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Abstract 

 
Computer models can help humans gain insight into the functioning of complex systems. Used for 
training, they can also help gain insight into the cognitive processes humans use to understand these 
systems. By influencing humans understanding (and consequent actions) computer models can thus 
generate an impact on both these actors and the very systems they are designed to simulate. When 
these systems also include humans, a number of self-referential relations thus emerge which can lead 
to very complex dynamics. This is particularly true when we explicitly acknowledge and model the 
existence of multiple conflicting representations of reality among different individuals. 
 
Given the increasing availability of computational devices, the use of computer models to support 
individual and shared decision making could potentially have implications far wider than the ones 
often discussed within the ICT community in terms of computational power and network 
communication.  We discuss some theoretical implications and describe some initial numerical 
simulations. 
     

1  Introduction 
 
Within the Complex System Science (CSS) framework, the analysis of computational models in terms 
of emergent properties is usually carried out in relation to a model’s functioning, that is in relation to 
what a model does 1-6. As an example, we can consider an ecological model as shown in Figure 1. This 
model can be analysed in terms of the ecological processes we aim to simulate or, at increasingly 
lower levels of analysis, in terms of the abstract mathematical concepts used to describe such 
processes, the numerical tools used to implement the mathematical concepts, the algorithms used to 
carry out the computation and so on.  Then, much of the study of emergent processes focuses on how 
the interactions among entities and processes at a certain level generate qualitatively different 
processes at higher levels of analysis 3,7-10.    
 
A similar analysis can be carried out in the ‘opposite’ direction, that is at levels of analysis ‘above’ the 
model itself. In this case, we focus on how a model is used. For example, our ecological model can be 
used to address scientific questions or support real-world decision making. At these higher levels of 
analysis the model itself interacts with other entities, structures and agents including data and other 
computational tools. Specifically relevant to this discussion, at this level it also interacts with people: 
modellers, scientists, decision makers and at times the general public.  
 
The main proposition of this paper is that the analysis of these ‘higher’ levels can be carried out within 
the same CSS framework used to describe a model’s functioning. This allows us to recognise that 
some processes arising from the interaction between models and people can be defined as emergent 
according to the very same definitions commonly used to analyse the interaction of agents and 
processes within a computational model. 



 
As an example, we discuss how our ecological model may be used i) to address a scientific question 
and ii) how the scientific insight so gained can then be used to facilitate, guide or support decision 
making in an hypothetical environmental management problem (Figure 1, top) 11-16. 
 

2  Computational models and scientific questions 
 
Within a traditional, positivistic view of science, we can interpret the scientific endeavour as 
formulating and answering questions: an experiment attempts to provide a more or less definitive 
answer to a question formalised in the form of a hypothesis.  
 
Increasingly, models are used in place of real-world experiments for this purpose 17-21. Technically, 
models don't answer questions, they process an input and generate an output and a modeller needs to 
interpret input and output in relation to the question 22-24.  We like to think that models carry out 
conditional predictions 25-27, that is,  the output of a model is a prediction of a future state of a system, 
given the conditioning imposed by the initial state (as represented by the model input) and the system 
dynamics (as coded in the model algorithm). Within this view, one aspect of the art of modelling lies 
in designing the model input so that it usefully describes the hypothesis. This description should be 
accurate but broad enough to allow the modeller to generalise the answer (implicit in the model 
output) beyond the precise technical details of the model implementation.  
 
It is important to highlight that formulating the question, mapping it into the input and model 
dynamics, and interpreting the model output in terms of the question are actions carried out by the 
modeller, not the model 28. At this level of analysis the model clearly interacts with the modeller, 
possibly other scientists who provide the hypothesis and the data on which a model is tested. 
 

3  Computational models and real-world decision making 
 
At the next level of analysis the scientific insight obtained via our model could provide knowledge or 
information to policy makers or the general public. Three issues1 become particularly relevant here. 
First, at this level, questions are most often inverse, not direct. In addition, effectively converting 
modelling results into information useful for decision making is affected by barriers which have more 
to do with human cognition and psychology than the complexity of the problem at hand: i) different 
types of uncertainty besides traditional scientific uncertainty and ii) complex aspects of human 
cognition besides rational/scientific thinking, become particularly significant. We analyse these issues 
here.  
 
The vast majority of questions of real-world significance are inverse 22,35. Direct questions ask about 
the final state of a system given the initial state. For example, a direct question may ask, given certain 
physical properties, whether pillars of specific size and material can enable a bridge to sustain a 
certain load. In contrast, inverse questions ask about the initial  state of a system given the final state. 
An inverse question asks what size and material properties pillars need to have to enable a bridge to 
sustain a certain load.  
 
Complex inverse questions can almost never be answered via direct modelling, because rarely a model 
of the inverse process is available 22. Rather, most inverse problems need to be solved by iterative 
methods in which a forward model is run with different sets of inputs until a reasonable match 
between the model output and a desired state is found. Inverse questions thus require the machinery of 

                                                 
1 We acknowledge that these issues also affect the use of model in scientific enquiry  29-34, but in 
general they manifest themselves more clearly and have a larger impact on the decision making phase 
on the process. 



inverse theory 35,36, whether carried out implicitly by the modeller 37-39, or explicitly via computational 
routines. As a result, inverse modelling is considerably more complex than forward modelling. It 
requires further artistry from the modeller in the choice of the inversion procedure, the search 
parameter space and various trade-off between computational efficiency and target precision. Also, 
inverse modelling requires more challenging cognitive effort to translate its results into information 
useful for decision making.  
 
Once a scientific advice based on this inverse question is provided to the decision makers, this 
information needs to be analysed in terms of its level of uncertainty. Modellers and decision makers 
can understand uncertainty quite differently, as captured graphically in Figure 2. Uncertainty to a 
modeller or a scientist is commonly understood in terms of data accuracy, model reliability and 
inherent process stochasticity (Figure 2a). Within this view, additional information can reduce 
uncertainty by helping develop a better model of the problem. Indeed, minimising the uncertainty of a 
model outcome (understood, as in Figure 2a, as the difference between current knowledge and reality), 
given some constraints on computational resources, can be viewed as the very definition of optimal 
model 1,2,4,40,41.  However, real-world decision-making is a social process, which needs to account for a 
very large set of constraints and requirements. Here uncertainty assumes a social connotation and the 
acceptance of model results becomes dependent on, among other issues, context, type of problem, 
implications of the model, characteristics of the audience, the reputation of the modeller, frames of 
reference, power relations and culture 42,43. Within this view, additional information does not 
necessarily reduce uncertainty, because the information itself is processed in terms of the cognitive-
social context and existing worldviews (Figure 2b). Because worldviews influence the mental 
representation of the problem, a unique computational model of these mental models may be very 
difficult to develop, if possible at all. Crucially, even if this computational model could be developed, 
the assessment of its suitably and quality would also not be unique, since different worldviews may 
embrace difference criteria according to which the accuracy of the model should be evaluated. In these 
situations, the challenge is less about developing good or optimal models, than about accepting, 
sharing and negotiating models.  
 
It is within this social framework that the cognitive processes of each individual decision maker take 
place.  An extensive literature describes how these cognitive processes go well beyond the traditional 
rational analysis usually expected from technical policy making 44-59. People can make apparently 
trivial logical mistakes 49,59-67, filter scientific advice depending on whether it confirms or contradicts 
their expectations and desires 68-77 , and employ different levels of cognitive effort in analysing 
scientific advices depending on the decision making context 49,51,52,78-83. 
 
Particularly important for our discussion, these cognitive processes are not randomly distributed 
within the population, rather they are highly correlated. This means that they can be modelled, at least 
in principle. A number of tests 84,85 can provide the modeller with a signature of the team the model 
needs to interact with, to help design a communication program. Importantly, this information can also 
be used to describe the agents our ecological model needs to simulate. We discuss this in the next 
section.  
 

4  Modelling real-world decision making 
 
It is today well understood that modelling can support the management of natural resources not only 
by studying the dynamics of the resource itself but also by simulating how humans regulate their 
interaction with and exploitation of the natural resource 15,86. This implies that our ecological model, 
for example, needs to include the very decision-making process described in the previous session, 
including its cognitive components.  
 
It is easy to see how this leads to a self-referential process: the model is now asked to simulate i) the  
way the model itself is used to make decisions, ii) how these decisions affect the ecological processes 



and iii) how these in turns affect the next decision-making process step, in a potentially adaptive 
manner.  
 
An attempt at making these modelling relations explicit is discussed in 87. It describes a simplified 
model of how the general public represents the climate change debate as the interaction between 
wealth generation, population dynamics and warming.  This simplification is chosen purposely to 
study the way people represent and reason about climate change rather than the dynamics of the 
actual, highly complex bio-physical and socio-economic system. Among various parameters 
describing the basic functioning of the climate, economy and the human system, two sets of 
parameters were specifically designed to account for i) the different beliefs the public may hold on 
whether and how climate change can impact the environment and the economy and ii) the different 
values which underlay preferences for various climate mitigation and adaptation policies. Different 
sets of value and belief parameters effectively allow the numerical model to implement different 
climate change ‘mental models’ commonly found among the general public. Conditioned on its 
inherent simplification, the model can then be used to provide numerically and dynamically consistent 
projections of the system state into the future. In other words, the model allows us to assess the 
dynamically consistent environmental and economic consequences of different sets of mental models 
(beliefs and values).     
 
We then asked members of the Australian public to implement a numerical version of their climate 
change ‘mental model’ by setting the belief and value parameters 88. Also, we asked them to predict 
the long-term dynamical evolution of the system (that is to ‘run’ their mental models), which we 
compared to the predictions of the numerical model. The results of this experiment are particularly 
suggestive: the responders’ chosen parameterisation is largely in line with current scientific agreement 
and correlates well with their stated and measured attitudes. However, the match between the 
responders’ future state projections and the ones obtained via the numerical model (using as input the 
parameters chosen by the responders) was poor. This appears to be due to two factors 88. First, while 
the choice of the model input parameters (describing the current system state) correlates well with the 
responders’ political ideologies and attitudes towards the environment and the economy, the 
responders’ future projections correlate with their aspirations and fears. Two different cognitive 
processes seem to be at play in formulating vs evaluating a mental model, which may prevent 
establishing a coherent link between model assumptions and conclusions. Second, many responders 
failed to account for the feedbacks inherent in the proposed model, which is in line with the well-
known impact of poor appreciation of system dynamics on decision making 49,60-67,89,90. These results 
suggest that decision makers (including the general public) would be able to parameterise simple 
numerical models in a manner which is both meaningful and consistent with their mental models. 
These models may then help them overcome known cognitive difficulty by bridging the gaps between 
assumptions and expectations and by helping them assessing the impact of dynamical processes on the 
likelihood of specific policies’ achieving their stated goals.  
 
This discussion highlights a role for a numerical model which is rarely discussed within a CSS 
framework: not only can a model help understanding the functioning of a complex system, but also it 
can provide an insight into the user’s cognitive strategies, biases, assumptions, beliefs and aspirations, 
which in turns may affect the functioning of the system via the impact these insights have on the user’s 
actions.  
 

5  Modelling, emergence and causation  
 
We started by analysing the role of a model in supporting decision making and this led us to 
discussing the role of the model as providing an insight into cognitive aspects of human decision 
making. Here we discuss whether these two roles can be framed within a common understanding of 
the relation between mental and numerical models.   
 



Usually, numerical and mental models are understood as alternative representation of a natural 
process. Modellers in particular often see their models as virtual laboratories, miniature versions of the 
real world, in which experiments can be more easily carried out. The reliability of a model is then 
discussed in relation to the match between modelled results and observations (Figure 3a). This view 
leads some authors (and many users) to scepticism about the ability of computer models to represent 
and predict the behaviour of highly complex systems 91-99.  
 
However, a numerical model necessarily needs to originate from the modeller’s understanding of the 
modelled process, that is from a mental model. This suggests that the numerical model can also be 
seen as a formal implementation of the modeller’s mental model. This is the view according to which 
Nature does not solve differential equations, but mathematicians do. A model implementing a 
numerical solution to a differential equation is thus simulating the action of a mathematician, not of 
Nature (Figure 3b).   
 
According to this view, it is natural to use a numerical model to simulate or verify the conclusions of a 
mental model. Rather than underscoring the inadequacy of a numerical model in simulating reality, 
this view highlights the benefits inherent in carrying out a simulation via a computer rather than via 
our cognitive abilities: fast computation, check for consistency, circumvention of known human 
fallacies, explicit formalization of assumptions and unbiased presentation of the results. In the 
philosophy of science, this view has been defended by Paul Humphreys 100 who argued that 
computational models are best understood as extensions of our native cognitive capacities.   
 
Within an emergence framework, this leads us to analyse the interaction of a computer model with 
reality, the mental model it originates from and the modifications to the mental model it may suggest. 
The CSS tradition provides a number of definitions of the concept of emergence. Here we focus on 
four: pattern formation, efficiency of prediction, intrinsic emergence and causal emergence 3.  
 
Pattern formation captures the most intuitive view of emergence: the interaction of low level entities, 
leading to symmetry breaking, generates a coordinate behaviour which is expressed via patterns which 
are novel and identifiable as such by an external observer. Given that a system can be viewed and 
studied at different levels, and that multiple different patterns will likely appear at different levels, it is 
natural to ask at what level and on what patterns our analysis should focus.  A reasonable answer in 
provided by the concept of efficiency of emergence: “the level at which it is easier or more efficient to 
construct a workable model” 40.  At this level, the observed patterns provide us with simpler or fewer 
structures on which to focus the analysis of the overall system. 
 
The two previous definitions apply to an observer external to the system. Intrinsic emergence refers to 
features which are important within the system by conferring additional functionality to the system 
itself. These emergent features may support global coordination-computation-behaviour 1. In the case 
of stock market pricing, for example, agents must take local economic decisions and would benefit 
from having information about other agents’ behaviour. If they identify an emergent feature which 
provides such information, then they can use it for their own decision making. Naturally, the same 
feature can then be employed by all other agents. Thus this emergent feature can act as an avenue for 
global information processing and coordinated behaviour. Clearly, the agents’ behaviour influences 
the emergent feature, but now this also affects the behaviour of the agents by determining their future 
actions. Self-referentiality becomes a fundamental ingredient for complex dynamics and intrinsic 
emergence. 
 
With causal emergence we define the arising of structures on which we can exert direct control 
without manipulating, nor concerning ourselves with, the lower level constituents 23. As an example, 
actions which manipulate stock market pricing (like interest rate changes, shared beliefs, expectations 
of booms and busts or fraudulent information) would affect the agents’ understanding of the system 
and thus their behaviour, effectively carrying out an intervention on the real market. The emphasis 
here is not on who holds the causal power (who manipulates the stock market, possibly from outside 
the system), rather on the avenue used for causal intervention. The identification of a structure able to 



influence the majority of the agents provides an efficient instrument for intervention on the overall 
system.   
 
These definitions of emergence find an analogue in the dynamics of the interaction between reality, 
mental models and computer models. They also differ depending on the nature of the process we 
model. Figure 4a shows the hypothetical use of a computer model to understand planetary dynamics. 
The detection of regularities in such dynamics allows us to identify patterns with high efficiency of 
prediction. We can exploit these regularities in the development of mental models and then formalise 
these mental models in the form of numerical models. These numerical models may in turn help 
further refine our mental models and possibly affect our behaviour. However, because we are unable 
(at least with current technology) to intervene in planetary dynamics, developments in mental and 
computer models do not provide causal power on the system under analysis.  
 
Figure 4b shows the use of our ecological model to understand a hypothetical ecological system. 
Again, the computer model codifies our understanding as represented by the mental model. The 
mental model however may be so complex that very few individuals are able to reason about it, let 
alone being able to infer its dynamics. The numerical model then becomes an effective way to 
communicate such understanding. When different numerical routines/modules are provided by 
different researchers, combining them into a single numerical model becomes an effective avenue for 
communication among researchers. The numerical model then represents the current shared 
understanding of the system functioning and can thus be seen as an intrinsic emergent feature in the 
process which leads a community of individual to reach a common understanding of a system of 
interest.  
 
Finally, Figure 4c shows the use of our ecological model for decision making. The same analysis as 
discussed for the planetary dynamics applies. However, now our understanding of the problem, as 
guided by the interaction between mental and numerical models, may lead us to acting on the 
ecological system. The numerical model now provides an avenue for causation: by manipulating the 
model we could change our system understanding, which in turns can lead to different decision-
making and thus different interventions on the real-world system. This is the very role that computer 
model is designed to have in supporting decision making.     
 

6  Modelling the model’s emergence properties  
 
In a number of previous works 23,24,101,102, we have argued that the arising of genuinely novel, causal 
emergent properties cannot be modelled within a purely numerical framework.  A simpler task is to 
model the impact of these properties once they are indentified in a system. In 103 we describe one such 
attempt. Agents need to make decisions on an issue and are characterised by two cognitive features. 
One cognitive feature defines their need for consistency 104. Agents in high need for consistency tend 
to give a similar answer when facing the same decision problem. As a result, once a decision is made, 
the probability of the agent making the same decision in the future increases. 
 
In order to make a decision, an agent needs a representation (a mental model) of the issue. The agents’ 
second cognitive feature (individualism vs conformism) refers to preferences for different mental 
models. Very individualist agents may develop their own representation, while conformist agents may 
be more willing to adopt a representation shared with their social peers (we call these ‘socially agreed 
mental models’) 105.  
 
Referring to the discussion in the previous section, a crucial question is what defines a socially agreed 
mental model. In 103 we define this as the set of views which are shared among all agents which 
identify themselves with that social group (notice the self-referentiality implied in the definition). 
Numerically, this is achieved by simply clustering agents according to their views and taking the set of 
cluster centres as socially agreed mental models.  



 
The self-referentiality in the definition of the socially agreed mental models leads naturally to a two-
way dynamics between two levels of analysis: the level of the individual agents’ decision making and 
the level of the socially agreed mental models; i) each agent’s decision is affected by its own cognitive 
style (individualist vs conformist and need for consistency) as well as by the socially agreed mental 
models and ii) the socially agreed mental models depend on the agents’ decisions, which, via their 
need for consistency, influences their current and future views.  
 
Numerical analysis of this dynamics is discussed in 103. Two features of these results are particularly 
relevant to this discussion. First, socially agreed mental models are stable features of the distribution 
of the agents’ views of the problem. They quickly polarise the agents’ views into a number of clusters 
which are stable in the sense that, once they are formed, a re-initialisation of the agents’ opinions does 
not change the socially agreed mental models. In this sense, the socially agreed mental models can be 
seen as intrinsic emergent structures, providing agents information on the distribution of beliefs in the 
community with no need for communication between agents. Second, by externally manipulating one 
of the socially agreed mental models we can affect the overall dynamics of the system. The 
intervention leads to a cascade: the agents belonging to the externally manipulated socially agreed 
mental model are affected and so are the other agents, which in turns affects their own socially agreed 
mental models. As a result, the socially agreed mental models provide an avenue for causal 
intervention and thus display causally emergent properties.  
 

7  Summary and Discussion 
 
The previous discussion lays at the intersection of three well established fields of research and 
attempts to integrate and complement them. First, a large body of work in the social sciences, social 
cognition, political sciences and network theory has focussed on how ideas, norms and memes spread 
among communities and how they can affect their behaviour.  Second, the Complex System Science 
community has placed a considerable effort in modelling emergent phenomena. In principle, a model 
capable of integrating mental and computer models dynamics into the modelling process itself and 
capable of adapting to the emergent properties arising from this dynamics, could encompass the 
overall framework we describe in this paper. A very simple version of such an attempt is described in 
Section 6 . When it comes to much more complex processes, we are sceptical that the full complexity 
of genuinely novel, causal emergent properties can be modelled within a purely numerical framework 
23,24,101,102. Even if this was possible, such a model would still play a role equivalent to the one of the 
ecological model described in Figure 1. This is crucial; besides science-fictional views of networked 
computer models completely by-passing human concerns and interaction, such a model would still 
interact with humans, who could analyse the model outcome, say, and thus change and adapt their 
behaviour in response. As long as human-decision making is at the core of human action, the 
framework described in Figure 1 cannot be replaced by a pure numerical computation. 
 
Third, in the last few decades, the explosion in Information and Communication Technologies (ICT) 
has had a dramatic impact on our lives and the way we communicate, we carry out our science and we 
interact with the world. It is likely that ICT capabilities will continue expanding. This leads to 
expectations for further developments, ranging from speculations about the occurrence of singularities 
106-108 to less abrupt trends in communication capabilities, virtual reality, ‘big data’ processing and 
distributed autonomous agents. This is likely to provide more information, faster communication, 
further scientific knowledge and more and better tools for real world intervention. As discussed in 109, 
this can help, but not necessarily qualitatively improve, complex decision making and the management 
of human, economic and natural  resources. In particular, it is unlikely that these developments will 
affect the cognitive limitations and fallacies we discussed in Section 3 , and the impact they can have 
on decision making.  
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