that bacteria and mosquitos follow the lavipbysics, we do not usu-
ally say that malaria is caused by the laws of physics (theemal cause). That is
because we can hope to control bacteria and mosquitos, luhadaws of physics.

Building from this observation and from the work of Shali2DQ1), Crutchfield
(1994b; 1994a), Rabinowitz (2005), among others (6; 5; 8011 21; 45; 39; 4; 16;
17), we propose to discriminate between three types of esnegy depending on in-
creasing level of ‘causal’ power: pattern formation, ingic emergence and causal
emergence.

Despite the philosophical halo of the above discussionaguiis utterly practical.
In a scientific culture in which understanding is increakirgynonymous with com-
puter modelling, we ask what forms of emergence can be stumiesimulation and
what we can gain from doing so. We will see that computatianal ‘causal’ barriers
are strongly related. This may lead to new insights into timétdtions and future of
the computer modelling of complex processes.

1.3 Formal Logic and Computation

There exists an equivalence between the workings of fornaahmars, logical systems
and computation (11; 42; 29; 32). All these start from sormelamental set of strings
(starting symbols, axioms or input data), a set of rewritialgs (production rules,
rules of inference, computer instructions), and they gaeasutputs (strings, theorems
and computational results) which are obtained by transfayrthe a priori set via the
rewriting rules.

In a formal system, true statements are almost always éiteerems or tautologies
(Kurt Godel demonstrated that there are true statements whictoteecessible from
the axioms and rules of logic. These true statements arbeotdéms since they are not
derived from the axioms). This is so because, given a setiofrexand inference rules,
these statements are necessarily true (they are true favsible scenarios and cannot
be otherwise). Given a set of axioms and inference ruleseth@tements necessarily
follow and are true for all possible scenarios and cannottberarise. Consequently,
these statements do not provide any information about #levarld (any information
such a string may seem convey is a result of correspondereesavor think we see)
between the real world and the fundamental system, and ifywdtependent on our
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perception of these correspondences). An example clatfiiiesoncept: the statement
‘it's raining’ may be true today and may or may not be true tomorrow; it ddpem its
agreement with the vagaries of the real world. Assessinghein¢he statement is true
or not provides information about the real world. Pythagbtiaeorem, in contrast, is
true independently of Nature’s vagaries, it must be trueawdys will. The fact that
Pythagoras’ theorem is useful to us and matches our peoceptireality is due to the
clever choices of the basic axioms of geometry. It is becalifee appropriateness of
axioms collected in Euclid’'s work that the properties cdimgles match our perception
of reality.

Given Euclid’s axioms and our rules of mathematical reasgpriPythagoras’ the-
orem is an inevitable consequence. It helps us to underdtande better by simpli-
fying geometrical considerations, by putting place hadderour geometrical thinking
so we do not always need refer back to the axioms, and it helpseaommunicate this
understanding, but it does not provide any information Wwhgnot already implicit
in the our axioms and rewriting rules. Theorems are transftions of information,
not new information. In some sense, all the theorems of Beah geometry could
be compressed, with no loss of information, into the basiorag and inference rules
(this is formally proved in (11) and is the base for Kolmogdf@haitin’s complexity
measure). It could reasonably be argued, though, that asgng@essor which could
reproduce the theorems of Euclidean geometry through @srdpression would need
to be at least as complex as a mathematician and, like a mattoéan, would stand a
reasonable chance of passing the Turing Test (which we shdater).

The PCs on our desks are equivalent to a finite tape Turing MagiM), an ab-
stract and general computational device commonly emplayéukoretical computer
science. Because the execution of a TM is equivalent to tipcagion of produc-
tion rules in a formal grammar, and to proof in a formal systd®), it follows that
the result of running a TM is equivalent to a theorem or a vsiithg: the results are
independent of reality.

It thus also follows that the outputs of any of our computedeis are similarly
dictated by their initial state and the rewriting rules emliied by the program (tech-
nically, this is correct provided the PC does not allow fdemction with the outside
world, see (45; 24)); a computer model transforms the in&tiom contained in its
input via its coded algorithm, but does not generate infoiona Clearly, a model's
output helps our finite mental capability to see consequeatehat we coded (which
at times we cannot envisage), but its truth status and netevio the real world is lim-
ited to the truth and relevance of the user code and the imoltd the computation.
No actual information about the real world is produced bynausation. Information is
generated solely by the writing of the code and the choichefrtput. In this way, our
choices about how we model a system are much like Euclid'&eb@nd the compar-
ison of the results of our simulations to what we observe ituMatells us about the
appropriateness of the rules we implement and the input weseh
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1.4 Algorithms and Physical Laws

In our perception of reality, causality manifests itselfpdwysical laws (conversely, a
physical law can represent both causal relations and merelatons, from which it
arises the philosophical dilemma behind causality. Foptirpose of our discussion it
is important to stress that causality can be representgdasra physical law, such as
"for every action there is a corresponding equal and opposéction”). Our computa-
tional representation of physical laws involves algorighwhich are essentially trans-
formation rules (sequences of instructions). Since we Isaemn that transformation
rules of this sort are constrained to produce results whiehmeembers of a set which
is totally determined by these rules and the initial condi, we need to conclude that
the running of algorithms which represent physical laws caly produce similarly
deterministic results. Any physical law (rule) which anaithm can generate must
already be implicit in the physical laws (rules) represdritethe coded algorithm. No
new physical law (or representation of it) can be generayenddelling.

When faced with the question "can genuinely novel causal &mwesrge from lower
level causal laws?” or "can causal laws which transcend thesal power of their
constituents exist in Nature?” we can envisage two posaiidavers:

1. either emergent, genuinely novel, causal laws can net ard are only apparent
and perceived as such because of the limitations in thegeptation we use;

2. oremergent causal laws must arise via hatural processeb are non-algorithmic,
fundamentally different from the workings of a formal logigstem and conse-
guently not computable in classical sense.

1.5 Three Levels of Emergence

In this section we examine three levels of emergence, ofsmussed in the literature.
Our analysis focuses on the relative causal power of thegamee features they can
generate.

1.5.1 Pattern Formation and Detection

Pattern formation captures the most intuitive view of erearg. The interaction of low
level simple entities, leading to symmetry breaking, gatesr a coordinate behaviour;
this is expressed by patterns which are novel and identfiablsuch by an external
observer. "The patterns do not appear to have specific mgavithin the system, but
obtain a special meaning to the observer once (and if) hegshiele to detect them.
When this happens, the patterns become part of the tool-leoaltberver can employ
to describe and study the process” (15). Examples incluel&time of Life discussed
above, spiral waves in oscillating chemical reactionsyeotive cells in fluid flow and
fractal structures in fractured media.
For the purpose of our discussion, pattern formation dogsmitself, imply causal

power. Let’s consider the Game of Life and the emergent idideetecting their pres-
ence is useful for an observer to comprehend the effect dbta rules, to highlight



6 Fabio Boschetti and Randall Gray

the potentially universal computational capability of #ystem and possibly to devise
alanguage able to compress their description (37; 35). Tibstpn relevant to our dis-

cussion is whether the gliders can ‘do’ something or are kinpgassive’ expressions

of internal dynamics; can we exert any causal control on ligeig? What should we

do to affect the behaviour of the gliders?

The obvious answer is that we could manipulate the Cellulgo/ata (CA) local
rules. This however acts at the lower level (the CA cells)atdhe level of the gliders.
By doing so, gliders are still merely a representation ofroanipulation of the local
rules. Can we act on the gliders themselves? We believehisatduld happen only via
re-writing the CA code, that is via an external interventiom a complete redesign of
the system. We will discuss this more extensively in Secti@n3. For now we suggest
that pattern formation, per se, does not imply causal power.

1.5.2 Intrinsic Emergence

Intrinsic emergence refers to features which are impowstathin the system because
they confer additional functionality on the system itséliese emergent features may
support global coordination-computation-behaviour ttke motion of a flock of birds
or stock market pricing (15). Examples with immediate ratee to modelling are Mi-
nority Game models (2; 3): agents must take local decisiongations which result
in an economic outcome but they are not able to communicatiiey have no infor-
mation about other agents’ behaviour. If they identify areegent feature, providing
information about the global dynamics of the populatiomsromy, then they can use
this measure to decide what actions to take (7). This featave acts as an avenue
for global information processing and provides to the systiee possibility for coor-
dinated behaviour. Clearly, the agents’ behaviour inflesritie global measure, but
now the global measure affects the behaviour of the agerdgtgymining their future
actions. Self-referentiality becomes a fundamental idigrg for complex dynamics
and intrinsic emergence.

Discriminating whether intrinsic emergence implies chuesatrol is more chal-
lenging and is surely not as clear cut as for pattern formatioa real world we could
externally affect the stock market (with some sort of gowgental intervention, for ex-
ample) thereby changing indirectly the dynamics of the &gyevho would respond to
the sudden external change by altering their future bebavidis intervention is not
possible in the case of pattern formation described abdwee sve cannot intervene
on a convective cell (for example) without acting directtytbe molecules’ motion. In
the case of a simulation, we could affect the future behavabthe model by chang-
ing the values of the emergent feature (market), withouirtgeto re-program the code.
However, this is not fully satisfactory since, in a classigifig Machine, no interaction
with the computation is allowed and, consequently, therdison between algorithm
and input data is blurred.

1.5.3 Causal Emergence

The relation between emergence and causality has beerdiumtier the term ‘down-
ward causation’ or ‘strong emergence’ (19; 6; 20). Rougtayfeature is emergent
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if it has some sort of causal power on lower level entitieskelall topics involving
causality, this is a subject open to considerable contsyu@ee (35)). Here we refer to
it as ‘causal emergence’ to highlight the fact that we empl@yweaker definition of
causality involving control and consequently our conduasido not necessarily gen-
eralise to the global problem of downward causation. Anosli@able name could be
emergence of control.

With causal emergence we define the arising of structureshachwe can exert di-
rect control without manipulating, nor concerning oursslwith, the lower level con-
stituents. As an example, we assume again that the ultirmatewof human behaviour
lies in the biochemical process arising at a molecular atidlae level. Suppose |
want to ask my friend Jim to play some music for me. | can do sadgressing him
directly, for example by speaking or writing a message. Cnogessage is received,
my friend will employ his biological machinery to accept timgitation, but | do not
need to concern myself with it. | do not need to re-programplaated instructions
into Jim’s cellular sub-stratum. For all practical concemy friend acts as an entity
with emergent causal power.

1.6 Modelling Causal Emergence

In the previous section we proposed to subdivide emergenaétiree classes depend-
ing on the causal power of the features they can generatgingafrom pattern forma-
tion, which generates features with no causal power, tsitremergence, displaying
limited, indirect causal power to causal emergence, empanigith full causal power.

In Section 1.4 we claimed that the generation of causal poas@not be modelled,
since an algorithm cannot produce novel rules. If this stetd is correct, then we
deduce that while we can model pattern formation, and we mayay not be able to
model intrinsic emergence (depending on whether we allavinteraction with data
rather than instructions), we should not be able to modesalaemergence. If true,
this is quite a bad piece of news, since a large componentsefireh on Complex
Systems is today carried out via computer modelling and gemee is considered to
be a crucial ingredient of complex systems.

This is a potentially important claim. For a claim to be megfil, however, it
needs to be relevant and falsifiable. In this section we dsaihny this claim is relevant
to current scientific investigation by addressing appiicet to biological and ecolog-
ical modelling, Artificial Intelligence, Artificial Life ad the mining of large scientific
data sets. This will lead us along the difficult path of fatsifion via a variant of the
Turing test, applicable to emergence processes. A fulludison of the falsification
of this claim requires addressing much subtler issues gbtilesophy of science and
meta-mathematics which are beyond the scope of this pagtagtich we touch upon
briefly in the final Discussion.

1.6.1 Is This Relevant?

Pattern formation is usually considered the most triviatrf@f emergence. Neverthe-
less, its relevance to our scientific enquiry is beyond do#htinspiring exposition
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on the relevance of intrinsic emergence to the understgrafitfNature can be found
in (15), to which we refer the reader. Here we discuss theilplesselevance of the

concept of causal emergence. As mentioned above we dighgausal emergence
from Downward Causation in this work. Ample discussion & telated concept of
Downward Causation can be found in (1).

Following our discussion in Section 1.4, the relevance efsehemergence de-
pends essentially on whether we believe uncomputabilitybeafound in Nature. On
this topic, the scientific community is broadly divided itweo groups. The first group,
by far the largest, believes that uncomputability exisly onthe abstract world of for-
mal logic and pure mathematics, not in the natural world. Agwn justification of
this view is that no example of uncomputability has so fambdetected in Nature nor
is there a specific need to include it in our descriptive toalsmaller community be-
lieves that uncomputability can be found in Nature. Amoregsthwe can cite Penrose’s
famous claims about the super computability of the humami§&38; 32; 39; 22). Ac-
cording to Penrose we can easily envisage real implemensatif the abstract concept
of a Turing Machine, so there is no reason to believe that mipctability cannot be
generated in Nature. For a further discussion on this togécadso (12; 9). A natural
observation for supporters of the latter view is that, itadlls enabling us to study Na-
ture are based on computation (i.e. algorithms), then libvied that no uncomputable
process can be detected. This observation leads to a possibl view of the problem,
according to which Nature may or may not include uncompetg@bbcesses, but we
will never be able to detect or access them because of theeimhiémitation in the
language we use to interpret it. We will come back to this jilgty later.

1.6.2 Biological/Ecological Modelling

The idea underlying any computer modelling is to create ta@ilaboratory where a
researcher can perform experiments and scenario testiadp wiould be impossible,
impractical or too costly to carry out in the real world. Tredevance of these experi-
ments depends on how well the virtual laboratory resemhkesdal world. Nineteenth
century physics has taught us that perfect accuracy is ldegonreach (Heisenberg
Uncertainty Principle, for example), and this teachingodaty well accepted. Nine-
teenth century mathematics has taught more fundamentatowh (&del Theorem,
for example), which, curiously, are more easily dismissed.

A considerable experience in engineering, physics and igtgnhas shown im-
mense practical benefits and, when the general limitatimsaefully accounted for,
has proved how useful computer modelling can be. When pottie@pproach to bi-
ological and ecological modelling it becomes tempting tgkay the same method
for studying processes like evolution, adaptation, andtae of novelty and diver-
sity. However, we believe that these processes involveaheausal emergence we
discussed above and it thus becomes necessary to ask wtrethértual laboratory
has a similar functional relation to the real world to thgbged by physical systems.
The same question can be framed as follows: to what extera bélogical agent be
modelled within the same framework used to model non-livbgects and processes?
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To give a practical example of where the challenge may restide useful to re-
member that a crucial concept in biological and ecologitadliss is the existence
of multiple levels of organisation (cells> organs— individuals — communities—
species— ecologies, etc.).

According to our current understanding, these structwelisosganise (they do not
follow explicit external direction templates (21)) and éirked by two-way (upward
and downward) interactions. Many real world problems (egiglal and renewable re-
source management for example) depend on our understaidgingmodelling) of
this supposedly spontaneous generation of organisatwiwariway interactions. Ob-
viously, the more complex the questions we ask, the more toatgd the models
we need to develop, and the more levels of organisation wenmeay to include in
the model. For example, in a fishery management problem wewaayto study how
individual fish organise themselves in schools or how irthliai fishers organise a fish-
ing fleet. This represents one level of organisation. If pecdics (or the scale) of the
problem requires so, we may also need to model how schooliff@feht fish interact,
or how a school of fish interacts with a fishing fleet; this représ a second level of
organisation. In our model we can design a set of rules (a tepdinich controls the
behaviour of the individual fish and vessels and a set of nasdiar the behaviour of
fish schools and the fleet. However, if our purpose is to utaledshow these multiple
levels arise and interact, then we would like the dynamiahefdifferent levels to be
shared or at least related. In principle we may want to codaeglesmodule (of the
lower level) and see how higher levels of organisation assa result; after all, this is
what we conjecture happens in Nature.

Here, in our opinion, a fundamental discontinuity is reeealln order to model
this nesting of organisation, the schools and fleets need todre than mere patterns
arising form the lower level; they need to be able to ‘do’ stnrgy. In particular, they
need to be able to causally interact with other entitieslol@hg our discussion in
Section 1.6, this equates to asking whether we can exentatam the system with-
out needing to ‘refer back’ or manipulate the rules coninglthe individual fish and
vessels. In other words, as we are able to ask our friend tog@dme music (with-
out needing to concern ourselves about his ‘lower levetalpbiochemical rules) by
merely interacting with him at a higher level similarly, wewd like to be able to exert
control on a school or fleet without having to concern ouesehwith the lower level
rules governing them. If we cannot do that, then we must cmtecthat the school/fleet
system is merely a pattern, which we can identify and analygevhich does not have
any causal power. Thus the question is, can we exert suctot®nt

1.6.3 Atrtificial Life and Artificial Intelligence - A Turing T est for Emergence

We believe the answer to the previous question is negativealb believe this is
merely a conjecture and that it cannot be proved. We alsevzethis issue is highly
debatable since it mostly depends on potentially diffeir@etrpretations of causal con-
trol, as we discuss in this section.

In Section 1.5.1 we expressed our opinion that the glidetiserGame of Life are
mere patterns with no causal power and we asked ourselvebevhee can interact
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with the gliders without re-coding their local rules. Answg this is not trivial, mostly
because it depends on how much ‘purpose’ is placed in thenatipcal rules.

We explain what we mean by ‘purpose’ with an example. Let®ta flocking
model (Reynolds). Birds fly in flocks by ensuring they maintegrtain constraints on
the position between each other. Suppose we now place aactidheh the route of the
flock. The flock will circumvent the obstacle. It thus appdheg we were able to exert
control on the behaviour of the flock; the flock appears to lvavesal power. However,
we ask ourselves whether the flock has actually done anyittiich was not explicitly
coded in the lower level rules. After all, all the flock did wasmaintain flight by
following a lead bird which avoided the obstacle. Is theng amergent behaviour in
this? Is there any causal power which was not purposely coded

Can we causally control the flock in any different way? Reabtsmarguments can
be given in both the affirmative and negative in answering diiestion. Interestingly,
this is not particularly important. Let's consider once iagay friend Jim playing
some music. It is beyond ours current understanding toichatate to what extent our
verbal instruction interacts with his underlying biochemy. Similarly, it is beyond
our current knowledge to grasp how our higher level invitaiispoken request) is pro-
cessed at his lower (biochemical) level for the task to beexhout. For our discussion,
what matters is only our perception of causal control onslioehaviour. By analogy,
we are led to conclude that in the Game of Life or flocking exiegwhat matters is
the perception to which we believe we can exert causal coover the higher level
emergent features. Does it look as if those features possessl control? Does it
look like they do more than the limited number of behaviousppsely encoded in
the local rules? Do system entities behave as if they wemnauntously interacting
with external processes and respond accordingly?

These new questions have the flavour of a ‘“Turing test for gamae’. Famously,
the Turing test (for related variations, see the series pepaontained in (36; 40))
was designed to circumvent the difficult question of definiriat intelligence is and
to detect when a computer can be said to have achieved it {dhe original purposes
of Artificial Intelligence at its very conception). Turingiggested as testing whether
a human (an intelligent agent) was able to discriminatedbfibbetween another hu-
man (another intelligent agent) and a computer. Shouldchbaist be able to, then we
should conclude than the computer and the human act adgetely as each other,
and therefore they are both similarly intelligent. Follogsian analogous reasoning, we
conceive an ‘emergent’ version of the test and we ask whetlpeocess empowered
with autonomous causal emergent properties (a human) sarirdinate between an-
other causal emergent process and a computer program.d3tishe not be able to
do so, then we should conclude that the computer displaysatamergence.

We are not actually suggesting that the test be carried oeiiinest. Rather, we
would like to refer to and build upon the vast body of work {b@bnceptual and
practical) carried out on the Turing test over several desauhd extend some of the
conclusions which may be relevant to the study of emergetgases and computer
modelling. In this regard, notice that intelligence islteéten considered an emergent
feature of the processing occurring in a nervous systemelfecept this view, then
the ‘Turing test for emergence’ can be seen as a generaligaitihe traditional Turing
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test. Consequently extending the discussion of the taaditiTuring test to emergence
becomes more than merely exploiting an imaginary analogy.

The traditional Turing test has been subjected to conditietheoretical discussion
and criticism. Nevertheless, practical implementatidrib® Turing test are carried out
annually in the form of the Loebner prize (Rosenzweig). Spifas widely accepted
that improvement in the test performance over the years tidsaen particularly sig-
nificant and ‘passing the test’ does not seem to be a likelyt¢bom outcome. The
entire artificial intelligence community has, thereforyisited its own role, scope and
measure of success. Far from being a proof, this observdties somehow reinforce
our conjecture that modelling causal emergence via compinteilation should, at the
very least, not be taken for granted.

On a more positive side, this suggests a reason for the CarBgletem Sciences
(CSS) community building more closely on the extensive érpee accumulated
along the difficult path followed by artificial intelligencéfter a few decades of pes-
simism, a new breeze of optimism can be felt in both the arilfidfe and artificial
intelligence community. This renewed confidence is not thasethe infrastructure of
logical programming or the complications of expert systéassin the past), nor on
hopes of super computability brought to us by quantum coimguRather it depends
on more down-to-earth, often biologically inspired, agmoes. As an example, in a
series of papers (45; 43; 26; 25; 24; 23; 44), van Leeuwen ard&kmann show for-
mally that agents interacting with their environment hawenputational capabilities
which supersede classic computation. There are a numberasbns why interact-
ing agents can achieve these acrobatics: they run indéfirfée long as the agent
is alive), they continuously receive input from a (potelifianfinite) environment and
from other agents (unlike a classic machine for which thefigpdetermined and fixed
at the beginning of the calculations), they can use the lesaironment to store and
retrieve data and they can adapt to the environment. Incpéati the agents’ adapta-
tion to their environment means that the ‘algorithm’ witlie agents can be updated
constantly and in (26) it is shown how super computability esise from the very
evolution of the agents. Also, in an interactive machine,ttiditional distinction be-
tween data, memory and algorithm does not apply, which t&gulmore dynamical
and less specifiable computational outcomes (27). Othsseteof relatively down-to-
earth machines which seem to guarantee to break classicutatigm barriers include
fuzzy Turing machines (44).

Today human-computer interactions are standard in a langdoar of applications.
Usually, these are seen as enhancing human capabilitiebiging the fast compu-
tation resources available to electronic machines. Shoaldee the interaction in the
opposite direction, as humans enhance the computatiopabigies of electronic ma-
chines? In (23) it is speculated that today personal computennected via the web
to thousands of machines world wide, receiving inputs vigous sensors and on-line
instructions from users, are already beyond classic coenputoday sensors monitor
several aspects of the environment routinely and some haveleen installed on an-
imals in the wilderness (38). Can we envisage a network cdingpgystem, in which
agents (computers) interact with the environment via ansémsors, receive data from
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living beings, and instructions from humans to deal withxpeeted situations? Could
this be the way forward to understand emergence?
More intriguingly, could these systems potentially alrgai on our desks?

1.6.4 Data Explosion and Scientific Data Mining

In a recent issue of Nature (8; 28; 41), the picture was drafnareear future when
improved instrumentation and extensive sensing will pevis with exponentially in-
creasing quantities of data for scientific enquiry. This liegpmore information but
at a considerable cost. It promises more and better infeomabout a vast range of
things, from space to ocean depths, from ecologies to thehuady, from genomes
to social behaviour. However, the data explosion may go mheyaur ability to pro-
cess and analyse it. Unravelling new mysteries of Naturktiéh be jeopardised by
something as mundane as lack of time and resources. It ighmgised that this will
be circumvented by clever software able to supervise thauimentation, detection of
new interesting patterns and possibly use rule extracigorishms that uncover new
processes and biophysical or social laws; a very difficgk thut (supposedly) merely
a technological one.
This picture relies on 2 assumptions:

1. that all natural processes we may wish to study or detedlgorithmic;
2. that the process which allows us to understand and stutly&lis also algorith-
mic.

Neither of these assumptions has been proved and both anctogebate. The
first statement has been discussed above. The second ofresespme clarification.
First, a computational system which scans a data set in ¢odiémd patterns of in-
terest must be algorithmic, by definition. Similarly, a gyatwhich, upon detecting a
pattern, performs some rule extraction in order to attractattention and suggest an
interpretation also needs to be algorithmic. It seems evitdhat any algorithm capable
of sifting through a stream of data and picking out just thoseel patterns which are
of interest to a human being, is more than a few steps alongvélyeto passing the
Turing test. Similarly, the second of the two systems beaesrarkable resemblance
to the Halting Problem. An algorithmic system cannot, byrd#fin, process a non-
recursive language, from which it follows that if Naturepml&ys a non- algorithmic
process, this will not be detected by a fully automated caatfpnal system.

It is interesting to note that the rigors of formal logic appbt only to computa-
tional systems, but to the broader scientific method as Whb. scientific method re-
quires experiments to be reproducible. This implies thabgeriment needs to follow
a quite detailed and rigorous procedure in order to be ratglicby different observers
under inevitably different experimental settings. Balfjg@n experiment is reduced
to an algorithm (39, page 122), and consequently scientfiermentation suffers
the very same limitation of formal logic and computer systeand thus is, by itself,
unable to detect truly emergent processes. Curiously,dtreeglesire for a rigorous,
quasi-algorithmic approach affects scientific commuimacatwith scientific journals
often requiring a quasi-algorithmic way of writing. Howeyvit is often suspected that
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the large leaps in scientific understanding are fired by &dwde which may be non-
algorithmic. While further considerable work needs to beadtmunderstand this cre-
ative process, it seems that over-relying on formal logicamy to model, but also to
detect and analyse Nature may come with the risky consequeEreventing us from
seeing the very processes we want to discover.

1.7 Conclusions

Our aim is by no means to suggest that computer modelling iggogeless activity.

Rather, that clarity is needed to discriminate the meansgeter modelling as a tool)
from the aim (acquiring knowledge about Nature). In thisrfeavork, confusing the

means with the aim equates to carrying out a scientific prognacluding experimen-

tal and formal analysis) in the virtual world of a computerdebas if this was the

‘real world’ and then extend the ‘virtual’ results to theaftenatural world, under the

assumption that the two are, to some degree, isomorphie. tHerold Chinese saying
“if all you have is a hammer, everything looks like a nail” elig highlights possible

dangers and could be translated as ‘if all you have is a camnpeterything looks

computational’.

We can thus summarise our proposed guidelines as follows:

1. Care should be used to discriminate among: the procedsieh are ‘naturally’
amenable to computer modelling; the processes which areemcaily or theo-
retically intractable (large combinatorial problems, N®&rd problems, chaotic
problems) but for which useful approximations can be fougithér in terms of
non optimal solutions or large scale approximations); andgsses which may be
fundamentally intractable.

2. The widely accepted conjecture that intractable probldmnot exist in Nature
should (at least) be carefully studied, rather than acdegdgmatically.

3. The rigors of the algorithmic approach do not apply onlthte world of for-
mal systems and computer languages. Scientific invegiigétie iterative testing
of hypotheses) is also subject to these constraints due talgbrithmic nature
Recently, a new scientific tendency is to call for a more fred ereative way
of reporting and discussing science. Complex System Sejembich naturally
mixes experts ranging from pure mathematics to social seiepeems to be in
a particularly fortunate development for thorough exgioraof the potential for
reintroduction of artistic and other creative contribngdo science.
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