
AN INFORMATION-THEORETIC PRIMER ON
COMPLEXITY, SELF-ORGANISATION AND EMERGENCE

MIKHAIL PROKOPENKO, FABIO BOSCHETTI, AND ALEX J. RYAN

Abstract. Complex Systems Science aims to understand concepts like complexity, self-organization,

emergence and adaptation, among others. The inherent fuzziness in complex systems definitions is

complicated by the unclear relation among these central processes: does self-organisation emerge or

does it set the preconditions for emergence? Does complexity arise by adaptation or is complexity

necessary for adaptation to arise? The inevitable consequence of the current impasse is miscommunica-

tion among scientists within and across disciplines. We propose a set of concepts, together with their

possible information-theoretic interpretations, which can be used to facilitate the Complex Systems Sci-

ence discourse. Our hope is that the suggested information-theoretic baseline may promote consistent

communications among practitioners, and provide new insights into the field.

1. Introduction

Complex Systems Science studies general phenomena of systems comprised of many simple elements
interacting in a non-trivial fashion. Currently, fuzzy quantifiers like ‘many’ and ‘non-trivial’ are in-
evitable. ‘Many’ implies a number large enough so that no individual component/feature predominates
the dynamics of the system, but not so large that features are completely irrelevant. Interactions need to
be ‘non-trivial’ so that the degrees of freedom are suitably reduced, but not constraining to the point that
the arising structure possesses no further degree of freedom. Crudely put, systems with a huge number
of components interacting trivially are explained by statistical mechanics, and systems with precisely
defined and constrained interactions are the concern of fields like chemistry and engineering. In so far as
the domain of Complex Systems Science overlaps these fields, it contributes insights when the classical
assumptions are violated.

It is unsurprising that a similar vagueness afflicts the discipline itself, which notably lacks a common
formal framework for analysis. There are a number of reasons for this. Because Complex Systems Science
is broader than physics, biology, sociology, ecology, or economics, its foundations cannot be reduced to a
single discipline. Furthermore, systems which lie in the gap between the ‘very large’ and the ‘fairly small’
cannot be easily modelled with traditional mathematical techniques.

Initially setting aside the requirement for formal definitions, we can summarise our general under-
standing of complex systems dynamics as follows:

(1) complex systems are ‘open’, and receive a regular supply of energy, information, and/or matter
from the environment;

(2) a large, but not too large, ensemble of individual components interact in a non-trivial fashion;
in others words, studying the system via statistical mechanics would miss important properties
brought about by interactions;

(3) the non-trivial interactions result in internal constraints, leading to symmetry breaking in the
behaviour of the individual components, from which coordinated global behaviour arises;
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(4) the system is now more organised than it was before; since no central director nor any explicit
instruction template was followed, we say that the system has ‘self-organised’ ;

(5) this coordination can express itself as patterns detectable by an external observer or as structures
that convey new properties to the systems itself. New behaviours ‘emerge’ from the system;

(6) coordination and emergent properties may arise from specific response to environmental pressure,
in which case we can say the system displays adaptation;

(7) when adaptation occurs across generations at a population level we say that the system evolved1;
(8) coordinated emergent properties give rise to effects at a scale larger than the individual compo-

nents. These interdependent sets of components with emergent properties can be observed as
coherent entities at lower resolution than is needed to observe the components. The system can
be identified as a novel unit of its own and can interact with other systems/processes expressing
themselves at the same scale. This becomes a building block for new iterations and the cycle can
repeat from (1) above, now at a larger scale.

The process outlined above is not too contentious, but does not address ‘how’ and ‘why’ each step
occurs. Consequently, we can observe the process but we can not understand it, modify it or engineer
for it. This also prevents us from understanding what complexity is and how it should be monitored and
measured; this equally applies to self-organisation, emergence, evolution and adaptation.

Even worse than the fuzziness and absence of deep understanding already described, is when the above
terms are used interchangeably in the literature. The danger of not making clear distinctions in Complex
Systems Science is incoherence. To have any hope of coherent communication, it is necessary to unravel
the knot of assumptions and circular definitions that are often left unexamined.

Here we suggest a set of working definitions for the above concepts, essentially a dictionary for Complex
Systems Science discourse. Our purpose is not to be prescriptive, but to propose a baseline for shared
agreement, to facilitate communication between scientists and practitioners in the field. We would like to
prevent the situation in which a scientist talks of emergence and this is understood as self-organisation.

For this purpose we chose an information-theoretic framework. There are a number of reasons for this
choice:

• a considerable body of work in Complex Systems Science has been cast into Information Theory,
as pioneered by the Santa Fe Institute, and we borrow heavily from this tradition;

• it provides a well developed theoretical basis for our discussion;
• it provides definitions which can be formulated mathematically;
• it provides computational tools readily available; a number of measures can be actually computed,

albeit in a limited number of cases.

Nevertheless, we believe that the concepts should also be accessible to disciplines which often operate be-
yond the application of such a strong mathematical and computational framework, like biology, sociology
and ecology. Consequently, for each concept we provide a ‘plain English’ interpretation, which hopefully
will enable communication across fields.

2. An information-theoretical approach

Information Theory was originally developed by Shannon [1] for reliable transmission of information
from a source X to a receiver Y over noisy communication channels. Put simply, it addresses the question
of “how can we achieve perfect communication over an imperfect, noisy communication channel?” [2].
When dealing with outcomes of imperfect probabilistic processes, it is useful to define the information

1This does not limit evolution to DNA/RNA based terrestrial biology — see Section 6.
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content of an outcome x which has the probability P (x), as log2
1

P (x) (it is measured in bits): improbable
outcomes convey more information than probable outcomes. Given a probability distribution P over the
outcomes x ∈ X (a discrete random variable X representing the process, and defined by the probabilities
P (x) ≡ P (X = x) given for all x ∈ X ), the average Shannon information content of an outcome is
determined by

(1) H(X) =
∑
x∈X

P (x)
1

log P (x)
= −

∑
x∈X

P (x) log P (x) ,

henceforth we omit the logarithm base 2. This quantity is known as (information) entropy. Intuitively,
it measures, also in bits, the amount of freedom of choice (or the degree of randomness) contained in
the process — a process with many possible outcomes has high entropy. This measure has some unique
properties that make it specifically suitable for measuring “how much “choice” is involved in the selection
of the event or of how uncertain we are of the outcome?” [1]. In answering this question, Shannon
required the following properties for such a measure H :

• continuity: H should be continuous in the probabilities, i.e., changing the value of one of the
probabilities by a small amount changes the entropy by a small amount;

• monotony: if all the choices are equally likely, e.g. if all the probabilities P (xi) are equal to
1/n, where n is the size of the set X = {x1, . . . , xn}, then H should be a monotonic increasing
function of n: “with equally likely events there is more choice, or uncertainty, when there are
more possible events” [1];

• recursion: H is independent of how the process is divided into parts, i.e. “if a choice be broken
down into two successive choices, the original H should be the weighted sum of the individual
values of H” [1],

and proved that the entropy function −K
∑n

i=1 P (xi) log P (xi), where a positive constant K represents
a unit of measure, is the only function satisfying these three requirements.

The joint entropy of two (discrete) random variables X and Y is defined as the entropy of the joint
distribution of X and Y :

(2) H(X, Y ) = −
∑
x∈X

∑
y∈Y

P (x, y) log P (x, y) ,

where P (x, y) is the joint probability. The conditional entropy of Y , given random variable X , is defined
as follows:

(3) H(Y |X) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x)

P (x, y)
= H(X, Y ) − H(X) .

This measures the average uncertainty that remains about y ∈ Y when x ∈ X is known [2].
Mutual information I(X ; Y ) measures the amount of information that can be obtained about one

random variable by observing another (it is symmetric in terms of these variables):

(4) I(X ; Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
= H(X) + H(Y ) − H(X, Y ) .

Mutual information I(X ; Y ) can also be expressed via the conditional entropy:

(5) I(X ; Y ) = H(Y ) − H(Y |X) .

These concepts are immediately useful in quantifying qualities of communication channels. In partic-
ular, the amount of information I(X ; Y ) shared between transmitted X and received Y signals is often
maximized by designers, via choosing the best possible transmitted signal X . Channel coding establishes
that reliable communication is possible over noisy channels if the rate of communication is below a certain
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threshold called the channel capacity. Channel capacity is defined as the maximum mutual information
for the channel over all possible distributions of the transmitted signal X (the source).

The conditional entropy of Y given X , equation (3), is also called the equivocation of Y about X , and,
rephrasing the equation (5) informally, we can state that

(6) mutual information = receiver’s diversity − equivocation of receiver about source.

Thus, the channel capacity is optimized when receiver’s diversity is maximized, while its equivocation
about the source is minimized.

Equivocation of Y about X may also be interpreted as non-assortativeness between Y and X : the
degree of having no reciprocity in either positive or negative way. The term assortativeness is borrowed
from studies of complex networks: the networks where highly connected nodes are more likely to make
links with other highly connected links are said to mix assortatively, while the networks where the highly
connected nodes are more likely to make links with more isolated, less connected, nodes are said to to mix
disassortatively [3]. The conditional entropy, defined in a suitable way for a network, estimates spurious
correlations in the network created by connecting the nodes with dissimilar degrees. As argued by by
Solé and Valverde [4], this conditional entropy represents the “assortative noise” that affects the overall
diversity or the heterogeneity of the network, but does not contribute to the amount of information
within it. Solé and Valverde [4] define information transfer within the network as mutual information
— the difference between network’s heterogeneity (entropy) and assortative noise within it (conditional
entropy) — and follow with a characterization that aims to maximize such information transfer. This
means that the assortative noise reflecting spurious dependencies among non-assortative components
should be reduced while the network’s diversity should be increased.

While mutual information is typically used as a suitable measure for information transfer, it contains
no inherent directionality, and various alternatives have been proposed. For example, transfer entropy
[5] measures the average information contained in the source about the next state of the destination
that was not already contained in the destination’s past. It can be argued that transfer entropy is
the appropriate measure for predictive information transfer in spatiotemporal systems [6]. For example,
transfer entropy has been used to characterize information flow in sensorimotor networks [7]. There also
exists an alternative perturbation-based candidate that captures information flow from the perspective
of causality rather than prediction [8].

Nevertheless, we believe that the two criteria fused in the maximization of mutual information I(X ; Y ) =
H(Y ) − H(Y |X) (i.e., reduction of equivocation H(Y |X) and increase of diversity H(Y )) are useful not
only when dealing with channel’s capacity or complex networks with varying assortativeness (Example
3.6), but in a very general context. An increase in complexity in various settings may be related to
maximization of the information shared (transferred) within the system — to re-iterate, this is equivalent
to maximization of the system’s heterogeneity (i.e. entropy H(Y )), and minimisation of local conflicts
within the system (i.e. conditional entropy H(Y |X)).

As pointed out by Polani et al. [9], information should not be considered simply as something that
is transported from one point to another as a “bulk” quantity — instead, “looking at the intrinsic
dynamics of information can provide insight into inner structure of information”. This school of thought
suggests that maximization of information transfer through selected channels appears to be one of the
main evolutionary pressures [10, 11, 12, 13, 14, 15]. We shall consider information dynamics of evolution
in Section 6, noting at this stage that although the evolutionary process involves a larger number of
pressures and constraints, information fidelity (i.e. preservation) is a consistent motif throughout biology
[16]. For example, it was observed that evolution operates close to the error threshold [17]: Adami argued
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that the evolutionary process extracts relevant information, storing it in the genes. Since this process is
relatively slow [18], it is a selective advantage to preserve this valuable information, once captured [19].

In the remainder of this work, we intend to point out how different concepts in Complex Systems
Science can be interpreted via simple information-theoretic relationships, and illustrate the importance
of the informational split between “diversity” and “equivocation” (often leading to maximization of the
information transfer within the system). In particular, we shall argue that when suitable information
channels are identified, the rest is often a matter of computation — the computation of “diversity” and
“equivocation”. In engineering, the choice of channels is typically a task for modelers, while in biological
systems the “embodied” channels are shaped by interactions with the environment during the evolution.

There are other mathematical approaches, such as non-linear time series analysis, Chaos Theory, etc.,
that also provide insights into the concepts used by Complex Systems Science. We note that these
approaches are outside the scope of this paper, as our intention is to point out similarities in information
dynamics across multiple fields, providing a baseline for Complex Systems Science discourse rather than
a competing methodology. It is possible that Information Theory has not been widely used in applied
studies of complex systems because of the lack of clarity. We are proposing here to clarify the applicability
and exemplify how different information channels can be identified and used.

3. Complexity

3.1. Concept. It is an intuitive notion that certain processes and systems are harder to describe than
others. Complexity tries to capture this difficulty in terms of the amount of information needed for
the description, the time it takes to carry out the description, the size of the system, the number of
components in the system, the number of conflicting constraints, the number of dimensions needed to
embed the system dynamics, etc. A large number of definitions have been proposed in the literature and
since a review is beyond the scope of this work, we adopt here as definition of complexity the amount of
information needed to describe a process, a system or an object. This definition is computable (at least
in one of its forms), is observer-independent (once resolution is defined), applies to both data and models
[20] and provides a framework within which self-organisation and emergence can also be consistently
defined.

3.1.1. Algorithmic Complexity. The original formulation can be traced back to Solomonoff, Kolmogorov
and Chaitin, who developed independently what is today known as Kolmogorov-Chaitin or algorithmic
complexity [21, 22]. Given an entity (this could be a data set or an image, but the idea can be extended to
other objects) the algorithmic complexity is defined as the length (in bits of information) of the shortest
program (computer model) which can describe the entity. According to this definition a simple periodic
object (a sine function for example) is not complex, since we can store a sample of the period and write
a program which repeatedly outputs it, thereby reconstructing the original data set with a very small
program. At the opposite end of the spectrum, an object with no internal structure cannot be described
in any meaningful way but by storing every feature, since we cannot rely on any shared structure for a
shorter description. It follows that a random object has maximum complexity, since the shortest program
able to reconstruct it needs to store the object itself2.

A nice property of this definition is that it does not depend on what language we use to write the
program. It can be shown that descriptions using different languages differ by additive constants. How-
ever, a clear disadvantage of the algorithmic complexity is that it can not be computed exactly but only
approximated from above — see the Chaitin theorem [23].

2This follows from the most widely used definition of randomness, as structure which can not be compressed in any

meaningful way.
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3.1.2. Statistical Complexity. Having described algorithmic complexity, we note that associating random-
ness to maximum complexity seems counter-intuitive. Imagine you throw a cup of rice to the floor and
want to describe the spatial distribution of the grains. In most cases you do not need to be concerned
with storing the position of each individual grain; the realisation that the distribution is structure-less
and that predicting the exact position of a specific grain is impossible is probably all you need to know.
And this piece of information is very simple (and short) to store. There are applications for which our
intuition suggests that both strictly periodic and totally random sequences should share low complexity.

One definition addressing this concern is the statistical complexity [24] — it attempts to measure the
size of the minimum program able to statistically reproduce the patterns (configurations) contained in the
data set (sequence): such a minimal program is able to statistically reproduce the configuration ensemble
to which the sequence belongs. In the rice pattern mentioned above, there is no statistical difference in
the probability of finding a grain at different positions and the resulting statistical complexity is zero.

Apart from implementation details, the conceptual difference between algorithmic and statistical com-
plexity lies in how randomness is treated. Essentially, the algorithmic complexity implies a deterministic
description of an object (it defines the information content of an individual sequence), while the statis-
tical complexity implies a statistical description (it refers to an ensemble of sequences generated by a
certain source) [25, 26]. As suggested by Boffetta et al. [26], which of these approaches is more suitable
is problem-specific.

3.1.3. Excess entropy and predictive information. As pointed out by Bialek et al. [27], our intuitive notion
of complexity corresponds to statements about the underlying process, and not directly to Kolmogorov
complexity. A dynamic process with an unpredictable and random output (large algorithmic complexity)
may be as trivial as the dynamics producing predictable constant outputs (small algorithmic complexity)
– while “really complex processes lie somewhere in between”. Noticing that the entropy of the output
strings either is a fixed constant (the extreme of small algorithmic complexity), or grows exactly linearly
with the length of the strings (the extreme of large algorithmic complexity), we may conclude that the
two extreme cases share one feature: corrections to the asymptotic behaviour do not grow with the size
of the data set. Grassberger [25] identified the slow approach of the entropy to its extensive limit as a
sign of complexity. Thus, subextensive components – which grow with time less rapidly than a linear
function – are of special interest. Bialek et al. [27] observe that the subextensive components of entropy
identified by Grassberger determine precisely the information available for making predictions – e.g. the
complexity in a time series can be related to the components which are “useful” or “meaningful” for
prediction. We shall refer to this as predictive information. Revisiting the two extreme cases, they note
that “it only takes a fixed number of bits to code either a call to a random number generator or to a
constant function” – in other words, a model description relevant to prediction is compact in both cases.

The predictive information is also referred to as excess entropy [28, 29], stored information [30], effective
measure complexity [25, 31, 32], complexity [33, 34], and has a number of interpretations.

3.2. Information-theoretic interpretation.

3.2.1. Predictive information. In order to estimate the relevance to prediction, two distributions over a
stream of data with infinite past and infinite future X = . . . , xt−2, xt−1, xt, xt+1, xt+2, . . . are considered:
a prior probability distribution for the futures, P (xfuture), and a more tightly concentrated distribution
of futures conditional on the past data, P (xfuture|xpast), and define their average ratio

(7) Ipred(T, T ′) =
〈

log2

P (xfuture|xpast)
P (xfuture)

〉
,
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where 〈· · · 〉 denotes an average over the joint distribution of the past and the future, P(xfuture|xpast),
T is the length of the observed data stream in the past, and T ′ is the length of the data stream that
will be observed in the future. This average predictive information captures the reduction of entropy,
in Shannon’s sense, by quantifying the information (measured in bits) that the past provides about the
future:

(8) Ipred(T, T ′) = H(T ′) − H(T ′|T ) ,

or informally,

predictive information = total uncertainty about the future −
uncertainty about the future, given the past.(9)

We may point out that the total uncertainty H(T ′) can be thought of as structural diversity of the
underlying process. Similarly the conditional uncertainty H(T ′|T ) can be related to structural non-
conformity or equivocation within the process — a degree of non-assortativeness between the past and
the future, or between components of the process in general:

(10) predictive information = diversity − non-assortativeness.

The predictive information is always positive and grows with time less rapidly than a linear function,
being subextensive. It provides a universal answer to the question of how much is there to learn about the
underlying pattern in a data stream: Ipred(T, T ′) may either stay finite, or grow infinitely with time. If it
stays finite, this means that no matter how long we observe we gain only a finite amount of information
about the future: e.g. it is possible to completely predict dynamics of periodic regular processes after
their period is identified. For some irregular processes the best predictions may depend only on the
immediate past (e.g. a Markov process, or in general, a system far away from phase transitions and/or
symmetry breaking) — and in these cases Ipred(T, T ′) is also small and is bound by the logarithm of
the number of accessible states: the systems with more states and longer memories have larger values of
predictive information [27]. If Ipred(T, T ′) diverges and optimal predictions are influenced by events in
the arbitrarily distant past, then the rate of growth may be slow (logarithmic) or fast (sublinear power).
If the data allows us to learn a model with a finite number of parameters or a set of underlying rules
describable by a finite number of parameters, then Ipred(T, T ′) grows logarithmically with the size of the
observed data set, and the coefficient of this divergence counts the dimensionality of the model space
(i.e. the number of parameters). Sublinear power-law growth may be associated with infinite parameter
models or nonparametric models such as continuous functions with some regularization (e.g. smoothness
constraints) [35].

3.2.2. Statistical complexity. The statistical complexity is calculated by reconstructing a minimal model,
which contains the collection of all situations (histories) which share a similar probabilistic future, and
measuring the entropy of the probability distribution of the states.

Here we briefly sketch the approach to statistical complexity based on ε-machines [24, 36, 37]. Let us
again consider a stream of data with infinite past and infinite future3 X = . . . , xt−2, xt−1, xt, xt+1, xt+2, . . .,
and use xpast(t) and xfuture(t) to denote the sequences up to xt, and from xt+1 forward, respectively.
Then, an equivalence relation ∼ over histories xpast of observed states is defined:

xpast(t) ∼ xpast(t′) if and only if

P (xfuture|xpast(t)) = P (xfuture|xpast(t′)), ∀ xfuture .(11)

3The formalism is applicable not only to time series, but also to stochastic processes, one dimensional chains of Ising

spins, cellular automata, other spatial processes, e.g. time-varying random fields on networks [38], etc.
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The equivalence classes Si induced by the relation ∼ are called causal states. For practical purposes,
one considers longer and longer histories xL

past up to a given length L = Lmax, and obtains the partition
into the classes for a fixed future horizon (e.g., for the very next observable). In principle, starting at
the coarsest level which groups together those histories that have the same distribution for the very next
observable, one may refine the partition by subdividing these coarse classes using the distribution of the
next two observables, etc. [39]. The causal states provide an optimal description of a system’s dynamics
in the sense that these states make as good a prediction as the histories themselves. Different causal
states “leave us in different conditions of ignorance about the future” [37]. The set of causal states Si is
denoted by S.

After all causal states Si are identified, one constructs an ε-machine — a minimal model — as an
automaton with these states and the transition probabilities Tij between the states. To obtain a tran-
sition probability Tij between the states Si and Sj , one simply traces the data stream, identifies all the
transitions from histories xpast(t) ∈ Si to new histories xpast(t + 1) ∈ Sj , and calculates Tij as P (Sj |Si).
The transition probabilities of an ε-machine allow to calculate an invariant probability distribution P (S)
over the causal states. One can also inductively obtain the probability P (Si) of finding the data stream
in the causal state Si by observing many configurations [29]. The statistical complexity Cµ is defined as
the Shannon entropy, measured in bits, of this probability distribution P (S):

(12) Cµ = −
∑
Si∈S

P (Si) log P (Si) .

It represents the minimum average amount of memory needed to statistically reproduce the configuration
ensemble to which the sequence belongs [40]. The description of an algorithm which achieves an ε-machine
reconstruction and calculates the statistical complexity for 1D time series can be found in [41] and for
2D time series in [38].

In general, the predictive information is bound by the statistical complexity

(13) Ipred(T, T ′) ≤ Cµ .

This inequality means that the memory needed to perform an optimal prediction of the future configu-
rations cannot be lower than the mutual information between the past and future themselves [42]: this
relationship reflects the fact that the causal states are a reconstruction of the hidden, effective states
of the process. Specifying how the memory within a process is organized cannot be done within the
framework of Information Theory, and a more structural approach based on the Theory of Computation
must be used [43] — this leads (via causal states) to ε-machines and statistical complexity Cµ.

3.2.3. Excess entropy. Before defining excess entropy, let us define the block-entropy H(L) of length-L
sequences within a data stream (an information source):

(14) H(L) = −
∑

xL∈XL

P (xL) log P (xL) ,

where X contains all possible blocks/sequences of length L. The block-entropy H(L), measured in bits,
is a non-decreasing function of L, and the quantity

(15) hµ(L) = H(L) − H(L − 1) ,

defined for L ≥ 1, is called the entropy gain, measured in bits per symbol [43]. It is the average uncertainty
about the Lth symbol, provided the (L − 1) previous ones are given [26]. The limit of the entropy gain

(16) hµ = lim
L→∞

hµ(L) = lim
L→∞

H(L)
L



AN INFORMATION-THEORETIC PRIMER 9

is the source entropy rate — also known as per-symbol entropy, the thermodynamic entropy density,
Kolmogorov-Sinai entropy [44], metric entropy, etc. Interestingly, the entropy gain hµ(L) = H(L) −
H(L− 1) differs in general from the estimate H(L)

L for any given L, but converges to the same limit: the
source entropy rate.

As noted by Crutchfield and Feldman [43], the length-L approximation hµ(L) typically overestimates
the entropy rate hµ at finite L, and each difference [hµ(L)−hµ] is the difference between the entropy rate
conditioned on L measurements and the entropy rate conditioned on an infinite number of measurements
— it estimates the information-carrying capacity in the L-blocks that is not actually random, but is due
instead to correlations, and can be interpreted as the local (i.e. L-dependent) predictability [45]. The
total sum of these local over-estimates is the excess entropy or intrinsic redundancy in the source:

(17) E =
∞∑

L=1

[hµ(L) − hµ] .

Thus, the excess entropy measures the amount of apparent randomness at small L values that is “explained
away” by considering correlations over larger and larger blocks: it is a measure of the total apparent
memory or structure in a source [43]. A finite partial-sum estimate [43] of excess entropy for length L is
given by

(18) E(L) = H(L) − L hµ(L) .

Importantly, Crutchfield and Feldman [43] demonstrated that the excess entropy E can also be seen
as either:

(1) the mutual information between the source’s past and the future — exactly the predictive infor-
mation Ipred(T, T ′), if T and T ′ are semi-infinite, or

(2) the subextensive part of entropy H(L) = E + hµL, as L → ∞.

It was also shown that only the first interpretation holds in 2-dimensional systems [46]. This analogy,
coupled with the representation (10), creates an alternative intuitive representation:

(19) excess entropy = diversity − non-assortativeness.

In other words, the total structure within a system is adversely affected by non-assortative disagreements
(e.g., between the past and the future) that reduce the overall heterogeneity.

3.3. Convergence. The source entropy rate hµ captures the irreducible randomness produced by a
source after all correlations are taken into account [43]:

• hµ = 0 for periodic processes and even for deterministic processes with infinite-memory (e.g.
Thue-Morse process) which do not have an internal source of randomness, and

• hµ > 0 for irreducibly unpredictable processes, e.g. independent identically distributed (IID)
processes which have no temporal memory and no complexity, as well as Markov processes (both
deterministic and nondeterministic), and infinitary processes (e.g. positive-entropy-rate varia-
tions on the Thue-Morse process).

The excess entropy, or predictive information, increases with the amount of structure or memory within
a process:

• E is finite for both periodic processes and random (e.g. it is zero for an IID process) — its value
can be used as a relative measure: a larger period results in higher E, as a longer past needs to
be observed before we can estimate the finite predictive information;
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• finite length estimates E(L) of E diverge logarithmically for complex processes due to an infinite
memory (e.g. Thue-Morse process); similarly, as noted in 3.2, predictive information Ipred(T, T ′)
diverges logarithmically, with the size of the observed data set, for complex processes “in a known
class but with unknown parameters” [35], and the coefficient of this divergence can be used as a
relative measure estimating a number of parameters or rules in the underlying model;

• an even faster rate of growth is also possible, and Ipred(T, T ′) exhibits a sublinear power law di-
vergence for complex processes that “fall outside the conventional finite dimensional models” [35]
(e.g. a continuous function with smoothness constraints) — typically, this happens in problems
where predictability over long scales is “governed by a progressively more detailed description”
as more data are observed [27]; here, the relative complexity measure is the number of different
parameter-estimation scales growing in proportion to the number of taken samples (e.g. the
number of bins used in a histogram approximating the distribution of a random variable).

3.4. Summary. Entropy rate hµ is a good identifier of intrinsic randomness, and is related to the
Kolmogorov-Chaitin (KC) complexity. To reiterate, the KC complexity of an object is the length of
the minimal Universal Turing Machine (UTM) program needed to reproduce it. The entropy rate hµ is
equal to the average length (per variable) of the minimal program that, when run, will cause an UTM to
produce a typical configuration and then halt [42, 47, 21].

The relationships Ipred(T, T ′) = E and E ≤ Cµ, suggest a very intuitive interpretation:

predictive information = richness of structure ≤
statistical complexity = memory for optimal predictions.(20)

Predictive information and statistical complexity are small at both extremes (complete order and complete
randomness), and are maximal in the region somewhere between the extremes. Moreover, in some
“intermediate” cases, the complexity is infinite, and may be divergent at different rates.

If one needs to maximize the total structure in a system (e.g., mutual information in the network),
then a reduction of local conflicts or disagreements represented by non-assortativeness, in parallel with
an increase in the overall diversity, is the preferred strategy. This is not equivalent to simply reducing
the randomness of the system.

3.5. Example – Thue-Morse process. The infinite-memory Thue-Morse sequences σk(s) contain two
units 0 and 1, and can be obtained by the substitution rules σk(0) = 01 and σk(1) = 10 (e.g. σ1(1) = 10,
σ2(1) = 1001, etc.).

Despite the fact that the entropy rate hµ = 0, and the entropy gain for the process converges according
to a power law, hµ(L) ∝ 1/L, such a process needs an infinite amount of memory to maintain its
aperiodicity [43], and hence, its past provides an ever-increasing predictive information about its future.
This leads to logarithmic divergence of both block-entropy H(L) ∝ log2 L, as well as partial-sum excess
entropy E(L) ∝ log2 L, correctly indicating an infinite-memory process [43].

The estimates of the statistical complexity Cµ(L), where L is the length of histories xL
past used in

defining causal states by the equivalence relation (11), also diverge for the Thue-Morse process. The
exact divergence rate is still a subject of ongoing research — it is suggested [40] that the divergence may
be logarithmic, i.e. Cµ(L) ∝ log2 L.

3.6. Example – graph connectivity. Graph connectivity can be analysed in terms of the size of the
largest connected subgraph (LCS) and its standard deviation obtained across an ensemble of graphs,
as suggested by Random Graph Theory [48]. In particular, critical changes occur in connectivity of a
directed graph as the number of edges increases: the size of the LCS rapidly increases as well and fills
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most of the graph, while the variance in the size of the LCS reaches a maximum at some critical point
before decreasing. In other words, variability within the ensemble of graphs grows as graphs become
more and more different in terms of their structure.

An information-theoretic representation can subsume this graph-theoretic model. Let us consider a
network with N nodes (vertices) and M links (edges), and say that the probability of a randomly chosen
node having degree k is pk, where 1 ≤ k ≤ Np. The distribution of such probabilities is called the degree
distribution of the network. However, if a node is reached by following a randomly chosen link, then
the remaining number of links (the remaining degree) of this node is not distributed according to pk —
instead it is biased in favor of nodes of high degree, since more links end at a high-degree node than
at a low-degree one [3]. The distribution qk of such remaining degrees is called the remaining degree
distribution, and is related to pk as follows [3]:

(21) qk =
(k + 1)pk+1∑Np

j jpj

, 0 ≤ k ≤ Np − 1 .

The quantity ej,k can then be defined as the joint probability distribution of the remaining degrees of
the two nodes at either end of a randomly chosen link [49, 3], as well as the conditional probability
π(j|k) = ej,k/qk [50, 4] defined as the probability of observing a vertex with j edges leaving it provided
that the vertex at the other end of the chosen edge has k leaving edges. Following Solé and Valverde [4],
we use these probability distributions in defining

• the Shannon entropy of the network, that measures the diversity of the degree distribution or the
network’s heterogeneity:

(22) H(qk) = −
Np−1∑
k=0

qk log qk ,

• the joint entropy measuring of the average uncertainty of the network as a whole

(23) H(qj , qk) = −
Np−1∑
j=0

Np−1∑
k=0

ej,k log ej,k ,

• the conditional entropy

(24) H(qj |qk) = −
Np−1∑
j=0

Np−1∑
k=0

qj π(j|k) log π(j|k) = −
Np−1∑
j=0

Np−1∑
k=0

ej,k log
ej,k

qk
.

These measures are useful in analysing how assortative, disassortative or non-assortative is the network.
Assortative mixing (AM) is the extent to which high-degree nodes connect to other high degree nodes [3].
In disassortative mixing (DM), high-degree nodes are connected to low-degree ones. Both AM and DM
networks are contrasted with non-assortative mixing (NM), where one cannot establish any preferential
connection between nodes. As pointed out by Solé and Valverde [4], the conditional entropy H(qj |qk)
may estimate spurious correlations in the network created by connecting the vertices with dissimilar
degrees — this noise affects the overall diversity or the average uncertainty of the network, but does not
contribute to the amount of information (correlation) within it. Using the joint probability of connected
pairs ej,k, one may calculate the amount of correlation between vertices in the graph via the mutual
information measure, the information transfer, as

(25) I(q) = I(qj , qk) = H(qk) − H(qj |qk) = −
Np−1∑
j=0

Np−1∑
k=0

ej,k log
ej,k

qj qk
,
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Informally,

transfer within the network =

diversity in the network − assortative noise in the network structure.(26)

This motivating interpretation is analogous to the one suggested by the Equations (6), (10) and (19),
assuming that assortative noise is the non-assortative extent to which the preferential (either AM or DM)
connections are obscured. The mutual information I(q) is a better, more generic measure of dependence
than the correlation functions, like the variance in the size of the LCS, that “measure linear relations
whereas mutual information measures the general dependence and is thus a less biased statistic” [4].

4. Self-Organisation

Three ideas are implied by the word self-organisation: a) the organisation in terms of global implicit
coordination; b) the dynamics progressing in time from a not (or less) organised to an organised state; and
c) the spontaneous arising of such dynamics. To avoid semantic traps, it is important to notice that the
word ‘spontaneous’ should not be taken literally; we deal with open systems, exchanging energy, matter
and/or information with the environment and made up of components whose properties and behaviours
are defined prior to the organisation itself. The ‘self’ prefix merely states that no centralised ordering or
external agent/template explicitly guides the dynamics. It is thus necessary to define what is meant by
‘organisation’ and how its arising or increase can be detected.

4.1. Concept. A commonly held view is that organisation entails an increase in complexity. Unfortu-
nately the lack of agreement of what we mean by complexity leaves such definition somehow vague. For
example, De Wolf and Holvoet [51] refer to complexity as a measure of redundancy or structure in the
system. The concept can be made more formal by adopting the statistical complexity described above
as a measure of complexity, as demonstrated in Shalizi [39] and Shalizi et al. [52]. This definition of-
fers several of the advantages of the Computational Mechanics approach; it is computable and observer
independent. Also, it captures the intuitive notion that the more a system self-organises, the more be-
haviours it can display, the more effort is needed to describe its dynamics. Importantly, this needs to
be seen in a statistical perspective; while a disorganised system may potentially display a larger number
of actual configurations, the distinction among several of them may not matter statistically. Adopting
the statistical complexity allows us to focus on the system configurations which are statistically different
(causal states) for the purpose at hand. We thus have a measure which is based only on the internal
dynamics of the system (and consequently is observer-independent) but which can be tuned according to
the purpose of the analysis. For an alternative definition of self-organisation based on thermodynamics
and the distinction between self-organisation and the related concept of self-assembly we refer the reader
to Halley and Winkler [53].

4.2. Information-theoretic interpretation. In the scientific literature the concept of self-organisation
referrs to both living and non living systems, ranging from physics and chemistry to biology and sociology.
Kauffman [54] suggests that the underlying principle of self-organisation is the generation of constraints
in the release of energy. According to this view, the constrained release allows for such energy to be
controlled and channelled to perform some useful work. This work in turn can be used to build better
and more efficient constraints for the release of further energy and so on; this principle is closely related to
Kauffman’s own definition of life [54]. It helps us to understand why an organised system with effectively
less available configurations may behave and look more complex than a disorganised one to which, in
principle, more configurations are available. The ability to constrain and control the release of energy
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may allow a system to display behaviours (reach configurations) which, although possible, would be
extremely unlikely in its non-organised state. It is surely possible that 100 parrots move independently
to the same location at the same time, but this is far more likely if they fly in a flock. A limited number
of coordinated behaviours become implementable because of self-organisation, which would be extremely
unlikely to arise in the midst of a vast number of disorganised configurations. The ability to constrain the
release of energy thus provides the self-organised system with behaviours that can be selectively chosen
for successful adaptation.

However, Halley and Winkler [53] correctly point out that attention should paid to how self-organisation
is treated if we want the concept to apply equally to both living and non-living systems. For example,
while it is temping to consider adaptation as a guiding process for self-organisation, it then makes it hard
to use the same definition of self-organisation for non-living systems.

Recently, Correia [55] analysed self-organisation motivated by embodied systems, i.e. physical systems
situated in the real world, and established four fundamental properties of self-organisation: no external
control, an increase in order, robustness4, and interaction. All of these properties are easily interpretable
in terms of information dynamics.

Firstly, the absence of external control may correspond to ‘spontaneous’ arising of information dy-
namics without any flow of information into the self-organising system. Secondly, an increase in order or
complexity reflects that the predictive information is increased within the system or its specific part:

(27) Ipred([t1 − T, t1], [t1, t1 + T ′]) < Ipred([t2 − T, t2], [t2, t2 + T ′])

and

(28) CSystem
µ (t1) < CSystem

µ (t2) ,

for t1 < t2 and positive T and T ′, where Ipred is the predictive information (7) estimated at different
times (t1 and t2), and CSystem

µ (t) is the statistical complexity (12) estimated at time t. In general,
however, we believe that one may relax the distinction between these two requirements and demand
only that in a self-organising system, the change in the predictive information’s gain within the system
 Isystem(t1, t2) = Ipred([t2 −T, t2], [t2, t2 + T ′])− Ipred([t1 −T, t1], [t1, t1 + T ′]), is strictly more than the
amount of information flowing from the outside I influence(t1, t2), analogously estimated for an external
influence, given T and T ′:

(29) I influence(t1, t2) <  Isystem(t1, t2) .

Similarly, the complexity of external influence into a self-organising system, Cinfluence
µ (t1, t2) should be

strictly less than the gain in internal complexity,  Csystem
µ (t1, t2) = Csystem

µ (t2) − Csystem
µ (t1):

(30) Cinfluence
µ (t1, t2) <  Csystem

µ (t1, t2) .

Thirdly, a system is robust if it continues to function in the face of perturbations [56]. Robustness
of a self-organising system to perturbations means that it may interleave stages of an increased infor-
mation transfer within some channels (dominant patterns are being exploited; assortative noise is low;
 Isystem > I influence) with periods of decreased information transfer (alternative patterns are being ex-
plored; assortative noise is high;  Isystem < I influence) — see also Example 4.5. This flexibility provides
the self-organized system with a variety of behaviors, thus informally following Ashby’s Law of Requisite
Variety. A more detailed information-theoretic treatment of robustness is presented by Ay and Krakauer
[57].

4Although Correia refers to this as adaptability, according to the concepts in this paper he in fact defines robustness.

This is an example of exactly the kind of issue we hope to avoid by developing this dictionary.
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Lastly, the interaction property is described by Correia [55] as follows: “minimisation of local conflicts
produces global optimal self-organisation, which is evolutionarily stable” — see Example 4.4. Minimi-
sation of local conflicts, however, is only one aspect, captured in Equations (6), (10), (19), and (26)
as equivocation or non-assortativeness, and should be generally complemented by maximising diversity
within the system. The interaction property is immediately related to the second property (robustness).

4.3. Summary. The fundamental properties of self-organisation are immediately related to information
dynamics, and can be studied in precise information-theoretic terms when the appropriate channels are
identified. The first two properties (no external control, and an increase in order), are unified in the
Equations (29) and (30), while the fourth, interaction, property is subsumed by the key equations of the
information dynamics analysed in this work, e.g. Equation (10). The third, robustness, property follows
from maximizing the richness-of-structure (the excess entropy), and an ensuing increase in the variety
of behaviors. It manifests itself via interleaved stages of increased and decreased information transfer
within certain channels.

4.4. Example – self-organising traffic. In the context of pedestrian traffic, Correia [55] argues that
it can be shown that the “global efficiency of opposite pedestrian traffic is maximised when interaction
rate is locally minimised for each component. When this happens two separate lanes form, one in each
direction. The minimisation of interactions follows directly from maximising the average velocity in the
desired direction.” In other words, the division into lanes results from maximizing velocity (an overall
objective or fitness), which in turn supports minimization of conflicts.

Another example is provided by ants: “Food transport is done via a trail, which is an organised
behaviour with a certain complexity. Nevertheless, a small percentage of ants keeps exploring the sur-
roundings and if a new food source is discovered a new trail is established, thereby dividing the workers
by the trails [58] and increasing complexity” [55]. Here, the division into trails is again related to an
increase in fitness and complexity.

These two examples demonstrate that when local conflicts are minimised, the degree of coupling
among the components (i.e. interaction) increases and the information flows easier, thus increasing the
predictive information. This means that not only the overall diversity of a system is important (more
lanes or trails), but the interplay among different channels (the assortative noise within the system, the
conflicts) is crucial as well.

4.5. Example – self-organising locomotion. The internal channels through which information flows
within the system are observer-independent, but different observers may select different channels for a
specific analysis. For example, let us consider a modular robotic system modelling a multi-segment snake-
like (salamander) organism, with actuators (“muscles”) attached to individual segments (“vertebrae”).
A particular side-winding locomotion arises as a result of individual control actions when the actuators
are coupled within the system and follow specific evolved rules [15, 14].

The proposed approach [15, 14] introduced a spatial dimension across multiple Snakebot’s actuators,
and considered varying spatial sizes ds ≤ Ds (the number of adjacent actuators) and time length dt ≤ Dt

(the time interval) in defining spatiotemporal patterns (blocks) V (ds, dt) of size ds×dt, containing values
of the corresponding actuators’ states from the observed multivariate time series of actuators states. A
block entropy computed over these patterns is generalised to order-2 Rényi entropy [59], resulting in the
spatiotemporal generalized correlation entropy K2:

(31) K2 = − lim
ds→∞

lim
dt→∞

1
ds

1
dt

ln
∑

V (ds,dt)

P 2(V (ds, dt)) ,
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where the sum under the logarithm is the collision probability, defined as the probability Pc(x) that two
independent realizations of the random variable X show the same value Pc(X) =

∑
x∈X P (x)2. The

order-q Rényi entropy Kq is a generalisation of the Kolmogorov-Sinai entropy: it is a measure for the
rate at which information about the state of the system is lost in the course of time — see Section 3.2.3
describing the entropy rate. The finite-template (finite spatial-extent and finite time-delay) entropy rate
estimates Kdsdt

2 converge to their asymptotic values K2 in different ways for Snakebots with different
individual control actions, and the predictive information, approximated as a generalised excess entropy:

(32) E2 =
Ds∑

ds=1

Dt∑
dt=1

(Kdsdt

2 − K2)

defines a fitness landscape.
There is no global coordinator component in the evolved system, and it can be shown that the amount

of predictive information between groups of actuators grows as the modular robot starts to move across
the terrain. That is, the distributed actuators become more coupled when a coordinated side-winding
locomotion is dominant. Faced with obstacles, the robot temporarily loses the side-winding pattern: the
modules become less organised, the strength of their coupling is decreased, and rather than exploiting
the dominant pattern, the robot explores various alternatives. Such exploration temporarily decreases
self-organisation, i.e. the predictive information within the system. When the obstacles are avoided, the
modules “rediscover” the dominant side-winding pattern by themselves, recovering the previous level of
predictive information and manifesting again the ability to self-organise without any global controller.
Of course, the “magic” of this self-organisation is explained by properties defined a priori : the rules
employed by the biologically-inspired actuators have been obtained by a genetic programming algorithm,
while the biological counterpart (the rattlesnake Crotalus cerastes) naturally evolved over long time. Our
point is simply that we can measure the dynamics of predictive information and statistical complexity as
it presents itself within the channels of interest.

5. Emergence

Nature can be observed at different levels of resolution, be these intended as spatial or temporal
scales or as measurement precision. For certain phenomena this affects merely the level of details we can
observe. As an example, depending on the scale of observation, satellite images may highlight the shape of
a continent or the make of a car; similarly, the time resolution of a temperature time series can reflect local
stochastic (largely unpredictable) fluctuations or daily periodic (fairly predictable) oscillations. There are
classes of phenomena though, which when observed at different levels, display behaviours which appear
fundamentally different. The quantum phenomena of the ‘very small’ and the relativistic effects of the
‘very large’ do not seem to find obvious realisations in our everyday experience at the middle scale;
similarly the macroscopic behaviour of a complex organism appears to transcend the biochemistry it
derives from. The apparent discontinuity between these radically different phenomena arising at different
scales is usually, broadly and informally, defined as emergence.

Attempts to formally address the study of emergence have sprung at regular intervals in the last
century or so (for a nice review see Corning [60]), under different names, approaches and motivations,
and is currently receiving a new burst of interest [61]. Here we borrow from Crutchfield [62], who, in a
particularly insightful work, proposes a distinction between two phenomena which are commonly viewed
as expression of emergence: pattern formation and ‘intrinsic’ emergence.

5.1. Concept. Pattern Formation. In pattern formation we imagine an observer trying to ‘under-
stand’ a process. If the observer detects some patterns (structures) in the system, he/she/it can then
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employ such patterns as tools to simplify their understanding of the system. As an example, a gazelle
which learns to correlate hearing a roaring to the presence of a lion, will be able to use it as warning and
flee danger. Not being able to detect the pattern ‘roaring = lion close by’ would require the gazelle to
detect more subtle signs, possibly needing to employ more attention and thus more effort. In this setting
the observer (gazelle) is ‘external’ to the system (lion) it needs to analyse.

Intrinsic emergence. In intrinsic emergence, the observer is ‘internal’ to the system. Imagine a set
of traders in an economy. The traders are locally connected via their trades, but no global information
exchange exists. Once the traders identify an ‘emergent’ feature, like the stock market, they can employ
it to understand and affect the functioning of the system itself. The stock market becomes a mean for
global information processing, which is performed by the agents (that is, the system itself) to affect their
own functioning.

5.2. Information-theoretic interpretation. Given that a system can be viewed and studied at differ-
ent levels, a natural question is “what level should we choose for our analysis”? A reasonable answer could
be “the level at which it is easier or more efficient to construct a workable model”. This idea has been
captured formally by Shalizi [39] in the definition of Efficiency of Prediction. Within a Computational
Mechanics [37] framework, Shalizi suggests:

(33) e =
E

Cµ
,

where e is the Efficiency of Prediction, E is the excess entropy and Cµ the statistical complexity discussed
above. The excess entropy can be seen as the mutual information between the past and future of a
process, that is, the amount of information observed in the past which can be used to predict the future
(i.e. which can be usefully coded in the agent instructions on how to behave in the future). Recalling
that the statistical complexity is defined as the amount of information needed to reconstruct a process
(that is equivalent to performing an optimal prediction), we can write informally:

(34) e =
how much can be predicted
how difficult it is to predict

.

Given two levels of description of the same process, the approach Shalizi suggests is to choose for analysis
the level which has larger efficiency of prediction e. At this level, either:

• we can obtain better predictability (understanding) of the system (E is larger), or
• it is much easier to predict because the system is simpler (Cµ is smaller), or
• we may lose a bit of predictability (E is smaller) but at the benefit of much larger gain in

simplicity (Cµ is much smaller).

We can notice that this definition applies equally to pattern formation as well as to intrinsic emergence.
In the case of pattern formation, we can envisage the scientist trying to determine what level of enquiry
will provide a better model. At the level of intrinsic emergence, developing an efficient representation
of the environment and of its own functioning within the environment gives a selective advantage to the
agent, either because it provides for a better model, or because it provides for a similar model at a lower
cost, enabling the agent to direct resources towards other activities.

5.3. Example – the emergence of thermodynamics. A canonical example of emergence without
self-organisation is described by Shalizi [39]: thermodynamics can emerge from statistical mechanics. The
example considers a cubic centimeter of argon, which is conveniently spinless and monoatomic, at standard
temperature and pressure, and sample the gas every nanosecond. At the micro-mechanical level, and at
time intervals of 10−9 seconds, the dynamics of the gas are first-order Markovian, so each microstate is
a causal state. The thermodynamic entropy (calculated as 6.6 · 1020 bits) gives the statistical complexity
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Cµ. The entropy rate hµ of one cubic centimeter of argon at standard temperature and pressure is
quoted to be around 3.3 · 1029 bits per second, or 3.3 · 1020 bits per nanosecond. Given the range of
interactions R = 1 for a first-order Markov process, and the relationship E = Cµ − Rhµ [42], it follows
that the efficiency of prediction e = E/Cµ is about 0.5 at this level. Looking at the macroscopic variables
uncovers a dramatically different situation. The statistical complexity Cµ is given by the entropy of the
macro-variable energy which is approximately 33.28 bits, while the entropy rate per millisecond is 4.4
bits (i.e. hµ = 4.4 · 103 bits/second). Again, the assumption that the dynamics of the macro-variables
are Markovian, and the relationship E = Cµ − Rhµ yield e = E/Cµ = 1 − Rhµ/Cµ = 0.87. If the
time-step is a nanosecond, like at the micro–mechanical level, then e ≈ 1, i.e. the efficiency of prediction
approaches maximum. This allows Shalizi to conclude that “almost all of the information needed at the
statistical-mechanical level is simply irrelevant thermodynamically”, and given the apparent differences
in the efficiencies of prediction at two levels, “thermodynamic regularities are emergent phenomena,
emerging out of microscopic statistical mechanics” [39].

6. Adaptation and Evolution

Adaptation is a process where the behaviour of the system changes such that there is an increase in
the mutual information between the system and a potentially complex and non-stationary environment.
The environment is treated as a black box, meaning an adaptive system does not need to understand the
underlying system dynamics to adapt. Stimulus response interactions provide feedback that modifies an
internal model or representation of the environment, which affects the probability of the system taking
future actions.

6.1. Concept. The three essential functions for an adaptive mechanism are generating variety, observing
feedback from interactions with the environment, and selection to reinforce some interactions and inhibit
others. Without variation, the system cannot change its behaviour, and therefore it cannot adapt.
Without feedback, there is no way for changes in the system to be coupled to the structure of the
environment. Without preferential selection for some interactions, changes in behaviour will not be
statistically different to a random walk. First order adaptation keeps sense and response options constant
and adapts by changing only the probability of future actions. However, adaptation can also be applied
to the adaptive mechanism itself [63]. Second order adaptation introduces three new adaptive cycles:
one to improve the way variety is generated, another to adapt the way feedback is observed and thirdly
an adaptive cycle for the way selection is executed. If an adaptive system contains multiple autonomous
agents using second order adaptation, a third order adaptive process can use variation, feedback and
selection to change the structure of interactions between agents.

From an information-theoretic perspective, variation decreases the amount of information encoded in
the system, while selection acts to increase information. Since adaptation is defined to increase mutual
information between a system and its environment, the information loss from variation must be less than
the increase in mutual information from selection.

For the case that the system is a single agent with a fixed set of available actions, the environmental
feedback is a single real valued reward plus the observed change in state at each time step, and the internal
model is an estimate of the future value of each state, this model of first order adaptation reduces to
reinforcement learning (see for example [64]).

For the case that the system contains a population whose generations are coupled by inheritance with
variation under selective pressure, the adaptive process reduces to evolution. Evolution is not limited to
DNA/RNA based terrestrial biology, since other entities, including prions and artificial life programs, also
meet the criteria for evolution. Provided a population of replicating entities can make imperfect copies
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of themselves, and not all the entities have an equal capacity to survive, the system is evolutionary. This
broader conception of evolution has been coined universal Darwinism by Dawkins [65].

6.2. Information-theoretic interpretation. Adami [66] advocated the view that “evolution increases
the amount of information a population harbors about its niche”. In particular, he proposed physical
complexity – a measure of the amount of information that an organism stores in its genome about the
environment in which it evolves. Importantly, physical complexity for a population X (an ensemble of
sequences) is defined in relation to a specific environment Z, as mutual information:

(35) I(X, Z) = Hmax − H(X |Z) ,

where Hmax is the entropy in the absence of selection, i.e. the unconditional entropy of a population of
sequences, and H(X |Z) is the conditional entropy of X given Z, i.e. the diversity tolerated by selection
in the given environment. When selection does not act, no sequence has an advantage over any other,
and all sequences are equally probable in ensemble X . Hence, Hmax is equal to the sequence length. In
the presence of selection, the probabilities of finding particular genotypes in the population are highly
non-uniform, because most sequences do not fit the particular environment. The difference between the
two terms in 35 reflects the observation that “If you do not know which system your sequence refers
to, then whatever is on it cannot be considered information. Instead, it is potential information (a.k.a.
entropy)”. In other words, this measure captures the difference between potential and selected (filtered)
information:

physical complexity = how much data can be stored−
how much data irrelevant to environment is stored.(36)

Adami stated that “physical complexity is information about the environment that can be used to make
predictions about it” [66]. There is, however, a technical difference between physical complexity and
predictive information, excess entropy and statistical complexity. Whereas the latter three measure
correlations within a single source, physical complexity measures correlation between two sources rep-
resenting the system and its environment. However, it may be possible to represent the system and its
environment as a single combined system by redefining the system boundary to include the environment.
Then the correlations between the system and its environment can be measured in principle by predic-
tive information and/or statistical complexity. Comparing the representation (36) with the information
transfer through networks, Equation (26), as well as analogous information dynamics Equations (6), (10),
and (19), we can observe a strong similarity: “how much data can be stored” is related to diversity of the
combined system, while “how much data irrelevant to environment is stored” (or “how much conflicting
data”) corresponds to assortative noise within the combined system.

6.3. Example – perception-action loops. The information transfer can also be interpreted as the
acquisition of information from the environment by a single adapting individual: there is evidence that
pushing the information flow to the information-theoretic limit (i.e. maximization of information transfer)
can give rise to intricate behaviour, induce a necessary structure in the system, and ultimately adaptively
reshape the system [11, 12]. The central hypothesis of Klyubin et al. is that there exists “a local and
universal utility function which may help individuals survive and hence speed up evolution by making the
fitness landscape smoother”, while adapting to morphology and ecological niche. The proposed general
utility function, empowerment, couples the agent’s sensors and actuators via the environment. Empow-
erment is the perceived amount of influence or control the agent has over the world, and can be seen
as the agent’s potential to change the world. It can be measured via the amount of Shannon informa-
tion that the agent can “inject into” its sensor through the environment, affecting future actions and
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future perceptions. Such a perception-action loop defines the agent’s actuation channel, and technically
empowerment is defined as the capacity of this actuation channel: the maximum mutual information
for the channel over all possible distributions of the transmitted signal. “The more of the information
can be made to appear in the sensor, the more control or influence the agent has over its sensor” – this
is the main motivation for this local and universal utility function [12]. Other examples highlighting
the role of information transfer in guiding selection of spatiotemporally stable multi-cellular patterns,
well-connected network topologies, multi-agent swarms, and coordinated actuators in a modular robotic
system are discussed in [67, 68, 69, 14, 15].

6.4. Summary. In short, natural selection increases physical complexity by the amount of information
a population contains about its environment. Adami argued that physical complexity must increase in
molecular evolution of asexual organisms in a single niche if the environment does not change, due to natu-
ral selection, and that “natural selection can be viewed as a filter, a kind of semipermeable membrane that
lets information flow into the genome, but prevents it from flowing out”. In general, however, information
may flow out, and it is precisely this dynamic that creates larger feedback loops in the environment. As
advocated by the interactionist approach to modern evolutionary biology [70], the organism-environment
relationship is dialectical and reciprocal — again highlighting the role of assortativeness.

7. Discussion and Conclusions

By studying the processes which result from the local interaction of relatively simple components,
Complex System Science has accepted the audacious aim of addressing problems which range from physics
to biology, sociology and ecology. It is not surprising that a common framework and language which enable
practitioners of different field to communicate effectively is still lacking. As a possible contribution to this
goal we have proposed a baseline using which concepts like complexity, emergence and self-organisation
can be described, and most importantly, distinguished.

Figure 1 illustrates some relationships between the concepts introduced in this paper. In particular,
it shows two levels of an emergence hierarchy that are used to describe a complex system. The figure
depicts dynamics that tend to increase complexity as arrows from left to right, and increases in the level
of organisation as arrows from bottom to top. The concepts can be related in numerical order as follows.
(1) demonstrates self-organisation, as components increase in organisation over time. As the components
become more organised, interdependencies arise constraining the autonomy of the components, and at
some point it is more efficient to describe tightly coupled components as an emergent whole (or system).
(2) depicts a lower resolution description of the whole, which may be self-referential if it causally affects
the behaviour of its components. Note that Level 2 has a longer time scale. The scope at this level
is also increased, such that the emergent whole is seen as one component in a wider population. As
new generations descend with modification through mutation and/or recombination, natural selection
operates on variants and the population evolves. (3) shows that interactions between members of a
population can lead to the emergence of higher levels of organisation: in this case, a species is shown.
(4) emphasises flows between the open system and the environment in the Level 1 description. Energy,
matter and information enter the system, and control, communication and waste can flow back out into
the environment. When the control provides feedback between the outputs and the inputs of the system
in (5), its behaviour can be regulated. When the feedback contains variation in the interaction between
the system and its environment, and is subject to a selection pressure, the system adapts. Positive
feedback that reinforces variations at (6) results in symmetry breaking and/or phase transitions. (7)
shows analogous symmetry breaking in Level 2 in the form of speciation.
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Figure 1. A systems view of Complex Systems Science concepts.

Below the complexity axis, a complementary view of system complexity in terms of behaviour, rather
than organisation, is provided. Fixed point behaviour at (8) has low complexity, which increases for
deterministic periodic and strange attractors [71, 72]. The bifurcation process is a form of symmetry
breaking. Random behaviour at (9) also has low complexity, which increases as the system’s components
become more organised into processes with “infinitary sources” [43]: e.g. positive-entropy-rate variations
on the Thue-Morse process and other stochastic analogues of various context-free languages. The asymp-
tote between (8) and (9) indicates the region where the complexity can grow without bound (it can also
be interpreted as the ‘edge of chaos’ [73]). Beyond some threshold of complexity at (10), the behaviour
is incomputable: it cannot be simulated in finite time on a Universal Turing Machine.



AN INFORMATION-THEORETIC PRIMER 21

For our discussion we chose an information-theoretical framework. There are four primary reasons for
this choice:

(1) it enables clear and consistent definitions and relationships between complexity, emergence and
self-organisation in the physical world;

(2) the same concepts can equally be applied to biology;
(3) from a biological perspective, the basic ideas naturally extend to adaptation and evolution, which

begins to address the question of why complexity and self-organisation are ubiquitous and ap-
parently increasing in the biosphere; and

(4) it provides a unified setting, within which the description of relevant information channels provides
significant insights of practical utility.

As noted earlier, once the information channels are identified by designers of a physical system (or
naturally selected by interactions between a bio-system and its environment), the rest is mostly a matter of
computation. This computation can be decomposed into “diversity” and “equivocation”, as demonstrated
in the discussed examples.

Information Theory is not a philosophical approach to the reading of natural processes, rather it
comes with a set of tools to carry out experiments, make predictions, and computationally solve real-
world problems. Like all toolboxes, its application requires a set of assumptions regarding the processes
and conditions regarding data collections to be satisfied. Also, it is by definition biased towards a view
of Nature as an immense information processing device. Whether this view and these tools can be
successfully applied to the large variety of problems Complex Systems Science aims to address is far from
obvious. Our intent, at this stage, is simply to propose it as a framework for a less ambiguous discussion
among practitioners from different disciplines. The suggested interpretations of the concepts may be at
best temporary place-holders in an evolving discipline – hopefully, the improved communication which
can arise from sharing a common language will lead to deeper understanding, which in turn will enable
our proposals to be sharpened, rethought and even changed altogether.
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