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Abstract

Computer models can help humans gain insight edunctioning of complex systems. Used for
training, they can also help gain insight into tgnitive processes humans use to understand these
systems. By influencing humans understanding (andequent actions) computer models can thus
generate an impact on both these actors and tiesystems they are designed to simulate. When
these systems also include humans, a number efedefential relations thus emerge which can lead
to very complex dynamics. This is particularly timkeen we explicitly acknowledge and model the
existence of multiple conflicting representatiofiseality among different individuals.

Given the increasing availability of computatiodavices, the use of computer models to support
individual and shared decision making could po&digthave implications far wider than the ones
often discussed within the ICT community in termhgs@mputational power and network
communication. We discuss some theoretical imptioa and describe some initial numerical
simulations.

1 Introduction

Within the Complex System Science (CSS) framewibid analysis of computational models in terms
of emergent properties is usually carried out latien to a model’s functioning, that is in relatito

what a modetioes*®. As an example, we can consider an ecological hasighown in Figure 1. This
model can be analysed in terms of the ecologicaigeses we aim to simulate or, at increasingly
lower levels of analysis, in terms of the abstraathematical concepts used to describe such
processes, the numerical tools used to implemenntithematical concepts, the algorithms used to
carry out the computation and so on. Then, mudhe&tudy of emergent processes focuses on how
the interactions among entities and processeseatain level generate qualitatively different
processes at higher levels of analy<i&

A similar analysis can be carried out in the ‘oposlirection, that is at levels of analysis ‘aledthe
model itself. In this case, we focus on how a malased For example, our ecological model can be
used to address scientific questions or suppokwedd decision making. At these higher levels of
analysis the model itself interacts with other tegi structures and agents including data and othe
computational tools. Specifically relevant to thiscussion, at this level it also interacts witlople:
modellers, scientists, decision makers and at timegeneral public.

The main proposition of this paper is that the gsialof these ‘higher’ levels can be carried ouhimi
the same CSS framework used to describe a modeictibning. This allows us to recognise that
some processes arising from the interaction betwemtels and people can be defined as emergent
according to the very same definitions commonlyduseanalyse the interaction of agents and
processes within a computational model.



As an example, we discuss how our ecological mo@si be used i) to address a scientific question
and ii) how the scientific insight so gained caarilibe used to facilitate, guide or support decision
making in an hypothetical environmental managerpesblem (Figure 1top) '

2 Computational models and scientific questions

Within a traditional, positivistic view of science&g can interpret the scientific endeavour as
formulating and answering questions: an experiratieinpts to provide a more or less definitive
answer to a question formalised in the form of pdtlyesis.

Increasingly, models are used in place of real-dverperiments for this purpo§&?:. Technically,
models don't answer questions, they process am amgligenerate an output and a modeller needs to
interpret input and output in relation to the qieest>*% We like to think that models carry out
conditional predictiond?’, that is, the output of a model is a predictiba future state of a system,
given the conditioning imposed by the initial stéde represented by the model input) and the system
dynamics (as coded in the model algorithm). Withis view, one aspect of the art of modelling lies
in designing the model input so that it usefullgck@es the hypothesis. This description should be
accurate but broad enough to allow the modellgetteralise the answer (implicit in the model
output) beyond the precise technical details ofhtleelel implementation.

It is important to highlight that formulating the@egstion, mapping it into the input and model
dynamics, and interpreting the model output in teafnthe question are actions carried out by the
modeller, not the modé¥. At this level of analysis the model clearly irtets with the modeller,
possibly other scientists who provide the hypothasid the data on which a model is tested.

3 Computational models and real-world decision making

At the next level of analysis the scientific indigivtained via our model could provide knowledge or
information to policy makers or the general publibree issuésbecome particularly relevant here.
First, at this level, questions are most often isgenot direct. In addition, effectively convegin
modelling results into information useful for deais making is affected by barriers which have more
to do with human cognition and psychology thandabmplexity of the problem at hand: i) different
types of uncertainty besides traditional scientificertainty and ii) complex aspects of human
cognition besides rational/scientific thinking, beee particularly significant. We analyse theseassu
here.

The vast majority of questions of real-world sigrahce are inversg>> Direct questions ask about
thefinal state of a system given the initial state. Formgda, a direct question may ask, given certain
physical properties, whether pillars of specificesand material can enable a bridge to sustain a
certain load. In contrast, inverse questions askitineinitial state of a system given the final state.
An inverse question askéatsize and material properties pillars need to havenable a bridge to
sustain a certain load.

Complex inverse questions can almost never be aadweéa direct modelling, because rarely a model
of the inverse process is availafleRather, most inverse problems need to be solyétiative
methods in which a forward model is run with diéfet sets of inputs until a reasonable match
between the model output and a desired state iglfdoverse questions thus require the machinery of

! We acknowledge that these issues also affect gtnefumodel in scientific enquiry®*, but in
general they manifest themselves more clearly anvé b larger impact on the decision making phase
on the process.



inverse theory>>® whether carried out implicitly by the modelfé®, or explicitly via computational
routines. As a result, inverse modelling is consily more complex than forward modelling. It
requires further artistry from the modeller in ttfeice of the inversion procedure, the search
parameter space and various trade-off between datigmal efficiency and target precision. Also,
inverse modelling requires more challenging cogaigffort to translate its results into information
useful for decision making.

Once a scientific advice based on this inversetopress provided to the decision makers, this
information needs to be analysed in terms of itsllef uncertainty. Modellers and decision makers
can understand uncertainty quite differently, gsurad graphically in Figure 2. Uncertainty to a
modeller or a scientist is commonly understooceimis of data accuracy, model reliability and
inherent process stochasticity (Figure 2a). Withia view, additional information can reduce
uncertainty by helping develop a better model efgloblem. Indeed, minimising the uncertainty of a
model outcome (understood, as in Figure 2a, adiffezence between current knowledge and reality),
given some constraints on computational resouoagsbe viewed as the very definition of optimal
model>***%41 However, real-world decision-making is a sopiaicess, which needs to account for a
very large set of constraints and requirementse ldacertainty assumes a social connotation and the
acceptance of model results becomes dependentamgaother issues, context, type of problem,
implications of the model, characteristics of theiance, the reputation of the modeller, frames of
reference, power relations and cultfé> Within this view, additional information does not
necessarily reduce uncertainty, because the intaymaself is processed in terms of the cognitive-
social context and existing worldviews (Figure Zbgcause worldviews influence the mental
representation of the problem, a unique computatioodel of these mental models may be very
difficult to develop, if possible at all. Cruciallgven if this computational model could be devethp
the assessment of its suitably and quality wowdd abt be unique, since different worldviews may
embrace difference criteria according to whichdbeuracy of the model should be evaluated. In these
situations, the challenge is less about develogoagl or optimal models, than about accepting,
sharing and negotiating models.

It is within this social framework that the coguéiprocesses of each individual decision maker take
place. An extensive literature describes how tlcegmitive processes go well beyond the traditional
rational analysis usually expected from technicdicy making**°. People can make apparently
trivial logical mistake$®>%* filter scientific advice depending on whethecanfirms or contradicts
their expectations and desif&€’, and employ different levels of cognitive effortanalysing

scientific advices depending on the decision makimgext'®>°27883

Particularly important for our discussion, thesgritive processes are not randomly distributed
within the population, rather they are highly ctated. This means that they can be modelled, at lea
in principle. A number of tesf§* can provide the modeller with a signature of trwm the model
needs to interact with, to help design a commuitingirogram. Importantly, this information can also
be used to describe the agents our ecological nmadels to simulate. We discuss this in the next
section.

4 Modelling real-world decision making

It is today well understood that modelling can supthe management of natural resources not only
by studying the dynamics of the resource itselfdisb by simulating how humans regulate their
interaction with and exploitation of the naturad@arce™®® This implies that our ecological model,
for example, needs to include the very decisionintpfrocess described in the previous session,
including its cognitive components.

It is easy to see how this leads to a self-refeakptocess: the model is now asked to simulaties)
way the model itself is used to make decision$)aiy these decisions affect the ecological processe



and iii) how these in turns affect the next decisiosaking process step, in a potentially adaptive
manner.

An attempt at making these modelling relations iekyb discussed iff. It describes a simplified
model of how the general public represents theatknehange debate as the interaction between
wealth generation, population dynamics and warmifigis simplification is chosen purposely to
study the way people represent and reason aboudtelichange rather than the dynamics of the
actual, highly complex bio-physical and socio-eauitosystem. Among various parameters
describing the basic functioning of the climategremmy and the human system, two sets of
parameters were specifically designed to accounj the different beliefs the public may hold on
whether and how climate change can impact the emvient and the economy and ii) the different
values which underlay preferences for various diémaitigation and adaptation policies. Different
sets of value and belief parameters effectivelgvalihe numerical model to implement different
climate change ‘mental models’ commonly found amieggeneral public. Conditioned on its
inherent simplification, the model can then be usgorovide numerically and dynamically consistent
projections of the system state into the futureather words, the model allows us to assess the
dynamically consistent environmental and econoraitsequences of different sets of mental models
(beliefs and values).

We then asked members of the Australian publioff@ément a numerical version thieir climate
change ‘mental model’ by setting the belief andiegbarameter®. Also, we asked them to predict
the long-term dynamical evolution of the systena(ts to ‘run’ their mental models), which we
compared to the predictions of the numerical motle¢ results of this experiment are particularly
suggestive: the responders’ chosen parameterigatiargely in line with current scientific agreembe
and correlates well with their stated and measatgides. However, the match between the
responders’ future state projections and the obtsreed via the numerical model (using as input the
parameters chosen by the responders) was poorafpésars to be due to two factdtsFirst, while

the choice of the model input parameters (desaitiie current system state) correlates well wigh th
responders’ political ideologies and attitudes talgghe environment and the economy, the
responders’ future projections correlate with tlasipirations and fears. Two different cognitive
processes seem to be at plajormulatingvs evaluatinga mental model, which may prevent
establishing a coherent link between model assamgtind conclusions. Second, many responders
failed to account for the feedbacks inherent ingleposed model, which is in line with the well-
known impact of poor appreciation of system dynanic decision makin$®°°"#*%° These results
suggest that decision makers (including the gemenalic) would be able to parameterise simple
numerical models in a manner which is both meanirgyid consistent with their mental models.
These models may then help them overcome knownittagdifficulty by bridging the gaps between
assumptions and expectations and by helping theessisig the impact of dynamical processes on the
likelihood of specific policies’ achieving theirased goals.

This discussion highlights a role for a numericaldel which is rarely discussed within a CSS
framework: not only can a model help understanttegfunctioning of a complex system, but also it
can provide an insight into the user’s cognitivatsigies, biases, assumptions, beliefs and agpisati
which in turns may affect the functioning of thes®m via the impact these insights have on thésuser
actions.

5 Modelling, emergence and causation

We started by analysing the role of a model in sufopg decision making and this led us to
discussing the role of the model as providing &igint into cognitive aspects of human decision
making. Here we discuss whether these two rolebedramed within a common understanding of
the relation between mental and numerical models.



Usually, numerical and mental models are understsaalternative representation of a natural
process. Modellers in particular often see theidet®as virtual laboratories, miniature versionthef
real world, in which experiments can be more easilyied out. The reliability of a model is then
discussed in relation to the match between modediedits and observations (Figure 3a). This view
leads some authors (and many users) to sceptitient the ability of computer models to represent
and predict the behaviour of highly complex syst&ii3

However, a numerical model necessarily needs tpnate from the modeller's understanding of the
modelled process, that is from a mental model. $hggests that the numerical model can also be
seen as a formal implementation of the modelleestal model. This is the view according to which
Nature does not solve differential equations, bath@maticians do. A model implementing a
numerical solution to a differential equation isglsimulating the action of a mathematician, not of
Nature (Figure 3b).

According to this view, it is natural to usemamericalmodel to simulate or verify the conclusions of a
mentalmodel. Rather than underscoring the inadequaeymfmerical model in simulating reality,

this view highlights the benefits inherent in camgyout a simulation via a computer rather than via
our cognitive abilities: fast computation, check donsistency, circumvention of known human
fallacies, explicit formalization of assumptiongdambiased presentation of the results. In the
philosophy of science, this view has been defemyelaul Humphrey¥° who argued that
computational models are best understood as egtenef our native cognitive capacities.

Within an emergence framework, this leads us ttyaeahe interaction of a computer model with
reality, the mental model it originates from and thodifications to the mental model it may suggest.
The CSS tradition provides a number of definitiohthe concept of emergence. Here we focus on
four: pattern formation, efficiency of predictidnirinsic emergence and causal emergénce

Pattern formation captures the most intuitive vidvemergence: the interaction of low level entities
leading to symmetry breaking, generates a coorelipahaviour which is expressed via patterns which
are novel and identifiable as such by an exterbs¢rver. Given that a system can be viewed and
studied at different levels, and that multiple eliéfint patterns will likely appear at different lksvat is
natural to ask at what level and on what pattetmsanalysis should focus. A reasonable answer in
provided by the concept of efficiency of emergeritee level at which it is easier or more effici¢at
construct a workable modéef®. At this level, the observed patterns providevit simpler or fewer
structures on which to focus the analysis of therall system.

The two previous definitions apply to an observgemal to the system. Intrinsic emergence refers t
features which are important within the system dayferring additional functionality to the system
itself. These emergent features may support globaidination-computation-behavioun the case

of stock market pricing, for example, agents maketlocal economic decisions and would benefit
from having information about other agents’ behawidf they identify an emergent feature which
provides such information, then they can use itlieir own decision making. Naturally, the same
feature can then be employed by all other agetmgs This emergent feature can act as an avenue for
global information processing and coordinated behayClearly, the agents’ behaviour influences
the emergent feature, but now this also affectbdt@viour of the agents by determining their feitur
actions. Self-referentiality becomes a fundamentgledient for complex dynamics and intrinsic
emergence.

With causal emergence we define the arising otsiras on which we can exert direct control
without manipulating, nor concerning ourselves witte lower level constituentd As an example,
actions which manipulate stock market pricing (likierest rate changes, shared beliefs, expecsation
of booms and busts or fraudulent information) waafféct the agents’ understanding of the system
and thus their behaviour, effectively carrying aatintervention on the real market. The emphasis
here is not on who holds the causal power (who pudaies the stock market, possibly from outside
the system), rather on the avenue used for cauteaéntion. The identification of a structure atde



influence the majority of the agents provides ditieht instrument for intervention on the overall
system.

These definitions of emergence find an analogubdrdynamics of the interaction between reality,
mental models and computer models. They also diéeending on the nature of the process we
model. Figure 4a shows the hypothetical use ofnaptber model to understand planetary dynamics.
The detection of regularities in such dynamicsvedlais to identify patterns with high efficiency of
prediction. We can exploit these regularities ia development of mental models and then formalise
these mental models in the form of numerical maodeiese numerical models may in turn help
further refine our mental models and possibly aftes behaviour. However, because we are unable
(at least with current technology) to interveng@lianetary dynamics, developments in mental and
computer models do not provide causal power osystem under analysis.

Figure 4b shows the use of our ecological modehiterstand a hypothetical ecological system.
Again, the computer model codifies our understagdis represented by the mental model. The
mental model however may be so complex that vemyifelividuals are able to reason about it, let
alone being able to infer its dynamics. The nunameodel then becomes an effective way to
communicate such understanding. When different migaleroutines/modules are provided by
different researchers, combining them into a singimerical model becomes an effective avenue for
communication among researchers. The numerical htioele represents the curresttared
understanding of the system functioning and cas bauseen as an intrinsic emergent feature in the
process which leads a community of individual taclkea common understanding of a system of
interest.

Finally, Figure 4c shows the use of our ecologisatel for decision making. The same analysis as
discussed for the planetary dynamics applies. Hewaww our understanding of the problem, as
guided by the interaction between mental and nuwrakemodels, may lead us to acting on the
ecological system. The numerical model now provaleavenue for causation: by manipulating the
model we could change our system understandingshwthiturns can lead to different decision-
making and thus different interventions on the-teatld system. This is the very role that computer
model is designed to have in supporting decisiokimga

6 Modelling the model’'s emergence properties

In a number of previous workd?*'%1%\e have argued that the arising of genuinely hoaisal

emergent properties cannot be modelled within alpurumerical framework. A simpler task is to
model the impact of these properties once theynaentified in a system. If* we describe one such
attempt. Agents need to make decisions on an asti@re characterised by two cognitive features.
One cognitive feature defines their need for caesisy’®. Agents in high need for consistency tend
to give a similar answer when facing the same datisroblem. As a result, once a decision is made,
the probability of the agent making the same denisi the future increases.

In order to make a decision, an agent needs aseqagion (a mental model) of the issue. The agents
second cognitive feature (individualism vs confasmy refers to preferences for different mental
models. Very individualist agents may develop tlogn representation, while conformist agents may
be more willing to adopt a representation shardH thieir social peers (we call these ‘socially agre
mental models’}®,

Referring to the discussion in the previous sectocrucial question is what defines a sociallyeadr
mental model. I1°® we define this as the set of views which are shareong all agents which
identify themselves with that social group (notice self-referentiality implied in the definition).
Numerically, this is achieved by simply clusteramgents according to their views and taking thetet
cluster centres as socially agreed mental models.



The self-referentiality in the definition of thecsally agreed mental models leads naturally to @ tw
way dynamics between two levels of analysis: thellef the individual agents’ decision making and
the level of the socially agreed mental modelsaigh agent’s decision is affected by its own cogmit
style (individualist vs conformist and need for si@tency) as well as by the socially agreed mental
models and ii) the socially agreed mental modefedd on the agents’ decisions, which, via their
need for consistency, influences their currentfatare views.

Numerical analysis of this dynamics is discussedimwo features of these results are particularly
relevant to this discussion. First, socially agrerehtal models are stable features of the distabut

of the agents’ views of the problem. They quickbygpise the agents’ views into a number of clusters
which are stable in the sense that, once theyoangef, a re-initialisation of the agents’ opiniattes
not change the socially agreed mental models.isnsinse, the socially agreed mental models can be
seen as intrinsic emergent structures, providirmgeginformation on the distribution of beliefle
community with no need for communication betweearag, Second, by externally manipulating one
of the socially agreed mental models we can affecbverall dynamics of the system. The
intervention leads to a cascade: the agents belgrngithe externally manipulated socially agreed
mental model are affected and so are the otheitggehich in turns affects their own socially agtee
mental models. As a result, the socially agreedtatemodels provide an avenue for causal
intervention and thus display causally emergenperites.

7 Summary and Discussion

The previous discussion lays at the intersectiahafe well established fields of research and
attempts to integrate and complement them. Fillsirge body of work in the social sciences, social
cognition, political sciences and network theorg facussed on how ideas, norms and memes spread
among communities and how they can affect theiabielur. Second, the Complex System Science
community has placed a considerable effort in modpémergent phenomena. In principle, a model
capable of integrating mental and computer modgtauhics into the modelling process itself and
capable of adapting to the emergent propertieggrisom this dynamics, could encompass the
overall framework we describe in this papewneéky simple version of such an attempt is described in
Section 6 . When it comes to much more complexgs®es, we are sceptical that the full complexity
of genuinely novel, causal emergent propertiesoeamodelled within a purely numerical framework
2324101102 Eyen if this was possible, such a model wouldigtiy a role equivalent to the one of the
ecological model described in Figure 1. This isc@l) besides science-fictional views of networked
computer models completely by-passing human cosaand interaction, such a model would still
interact with humans, who could analyse the mod&dame, say, and thus change and adapt their
behaviour in response. As long as human-decisidinmas at the core of human action, the
framework described in Figure 1 cannot be repldigea pure numerical computation.

Third, in the last few decades, the explosion forimation and Communication Technologies (ICT)
has had a dramatic impact on our lives and thewagommunicate, we carry out our science and we
interact with the world. It is likely that ICT calpitities will continue expanding. This leads to
expectations for further developments, ranging fepaculations about the occurrence of singularities
10619841 |ess abrupt trends in communication capatslitértual reality, ‘big data’ processing and
distributed autonomous agents. This is likely tovjle more information, faster communication,
further scientific knowledge and more and bettetstdor real world intervention. As discussedh

this can help, but not necessarily qualitativelpiove, complex decision making and the management
of human, economic and natural resources. Inquéati, it is unlikely that these developments will
affect the cognitive limitations and fallacies wisadissed in Section 3, and the impact they caa hav
on decision making.



In the previous sections we have sin how computer models can help understanding, dex
making, communications between scientists and ecieakers anthe detectin of avenues for
causal interventionof course, rore traditional ITC toolslso facilitate these processes. Anyone
use online resources or fast communication to B#ekmation which can help understandin
problem or making a decision. This understandingtban be shared with others. Social m«
facilitate the generatioof novel ideas, concepts and understanding. $®ople use social media
help their own decision makinghese processese also an avenue for shared decision making
causal implications, since they caffect and coordinate human action. In dpso, they alsdisplay
their intrinsic emergent properti Our main claim, however, is that titeraction betwee
computational and mental moc extends the potential for futut€T developmen. It provides a
vision in which the emphasis is on huncognitive abilities as much as on tt@mputational tools

We describe this vision with an examgln a now popular experiment, Sternfashowed that a lack
of understanding of the relation between, emissions and sequestration can lead even welb&sti
people to potentially supporting policies whichrai matching their preferences. Similar conclus
are supportely Moxnes and Says®2 This is one instance in which the logical falladiscussed il
Section Xan have considerable undesired-world implications. In principle, a person at risk
falling into this fallacy could seek informationdannderstanding online, from peers or via sc
media. However, in order to do so, this personail need to be aware of this problem, ii) wa
need to be able to find information related to gcific question or iii) would need to be able
abstract out the genenaloblem (in this case stock flows and accumulatitinyl a solution to th
general problem and then apply that solution tepecificinstance under analy (CGO,
accumulation). In contrastuovision would entail the possibiliof quickly develojing a simple
model of the problem or import this model fronthe internet (possibly provided by the vi

proponents or opponents of the policy) and use maitel to better understand the proble
implications.

Our discussion suggedtsat computation models are unigue among compuiatiools in the sens
that they can i) encapsulataderstandin, ii) which can be shared, iii) Isss subjected tlogical
fallacies and iv) can help humans become awatheir own cognitive processe$Vhile it is commor
to think of ICT as delivering informatic knowledge and capabilities, thagalysis focuses ¢
delivering shared understandiag wel as insights into cognitiverocesses at both an individual ¢

social level; in other wordspgnitive sel-awareness. The dim, or utopia, is that this may leac
better shred, complex decision makir
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Figure Levels of analysis as traditionally employed in @r System Science highlight
interaction of processes at different resolutionfse. Starting from our ecological model (colou

2 Obviously, models can be developed to deceivesbean discisive arguments. We refer **° for a

masterful description of how models, more thanulisi®e arguments, can be open to transparent asalyd
verification.



layer), lower levels of analysis pertain to the mlddner functiorng. Similarly, higher levels «
analysis refer to model use.
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Figure 2 Alternative understanding of uncertainty. Fomadeller/physical scientist, there exists
external ‘reality’ we aim to describe. Perfect kredge of tFs reality is unachievable and represe
an abstract goal. Uncertainty is then understoodheesgap between our current knowledge and
ideal perfect knowledge (a). Within a cogni-social context, reality is the result of how hum
understand, reqesent, communicate and come to agree on a ceptaicess. Here uncertaints
understood as the differenbetweeralternativeviews of reality (b). While on the left additiot
information can reduce uncertainty, on the righistis not necessarily sbecause information itself
processed in terms of the cogni-social context. While on the left model improvenmeay reduce
uncertainty, on the right a better understandingezlity can be achieved only via multiple alteimai
models.

Figure 3 Alternative views of the relation between realiyental models and computer models.
Mental models and computer models are alternatgeasentation of reality. (b) Computer moc
are a formalisation of mental models, 'ch represent our understanding of rea
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Figure 4.Different types of emergence in the interactiomieeh reality, computer models and me
models. Efficiency of prediction (a), intrinsic exgence (b) and causal emergenc).
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