
A Local Linear Embedding Module
For Evolutionary Computation Optimization

Fabio Boschetti

CSIRO, Australia

Journal of Heuristics, in print

Corresponding author: Fabio Boschetti
Research Scientist - CSIRO, Marine and Atmospheric Research/

Tel ++ 61 8 9333 6563 Fax ++ 61 8 9333 6555
Postal address: CSIRO CMAR, Private Bag 5, Wembley WA, 6913

Fabio.Boschetti@csiro.au

Abstract

A Local Linear Embedding (LLE) module enhances the performance of two Evolutionary
Computation (EC) algorithms employed as search tools in global optimization problems.
The LLE employs the stochastic sampling of the data space inherent in Evolutionary
Computation in order to reconstruct an approximate mapping from the data space back
into the parameter space. This allows to map the target data vector directly into the
parameter space in order to obtain a rough estimate of the global optimum, which is then
added to the EC generation. This process is iterated and considerably improves the EC
convergence. Thirteen standard test functions and two real-world optimization problems
serve to benchmark the performance of the method. In most of our tests, optimization
aided by the LLE mapping outperforms standard implementations of a genetic algorithm
and a particle swarm optimization. The number and ranges of functions we tested suggest
that the proposed algorithm can be considered as a valid alternative to traditional EC tools
in more general applications. The performance improvement in the early stage of the
convergence also suggests that this hybrid implementation could be successful as an
initial global search to select candidates for subsequent local optimization.

Key Words: Evolutionary Computation, Locally Linear Embedding, Optimization.

Evolutionary Computation (EC) is often used as global search method in real world
optimization problems. This is due to the fact that many real world optimization problems
are nonlinear and result in multimodal objective functions. In such applications, local
optimization methods, (e.g., matrix inversion, steepest descent, conjugate gradients)
which are prone to trapping in local minima, have limited success.

Given some (usually measured) target data, an optimization problem seeks to reconstruct
the unknown parameters that, via the use of an appropriate function, can generate a good
approximation to the target data. This function (called a ‘forward model’) is expected to
reliably mimic the process generating the data. Thus, the forward model represents a
mapping between the problem’s parameter space and the data space. Any optimization
algorithm tries to find the unknown parameters (the ‘solution’ to the optimization
problem) via a trial and error sampling of the parameter space, through repeated use of
the forward model function. This is required because, in most real-world problems, a
direct mapping between data space and parameter space is not available (see Figure 1).

Figure 1. Sketch describing the general concept behind any optimization problem. A
function directly mapping the measured data to the optimal solution does not exist.
Consequently, the parameter space is searched by trial and error, iterating on a function
that maps different parameter combinations into the data space.

The large dimensionality involved in many real world problems can make such trial and
error search computationally very expensive. In this paper we propose a hybrid technique,
which works by attempting, at each EC generation, to reconstruct an approximation of the
direct mapping between data space and parameter space. It achieves this by using the
Local Linear Embedding technique. The approach uses the stochastic sampling of the
parameter space, inherent in an EC process, in order to approximate, and progressively
refine, such a mapping. The rationale is that, by using such approximate mapping, at each
EC generation, we can map the ‘measured data’ directly back into the parameter space,

whereby recovering good approximation to the global solution, which is then inserted into
the EC population. Our results suggest that this approach can considerably shorten the
length of the trial and error process.

In general, the data and parameter spaces of an optimization problem do not necessarily
have the same dimensionality. Accordingly, for the approach to be of general
applicability, any mapping between the two spaces has to account for such potential
difference. Within the machine learning and image processing communities, a number of
recently developed algorithms perform approximate mappings between spaces of
potentially different dimensionality (Tenenbaum et al., 2000, Balasubramanian et al.,
2002, Roweis and Saul, 2000, Saul and Roweis, 2000, Kouropteva et al., 2002, Donoho
and Grimes, 2003). Unlike traditional techniques, such as principal component analysis
(PCA) (Jolliffe, 1986) or multi-dimensional scaling (MDS) (Cox and Cox, 1994), these
methods assume only a locally linear (rather than globally linear) approximation between
data points. Local linear embedding (LLE) is one such technique that has the desirable
property of fast computation, a non-iterative scheme, and a guarantee of optimal
convergence (Roweis and Saul, 2000, Saul and Roweis, 2000). LLE recovers satisfactory
mappings between spaces of potentially different dimensionality in several real-world,
non-linear problems (Kouropteva et al., 2002). In this work, a similar idea is used to
model an approximate mapping between data space and parameter space in optimization
problems. The aim is to map the ‘measured data’ back into parameter space by using local
information, obtained via the stochastic sampling of the parameter space by evolutionary
algorithms, such as a genetic algorithm or a particle swarm optimization. Such a mapping
is expected to approximate the location of the ‘optimal’ solution in the parameter space.
The mapping improves along with the convergence of the evolutionary algorithm.

We tested the proposed algorithm on a large number of standard benchmark problems and
on two real-world problems. The test function set includes very different optimization
problems, of varying difficulty and of dimensionality ranging from 11 to 200. The
consistent positive results are extremely encouraging and suggest that the LLE module
can be improve the performance on EC search in more general applications.

Problem Formulation

Let’s assume we have a set of N observed measurements NiX i

measured ...1, =
�

. These may be
physical measurements obtained from natural systems or some man made industrial
process. Let’s suppose we have a function F which models within a satisfactory
approximation the physical/industrial process which generates the data. The output of F
depends on a number n of continuous parameters or initial conditions njx j ...1, =�

. Such
parameters are the unknown in our problem and the purpose of the optimization problem
is to recover them by using the measured data measuredX

�
 and the function F. In the rest of

the paper we call data space the space of the X
�

 and parameter space the space of the x
�

.

If we could determine an inverse function 1−F the problem would be simply solved by
applying

)(1
measuredsolution XFx

�� −= .

Unfortunately, as mentioned in the Introduction, most real world problems do not allow

1−F to be determined either analytically or algorithmically. Consequently, we are forced
to tackle the problem in terms of optmisation.

Let’s call)(xFX calculated

��
= the approximation to the observed measurements obtained by

applying the model F to a set of initial conditions x
�

. We aim to recover the unknown

solutionx
�

 by minimizing some measure of the misfit between calculatedX
�

 and measuredX
�

.

In many applications, a simple measure of such misfit is given by

k

Ni

i
calculated

i
measured

k

measured XXxFXxM �
=

−=−=
..1

)()(
���

 Eq. 1

where, usually, k takes the value 1 or 2. Other expressions of the misfit between calculatedX
�

and measuredX
�

 can also be found.

We employ EC to search for the global minimum of this optimization problem.
Additionally, at each generation of the EC run, we attempt to generate an approximation

1−
genF to 1−F (where gen is the current EC generation) which is valid only locally, in the

vicinity of measuredX
�

. Once such local approximation is obtained we calculate

)(1
measuredgengen XFx

�� −=

as our current best guess at the target solutionx

�
. This is then inserted into the EC population.

We attempt to reconstruct 1−F with the use of the Local Linear Embedding algorithm,
which we describe next.

Out approach can thus be briefly described as follow (more details are given below):

1) initiate a EC optimization search;
2) at each generation, choose the EC individuals which best fit the measured data;
3) on this individuals, calculate the current approximation 1−

genF to 1−F via the LLE
method;

4) calculate)(1
measuredgengen XFx

�� −= ;

5) add genx
�

 to the current EC population, if its misfit is better than that of the worst
individual in the current population;

6) repeat 2-5, until number of allowed function evaluation is reached.

We should note another significant difference between the approach we propose and
other common implementations of optimization algorithms. It lies in the use of the full

vector of measured data (measuredX
�

) and outputs of the forward model (calculatedX
�

), rather
than just a single scalar misfit value)(xM

�
. This difference is important, since a

significant amount of information about the search space is lost in collapsing the N-D
difference between the measured and calculated data into a single number.

The Local Linear Embedding Algorithm

The purpose of the LLE algorithm is to map points from one high-dimensional space into
another one, possibly of different dimensionality. The idea underlying the LLE approach
is very simple. LLE finds local representations of data by expressing each data point in
the original space as a linear combination of neighboring points. The weights of the linear
combination for each point become the local coordinate system for the representation.
LLE then maps points into a different space in such a way that the coordinates of each
point in the new space are a linear combination of the same neighboring points, with the
same weights as calculated in the original embedding (Figure 2). The result is a mapping
that respects local relations between neighboring points. Linearity is imposed only
locally, not on the global mapping. Consequently, LLE is expected to map curved
manifolds with an acceptable approximation.

Figure 2. Basic concept behind the LLE approach. In the original N-D embedding space, a
point (black, in the center) is expressed as a linear combination of neighboring points
(four, in this case). The weights W for the linear combination are stored. (b) The point is
mapped into an n-D target space (Nn ≠), in such a way that it can be expressed as a
linear combination of the same neighbors, with weights approximately equal to the
original W.

The following brief description of the LLE algorithm is supplemented by greater detail in
Roweis and Saul (2000), Saul and Roweis (2000), and Kouropteva et al. (2002).
Assuming m points embedded in the original N-D space, with coordinates X, LLE seeks

to map the points into an n-D target space, with coordinates x, where n and N may or may
not be equal. The algorithm can be divided into three steps:

1) In the original space, define the neighborhood of each point by calculating
distances between each pair of points. For a point i, the neighborhood

KjX j
i ..1, =
�

can then be defined either as the set of K closest points or as the set
of points within a certain radius. Standard implementations use the first option;

2) for each point, determine the weights that allow the point to be represented as a
linear combination of the K points in its neighborhood. This involves minimizing
the cost function:

2

...1 ...1
,)(� �

= =
−=

mi Kj

j
ijii XWXWC
��

 , Eq. 2

where mi ...1= represent the points in the original N-D space and Kj ...1= are the
neighboring points. The minimization of Eq. 2 is carried out under the constraint

�
=

=
Kj

jiW
...1

, 1 and 0, =jiW if iX is not a neighbor of jX . Eq. 3

The solution to Eq. 2, under the constraint of Eq. 3, is invariant to rotation,
rescaling, and translation (Saul and Rowins, 2003, pp. 124,131). This is an
important feature of the LLE algorithm. It means that the weights W do not depend
on the local frame of reference. They represent local relations between data points,
expressed in a frame of reference that is valid globally.

3) Map the m points into the target space with coordinates x. This is achieved by
minimizing the cost function

2

...1 ...1
,)(� �

= =

−=
mi Kj

j
ijii xWxxE
��

 , Eq. 4

(where the weights W obtained from Eqs. 2 and 3 are kept fixed, conserving the
local relation between neighboring points) under the constraints

�
=

=
ni

ix
...1

0
��

 , Eq. 5

which centers the x coordinates around zero and imposes translational invariance,
and

1
1

..1

=�
=

T
i

ni
i xx

m
��

 , Eq. 6

which imposes rotational invariance (see Saul and Rowins, 2003, p. 134). This
equates to finding some global coordinates x, over the target space, that conserve
the local relations between neighboring points in the original space. Each
individual point x

�
 is obtained only from local information within its

neighborhood. Importantly, the overlap between neighborhoods generates a global
reference. Solving Eq. 4 is the most delicate and computationally intensive part of
the LLE algorithm. Fortunately, it can be achieved without an iterative scheme.
Via the Rayleitz-Ritz theorem (Horn and Johnson, 1990), this reduces to finding n
eigenvectors of the matrix

 WWW- W- M kj,ik,ij,ji,ji,ji, �+∂=
K

 . Eq. 7

The n eigenvectors correspond to the n smallest non-zero eigenvalues of M (Saul
and Rowins, 2003, pp. 134-135).

The overall LLE algorithm only involves searching for closest points and performing
basic matrix manipulations, which can easily be implemented via standard computational
tools (MatLab, Numerical Recipes, LAPACK, Mathematica, etc.).

An example of LLE performance is given in Figure 3. In Figure 3a we see the ‘swiss roll’
data set, a standard test for dimensionality reduction problems (see, for example Roweis
and Saul, 2000). It represents a challenging test because no lower dimensional projection
allows to respect the topological relationships among the data point. The purpose of the
dimensionality reduction exercise in this case is to ‘unroll’ the data set and stretch it over
a 2D plane, in such a way that points close to one another along the ‘roll’ are also close
on the plane. The low dimensionality of the problem allows the result to be analyzed
visually. In Figure 3b we see the mapping performed by the LLE. As we can see with the
help of the gray-scale tones, the dark point are mapped close to one another, as do the
light color ones. An approximate ‘unrolling’ has been achieved. The stretch, which
results in uneven distribution along the y axis, is a known problem in LLE applications
(the analysis of which is beyond the scope of this work) and is mostly due to numerical
accuracy in the solution of Eq. 4. Nevertheless, the main topological relation between
data points is well respected. Notice also that the ‘swiss roll’ problem is a particularly
challenging one, and we expect structures in the data space of real world problems to be
distributed on ‘easier’ manifolds.

Figure 3. Example of LLE mapping of the ‘swiss roll’ data. Original data (a) and their
mapping into a 2D plane (b). Topological relation between points are respected, as can be
seen from the gray tones.

Evolutionary Computation Algorithms

Under the class of EC techniques we find several algorithms like Genetic Algorithms,
Evolution Strategies, Evolutionary Programming, Genetic Programming, Particle Swarm
Optimization, Memetics Algorithms. Each algorithm also comes in different variations,
different implementation and hybridizations.

In this work we test two algorithms: a real coded Genetic Algorithm (GA) and a Particle
Swarm Optimization (PSO) code. Both algorithms are described in this section. In the
rest of the document, they will be referred to as standard GA and standard PSO, while
their hybrid counterparts which include the LLE module will be referred to as GA-LLE
and PSO-LLE.

It is important to emphasize that the hybridization of such codes with the LLE does not
depend on any specific detail of the GA or PSO algorithms here presented. The LLE acts
on the sampling of the data space performed by the EC algorithms and produces its
mapping into the parameters space before the next EC generation. In other words, the

LLE mapping does not interfere with the intergeneration functioning of the EC
algorithms. According, its use can be easily extended to other EC strategies not covered
in this work.

Genetic Algorithms. GAs work by mimicking biological evolution. Their rationale is
that biological species solve very complex non linear problems in order to adapt to their
environment and that a combination of selection, reproduction and mutation can also be
successful in solving numerical problems. The real-coded GA used below has been
extensively applied to a number of high-dimensional, highly non-linear geological,
geophysical, and geo-mechanical problems (Wjins et al, 2003, Boschetti and Moresi
2001). For a full description of the algorithm we refer the reader to Boschetti et al.,
(1996). Here we summarise its main features:

1) the unknowns are coded directly into the chromosome as real numbers without
making use of binary or gray code representations;

2) we use linear normalization selection (Davis, 1991; Goldberg, 1989) as selection
operator. In linear normalization selection, an individual is ranked according to its
fitness, and then it is allowed to generate a number of offspring proportional to its
rank position. Using the rank position rather than the actual fitness values avoids
problems that occur when fitness values are very close to each other (in which
case no individual would be favored) or when an extremely fit individual is
present in the population (in such a case it would generate most of the offspring in
the next generation).

3) we use uniform crossover with a crossover rate of 0.9. We implemented uniform
crossover in the following way: two individuals are chosen randomly and a
random number n is selected; then n random gene locations are chosen and the
floating point values of the parameters at such locations are swapped between the
two individuals.

4) we use random mutation with a mutation rate of 0.01;
5) at each generation the best individual is copied in the next generation (elitism).

Particle Swarms Optimisation. The PSO algorithm works by mimicking the
coordinated behavior of insects in their search for food. Information about the promising
areas of the search space is communicated to all agents in the swarm by affecting the
movement of the agents and attracting them toward such locations. The algorithm can be
summarised as follows:

1) a population of agents is randomly initialized in the search space and is given a
random initial direction of motion;

2) at each generation an agent follows its current direction and samples the space at
the new location;

3) it is then assigned a new direction and speed of motion according to a) its current
direction, b) whether the currently sample point has better fitness than the
previous one and c) the current location of the agent with the best fitness value.

This coordinated behavior allows the swarm of agents to converge towards the areas in
the search space with best fitness while still exploring adjacent areas. More detailed

information about the specific code used can be found in Mouser and Dunn (2004), where
some applications to real world problems are also described.

LLE Module in EC optimisation

The concept underlying LLE can be used within an EC algorithm. The procedure is
identical for both the GA and PSO and is described with the help of Figure 4.

(a) (b)

(c) (d)
Figure 4. Sketch describing the LLE module. A black diamond marks the (unknown)
optimal solution. (a) A number of random points in the parameter space is chosen by the
EC. (b) These points are mapped into the data space via the forward model. (c) The
measured data vector is expressed in the data space as a linear combination of
neighboring points, and the weights W of the linear combination are stored. (d) An
approximation to the optimal solution is found in the parameter space by a linear
combination of neighboring points, using the same weights W.

It can be summarized in the following way:

1) run the EC for one generation (i.e., generate a number of individuals, and for each
individual, run the forward model; see Figure 4a). For each forward model run
(i.e., for each output from the EC population), store not only the (single-valued)
scalar misfit measure (M(x)), but also the full vector of data values output by the
forward model (calculatedX

�
), as shown in Figure 4b.

2) In the N-D data space, generate the neighborhood of measuredX
�

 within the set

of calculatedX
�

, i.e., look for the K closest points to measuredX
�

. Call this set neighX
�

.

3) Express measuredX
�

 as a linear combination of neighX
�

, by calculating the weights

measuredW via Eqs. 2 and 3 (Figure 4c).
4) In the n-D parameter space, calculate the approximation to the target solution

(global minimum) genx
�

 as a linear combination of the n-D points neighx
�

 (which

correspond to the N-D neighX
�

) via the weights measuredW , using Eqs. 4-6. The point

genx
�

 is the current mapping of the measured data back into the parameter space

(Figure 4d) (that is the current guess to the global optimum solutionx
�

).
5) Evaluate the single-valued scalar misfit for genx

�
. If the misfit is lower than the

misfit of the worst individual in the EC population, replace the worst individual
with genx

�
.

6) Repeat steps 1-5 until acceptable convergence.

The following remarks are worth noting:

1) In most test cases, the point found by the LLE module has a considerably smaller
misfit than that of the best individual in the EC population, which results in
considerably improved performance.

2) The standard LLE algorithm aims to reconstruct a local linear approximation in
the neighborhood of each point in the domain. Its use within an optimization
problem need only map one point (measuredX

�
) back into the parameter space.

Accordingly, Eqs. 2-6 need to be applied only to the matrix including the
neighborhood of the measured data measuredX

�
. The computational time involved in

the process is consequently negligible, compared to the overall optimization.
3) The performance of the LLE algorithm depends on the choice of the neighborhood

size K. A number of heuristic methods have been proposed to determine the
optimal choice (Kouropteva et al., 2002). The test cases below use an LLE
module with different choices of K (usually K=7,8,…15), and the K resulting in
the best misfit is chosen.

4) In relatively small dimensional problems is may happen that K>D. In this case the
local reconstruction weights are no longer uniquely defined. Regularization must
then be used to deal with the degeneracy. A simple regularizer is to favor weights
W that are uniformly distributed in magnitude in Eq. 2.

Test Cases

We performed a number of tests on 13 benchmark functions taken from two sets of
standard, publicly available test functions, and on two real-world applications, in order to
compare the performances of a standard GA and PSO versus the same algorithms
including the LLE module.

Standard Test Functions

The performance comparison uses 13 benchmark functions (Table 1). Six functions have
been selected among standard benchmark functions for EC studies. These are 1) De
Jong's function 2, 2) Rastrigin's function, 3) Schwefel's function, 4) Griewangk's, 5) Sum
of different power, and 6) Ackley's Path function. They correspond to functions 2 and 6-
10 of the “GEATbx: Genetic and Evolutionary Algorithm Toolbox” benchmark functions
(see http://www.geatbx.com/docu/index.html for a description and implementation of the
functions).

In order to use these functions for our tests, we need to slightly modify their
implementation. For each of these functions, the scalar misfit measure is a properly
designed combination of some higher dimension function of the inputs. This higher
dimension function corresponds to measuredX in our notation. The use of the LLE module
requires that we have knowledge of a set of ‘measured data’ (measuredX), not just a scalar
misfit function. For each function, we generated such set by evaluating the function on
the known global minimum and stored the output vector as ‘measured data’ for later use
in the tests.

The other 7 functions are taken from the Moré, Garbow, and Hillstrom (Moré et al, 1981)
collection of standard test functions for global optimization problems (for a description
and implementation of these functions
ftp://ftp.mathworks.com/pub/contrib/v4/optim/uncprobs/). The Moré, Garbow, and
Hillstrom functions have been chosen because they are high dimensional (the
dimensionality of some of them can be changed arbitrarily). This allowed us to test the
algorithms on problems ranging from 11 to 200 dimensions. For all of these functions, the
misfit measure matches Eq. 1 with k=2.

Table 1. Four test functions used in the performance comparison (Moré, Garbow, and
Hillstrom collection).

Test problem Moré, Garbow, and Hillstrom
function name

Param.
Space Dim.

Global
Minimum

Problem 1 Osborne Function n 2 11 0.0401
Problem 2 Discrete Boundary Value 200 0
Problem 3 Broyden Tridiagonal 100 0
Problem 4 Discrete Integral Equation 80 0
Problem 5 Trigonometric 150 0
Problem 6 Broyden banded function 80 0
Problem 7 Penalty 2 10 2.9604e-004

 GEATbx function name
Problem 8 Rosenbrock function (De

jong function 2)
10 0

Problem 9 Schwefel function 10 -4189.8
Problem 10 Rastrigin function 20 0
Problem 11 Griewangk function 10 0
Problem 12 Sum of different powers 30 0

Problem 13 Ackley's path function 20 0

In order to account for stochastic variability, and the effect of different population sizes
and convergence length, the comparison have been performed under the following
conditions:

1) we used three different population sizes of 30, 50, and 100 individuals;
2) for each test, 20 runs are performed, initialized with different random seeds, in

order to account for the stochastic variability inherent in EC. Performance are
evaluated in terms of averages and standard deviations of the 20 runs;

3) for each benchmark function, we compare the performance for the codes at two
stages along the convergence. First, after a number of function evaluations equal
to 20 times the population size, and then at the end of the run, that is, after a
number of function evaluations equal to 100 times the population size. We
account for function evaluations, rather than number of generations, in order to
compensate for the extra function evaluations of the individuals generated by the
LLE module;

4) on each scenario, we compare the standard GA versus the GA-LLE module and
the standard PNO versus the PNO-LLE module;

5) the statistical significance of the comparisons is evaluated via a standard Mann-
Whitney U-test.

Different population sizes are tested at different times during the EC convergence in order
to mimic a range of different scenarios going from: a) being constrained by a very high
computational cost for the function evaluation (which may force the use of a very small
population size and short run), to b) using a very fast function evaluation, and,
consequently, being able to afford a full EC convergence with large populations.

In Figure 5 we see some examples of converge curves (averaged over the 20 runs) for the
GA (dashed lines) and GA-LLE (solid lines) with population size of 100. In most test
cases the GA-LLE clearly outperforms the standard GA. In case of benchmark functions
2, 3, 4, 5, 6 and 13 the different in performance is considerable since the very early
generations. In the other functions the difference is less noticeable and a numerical
analysis is required. The full results for all benchmark functions are given in Tables 2-7.
Here, for each benchmark function, we show the average results over 20 runs and the
statistical significance from the Mann-Whitney U-test, after a number of function
evaluations equal to 20 and 100 times the population size.

Figure 5. Example of convergence of the GA-LLE (solid lines) and standard GA (dashed
lines) for a population size of 100 for the 13 benchmark functions. All curves are
averaged over 20 runs.

Three main results are noticeable in the comparison (Tables 2 to 7):

1) In almost all tests, the EC with an LLE module outperforms the traditional EC (for
both GA and PNO) both in the early stage and at the end of the convergence; in
some cases, the difference in performance is considerable. The only exceptions
are a) in the early optimization of function 9 with the GA (while the GA-LLE
again performs better at the end of the convergence), b) function 8 for PNO
optimization, again for a population size of 30, at the end of the convergence;

2) although, in general, the PNO-LLE seems to perform better, the LLE module
improves the performance of both the GA and PSO in a comparable manner. In
other words, the improvement due to the LLE module does not appear to depend
on the chosen EC algorithm;

3) in the vast majority of tests, the Mann-Whitney U-test show significant difference
between the convergence values obtained in the 20 runs of the EC-LLE versus the
standard EC, as measured by p<0.05 as for standard convention. (Recall that p
gives an estimate of the probability that the two groups of 20 convergence results
are taken from the same sample population. A very low (<0.05) value rejects such
null hypothesis, suggesting instead that the two groups belong to two different

sample populations.) Notice also that, among the cases in which the EC-LLE
actually performs more poorly that the standard LLE, only 5 of them are
statistically significant according to the Mann-Whitney U-test;

4) both GA-LLE and PNO-LLE show good performance improvement in the early
stages of the convergence. This may suggest that the LLE module is beneficial in
short EC runs, in order to locate areas in the parameter space that are deserving of
a more focused, local search.

Table 2. Comparison between standard GA and a GA-LLE for a population size of 30
individuals. For each benchmark function, we include the average misfit calculated over
20 runs, as well as the UT-Test significance measure p. In all cases, results are presented
after a number of evaluation equal to 20 times the population size and 100 time the
population size.

GA Population size = 30
Fun. Eval = 20*pop. Size Fun. Eval = 100*pop. Size

GA-LLE GA T-test P GA-LLE GA T-test P
Function 1 2.47 5.53 1.6e-3 0.62 1.16 5.6e-4
Function 2 192.5 5140.1 1.5e-21 124.4 4000.53 6.29e-26
Function 3 450.5 1.79e4 1.2e-19 187.0 1.09e4 1.50e-19
Function 4 14.27 311.4 2.1e-23 6.77 204.50 7.99e-22
Function 5 5.10e6 5.62e6 5.0e-3 3.97e6 4.06e6 0.51
Function 6 1116.8 8.8e5 2.5e-18 317.7 3.77e5 1.86e-15
Function 7 20.03 175.1 2.2e-2 3.10e-4 0.14 0.028
Function 8 49.08 162.4 3.6e-5 6.99 34.19 2.42e-4
Function 9 -3125.1 -3385.2 5.8e-4 -4079.4 -4064.7 0.53

Function 10 77.71 118.26 2.90e-9 29.52 50.67 9.63e-8
Function 11 4.19 9.68 3.2e-5 0.99 1.55 6.36e-7
Function 12 2.3e-3 0.02 7.6e-5 9.34e-7 7.92e-4 2.11e-3
Function 13 13.41 15.90 3.46e-9 6.13 10.73 1.44e-13

Table 3. Comparison between standard GA and a GA-LLE for a population size of 50
individuals. For each benchmark function, we include the average misfit calculated over
20 runs, as well as the UT-Test significance measure p. In all cases, results are presented
after a number of evaluation equal to 20 times the population size and 100 time the
population size.

 GA Population size = 50
Fun. Eval = 30*pop. Size Fun. Eval = 100*pop. Size

GA-LLE GA T-test P GA-LLE GA T-test P
Function 1 2.17 3.85 0.017 0.47 0.74 1.9e-3
Function 2 168.1 5046.4 1.22e-24 120.6 3901.3 1.57e-23
Function 3 370.5 1.60e4 2.79e-19 167.8 1.01e4 3.85e-18
Function 4 13.00 292.7 2.97e-22 6.47 190.3 4.82e-20
Function 5 4.88e6 5.35e6 5.13e-3 2.97e6 3.95e6 2.89e-8
Function 6 729.4 7.71e5 4.91e-16 275.46 3.49e5 2.21e-15
Function 7 9.58 56.47 9.95e-5 3.02e-4 0.027 8.89e-5

Function 8 42.26 118.7 1.85e-6 9.16 24.31 8.6e-3
Function 9 -3444.2 -3646.7 1.1e-3 -4170.0 -4113.2 6.85e-6

Function 10 72.50 94.91 1.34e-4 23.97 41.18 4.94e-7
Function 11 3.45 8.55 1.06e-6 1.02 1.43 5.61e-8
Function 12 2.03e-3 0.012 2.24e-6 2.95e-6 7.7e-4 1.05e-5
Function 13 12.57 15.57 1.85e-9 5.55 10.45 6.66e-20

Table 4. Comparison between standard GA and a GA-LLE for a population size of 100
individuals. For each benchmark function, we include the average misfit calculated over
20 runs, as well as the UT-Test significance measure p. In all cases, results are presented
after a number of evaluation equal to 20 times the population size and 100 time the
population size.

GA Population size = 100
Fun. Eval = 30*pop. Size Fun. Eval = 100*pop. Size

GA-LLE GA T-test P GA-LLE GA T-test P
Function 1 1.28 2.45 8.73e-5 0.48 0.56 0.10
Function 2 160.04 5017.2 2.40e-23 114.26 4015.8 1.35e-25
Function 3 315.0 1.53e4 1.89e-19 149.9 9551.8 2.38e-19
Function 4 10.76 276.8 4.14e-26 6.47 189.25 1.52e-23
Function 5 3.84e6 5.18e6 5.52e-8 2.21e6 3.80e6 2.21e-18
Function 6 589.6 7.21e5 1.19e-17 226.5 3.37e5 1.25e-15
Function 7 14.19 39.98 0.021 3.03e-4 1.19e-2 2.68e-5
Function 8 33.91 85.81 7.72e-7 6.42 10.59 5.12e-6
Function 9 -3733.1 -3802.1 0.12 -4189.1 -4153.2 2.09e-9

Function 10 66.72 86.56 1.25e-5 22.63 31.83 1.24e-4
Function 11 3.01 5.11 1.07e-4 0.91 1.23 3.93e-8
Function 12 4.8e-4 8.01e-3 4.04e-6 6.09e-7 4.99e-4 2.13e-5
Function 13 11.19 14.75 2.3e-10 5.53 9.97 2.24e-7

Table 5. Comparison between standard PNO and a PNO-LLE for a population size of 30
individuals. For each benchmark function, we include the average misfit calculated over
20 runs, as well as the UT-Test significance measure p. In all cases, results are presented
after a number of evaluation equal to 20 times the population size and 100 time the
population size.

PNO Population size = 30
Fun. Eval = 30*pop. Size Fun. Eval = 100*pop. Size

PNO-LLE PNO T-test P PNO-LLE PNO T-test P
Function 1 2.65 2.84 0.82 0.68 1.03 1.3e-2
Function 2 100.5 1290.8 3.01e-16 98.04 1070.1 1.13e-16
Function 3 109.5 1829.0 4.47e-14 98.12 1272.5 5.90e-15
Function 4 6.20 74.30 2.80e-17 5.90 58.91 1.82e-14
Function 5 1.51e6 1.69e6 0.31 1.12e6 1.34e6 0.10

Function 6 207.3 2.98e5 2.32e-9 159.6 1.58e5 1.05e-9
Function 7 0.18 4.44 0.031 3.01e-4 3.87e-4 0.16
Function 8 14.54 23.22 0.09 7.73 7.62 0.83
Function 9 -2240.8 -2186.6 0.59 -2557.2 -2374.2 0.11

Function 10 112.42 160.23 2.58e-6 83.96 126.66 1.44e-7
Function 11 1.50 2.03 2.93e-3 0.25 0.52 5.31e-3
Function 12 1.23e-5 3.51e-4 4.02e-3 3.01e-7 1.62e-5 8.98e-5
Function 13 5.25 11.43 1.54e-14 3.23 9.56 2.32e-12

Table 6. Comparison between standard PNO and a PNO-LLE for a population size of 50
individuals. For each benchmark function, we include the average misfit calculated over
20 runs, as well as the UT-Test significance measure p. In all cases, results are presented
after a number of evaluation equal to 20 times the population size and 100 time the
population size.

PNO Population size = 50

Fun. Eval = 30*pop. Size Fun. Eval = 100*pop. Size

PNO-LLE PNO T-test P PNO-LLE PNO T-test P
Function 1 1.46 2.73 5.80e-2 0.64 1.11 0.002.18e-3
Function 2 51.88 1065.1 3.77e-17 45.91 833.1 4.63e-16
Function 3 76.52 1156.5 8.86e-13 58.42 700.1 1.70e-11
Function 4 2.35 64.23 2.16e-16 1.79 46.25 3.49e-14
Function 5 7.57e5 1.25e6 4.15e-6 4.67e5 8.73e5 2.61e-7
Function 6 81.65 1.30e5 2.71e-10 53.46 5863.8 1.87e-9
Function 7 1.05e-3 0.64 0.11 3.02e-4 3.04e-4 0.12
Function 8 8.87 16.38 1.47e-2 6.21 7.33 4.8e-2
Function 9 -2459.1 -2396.4 0.57 -2602.1 -2485.0 0.30

Function 10 100.94 143.9 7.17e-7 81.66 109.18 4.67e-4
Function 11 1.20 1.49 3.33e-5 0.21 0.33 3.87e-2
Function 12 4.87e-6 1.23e-4 4.01e-4 5.57e-8 3.87e-6 5.73e-4
Function 13 4.27 9.00 1.5e-12 2.61 7.07 3.19e-12

Table 7. Comparison between standard PNO and a PNO-LLE for a population size of 100
individuals. For each benchmark function, we include the average misfit calculated over
20 runs, as well as the UT-Test significance measure p. In all cases, results are presented
after a number of evaluation equal to 20 times the population size and 100 time the
population size.

PNO Population size = 100
Fun. Eval = 30*pop. Size Fun. Eval = 100*pop. Size

PNO-LLE PNO T-test P PNO-LLE PNO T-test P
Function 1 0.95 2.15 9.02e-2 0.63 0.97 7.82e-3
Function 2 28.97 913.4 7.94e-20 18.03 630.0 2.38e-18
Function 3 52.40 878.7 2.27e-13 31.18 401.5 1.55e-11
Function 4 0.72 49.86 8.27e-17 0.15 30.68 6.46e-15
Function 5 4.47e5 1.07e6 2.02e-11 2.17e5 6.54e5 7.62e-12

Function 6 42.97 7028.1 8.97e-11 17.71 1759.5 1.18e-9
Function 7 4.05e-4 1.08e-2 0.19 3.00e-4 3.01-e4 0.14
Function 8 8.91 9.34 0.24 5.08 6.25 5.293-2
Function 9 -2646.2 -2386.8 1.67e-2 -2692.5 -2440.5 2.3e-2

Function 10 93.21 118.24 0.011 85.38 94.01 0.33
Function 11 1.07 1.22 3.95e-4 0.15 0.21 0.14
Function 12 1.72e-6 5.53e-5 7.55e-3 2.82e-8 7.10e-7 1.3e-9
Function 13 3.40 7.22 6.44e-17 1.61 4.77 1.23e-11

Real-World Problems

Two optimization problems taken from the mineral exploration industry serve as real-
world tests. The first problem is to recover the distribution of subsurface rock density
from measurements of the anomaly in the Earth’s gravitational field. A sketch of the
problem setting is given in Figure 6. A gravity anomaly profile is measured at 48 stations
along a survey line. The density distribution is modeled by assuming the presence of three
layers with a known average density, but each with an unknown deviation from the
average. These density deviations, as well as the depths of the layers at various locations,
are the variables to recover via optimization. The problem results in 60 parameters to
recover (60-D). This is a high-dimensional, but fairly simple, optimization problem
(Boschetti et al., 1997).

Figure 6. Sketch representation of the first real world optimization problem.
The purpose is to recover the distribution of subsurface rock density from measurements
of the anomaly in the Earth’s gravitational field. The dashed line represents a set of
gravity anomaly measurements. The unknowns are the density values of the underground
blocks and the local depths of the geological layers.

The second problem is to recover the seismic velocity of the subsurface (which also
relates to rock density) from measurements of the travel time of seismic waves, from a
number of sources, to several receivers located along a survey line on the Earth’s surface.
A sketch of the problem setting is given in Figure 7. The underground domain is modeled
by assigning values of seismic velocity to a 2-D vertical grid of 5x9 nodes, and by
interpolating bilinearly between grid nodes. The optimization must recover the seismic
velocity values at the 45 grid nodes (45-D). This is a very difficult optimization problem
because of the strongly non-linear effect of the seismic velocity at each node on the final
seismic travel times (Boschetti et al., 1996).

Figure 7. Sketch representation of the second real world optimization problem.
The purpose is to recover the distribution of subsurface rock seismic velocities from
measurements of the travel times of the seismic waves. The seismic waves are shot form
a source and the travel times are measured at a number of receivers (black dots) along the
earth surface.

The conclusions drawn from the test functions shown in the previous section seem to be
confirmed by the two real-world tests (Tables 8 and 9). The LLE module considerably
improves the performance of both the GA and PSO in all runs and all results are
statistically significant.

Table 8. Comparison between standard PNO and a PNO-LLE for a population size of 30,
50 and 100 individuals on the real world problems. For each function, we include the
average misfit calculated over 20 runs, as well as the UT-Test significance measure p. In
all cases, results are presented after a number of evaluation equal to 20 times the
population size and 100 time the population size.

PNO Population size = 30
Fun. Eval = 20*pop. Size Fun. Eval = 100*pop. Size

PNO-LLE PNO T-test P PNO-LLE PNO T-test P
Real World
Function 1

9.77e-3 2.93 3.33e-8 9.05e-4 0.29 1.27e-6

Real World 8086.4 29686.8 2.25e-10 7002.5 16765.1 3.96e-5

Function 2
PNO Population size = 50

Fun. Eval = 20*pop. Size Fun. Eval = 100*pop. Size

PNO-LLE PNO T-test P PNO-LLE PNO T-test P
Real World
Function 1

6.05e-3 1.68 2.83e-6 3.57e-4 0.21 2.52e-8

Real World
Function 2

7768.4 28177.6 6.62e-10 6341.3 15245.1 4.44e-9

PNO Population size = 100
Fun. Eval = 20*pop. Size Fun. Eval = 100*pop. Size

PNO-LLE PNO T-test P PNO-LLE PNO T-test P
Real World
Function 1

2.31e-3 0.90 8.30e-8 2.10e-4 0.10 1.83e-7

Real World
Function 2

6616.6 25145.2 3.22e-10 5521.5 13124.5 5.91e-9

Table 9. Comparison between standard GA and a GA-LLE for a population size of 30, 50
and 100 individuals on the real world problems. For each function, we include the
average misfit calculated over 20 runs, as well as the UT-Test significance measure p. In
all cases, results are presented after a number of evaluation equal to 20 times the
population size and 100 time the population size.

GA Population size = 30
Fun. Eval = 30*pop. Size Fun. Eval = 100*pop. Size

GA-LLE GA T-test P GA-LLE GA T-test P
Real World
Function 1

0.26 37.00 6.69e-11 0.11 15.52 1.16e-9

Real World
Function 2

9014.2 30777 9.14e-9 1520.3 8741.6 2.51e-10

 GA Population size = 50
Fun. Eval = 30*pop. Size Fun. Eval = 100*pop. Size

GA-LLE GA T-test P GA-LLE GA T-test P
Real World
Function 1

0.19 30.66 6.62e-10 0.07 13.30 1.37e-9

Real World
Function 2

5991.6 30199.3 2.91e-11 1490.1 8903.66 1.32e-9

GA Population size = 100
Fun. Eval = 30*pop. Size Fun. Eval = 100*pop. Size

GA-LLE GA T-test P GA-LLE GA T-test P
Real World
Function 1

0.19 39.13 3.34e-10 0.07 14.18 1.07e-10

Real World
Function 2

4126.3 28945.1 6.12e-10 1317.3 8365.4 5.15e-9

Discussion

Despite its fundamentally simple structure, an EC-LLE algorithm uses the stochastically
and progressively convergent sampling of the EC algorithm to produce an approximate
mapping between data space and parameter space. This is a conceptually significant
difference compared to traditional optimization approaches, which merely map the
parameter space into the data space. This is not the first time such an idea is presented in
the literature (Oldenburg and Ellis, 1991), but the simplicity of the algorithm, and its
closed-form solution, are particularly appealing.

Faced with the choice of using the LLE module, a practitioner may ask “Is it worthwhile
for me to implement and use the LLE module on my specific real-world problem?” Based
on this research, the answer is “yes”, or, at least, “there is little reason not to”.
Computationally, the only significant cost in using the LLE module is in the extra
forward modeling involved in evaluating the individuals it produces. The actual
computation in the LLE module involves only algebraic manipulation of small matrices,
and is comparable to the computation required in the internal running of a standard EC
algorithm. The worst-case scenario is that the LLE module does not find any good
individual. In that case, the EC would proceed as if the LLE had not been used (i.e., no
individual in the population is replaced), and the only extra cost is the function evaluation
of that individual. Since the number of K values is usually kept much smaller than the
population size, the additional cost is a small percentage of the standard EC cost. All tests
suggest that, in any event, such a scenario is quite unlikely.

Another concern may arise from interfering with the normal EC process by accelerating
the convergence too much, at the expense of adequately exploring the solution space.
Premature convergence in a local minimum may be the consequence. This also seems
unlikely while, as in the above implementation, a single individual produced by the LLE
module replaces a single (worst) individual in the population. Basically, the modification
in the EC population is comparable to standard ‘elitism’, which is a module now included
in most EC algorithms.

Most heuristic algorithms depend on a number of parameters that need to be
experimentally tuned. The LLE module, in its current implementation, depends on two
parameters: the range of K (its values and the number of Ks used), and the maximum
number of LLE individuals accepted at each generation. Currently, only one individual is
inserted into the EC population, if its misfit is better than that of the worst individual in
the population. This is a safe choice, since it carries minimal risk of causing premature
convergence. Inserting a larger number of individuals can possibly speed up convergence.

The choice of the optimal K is probably worth more attention, since it can reduce the
extra computational effort implied in the use of the LLE module (although, as described
above, this extra cost is quite small). Work within the LLE research community
(Kouropteva et al., 2002) has not provided any definitive algorithm. One option might be
to predict the calculated data (not the scalar misfit) by using the LLE weights, and to use
this prediction to guide the selection of K. Departures between predicted and actual
vector values may also indicate areas where local linearity is broken, and which may

consequently be worth exploring via the EC. This avenue of research will form part of
future investigations.

The approach has been tested on problems with continuous parameterizations, for which
LLE is best suited. We expect that extension to discrete optimization problems, with
relatively fine discretisation should work equally well. The use of the LLE module to
problems which are inherently discrete in nature, like coarsely discrete problems or
combinatorial optimizations, may not be straightforward. More research for these
applications is needed.

As a final note, it is reasonable to ask whether some non-linear alternatives can better
approximate the mapping than a locally linear method. The machine learning and image
processing community has recently been very active in the development of several
dimensionality reduction algorithms (e.g., Balasubramanian et al., 2002). The EC
community should follow this progress, because several of those tools can greatly benefit
optimization approaches as well.

Conclusions

A module based on the Local Linear Embedding (LLE) algorithm can be used to improve
the performance of two Evolutionary Computation (EC) algorithms. At each EC
generation, the module performs a locally linear mapping between the data space
(measured data) and the parameter space, thereby mapping a measured data vector into
the parameter space, and obtaining an approximate reconstruction of the unknown,
optimal solution. On a number of synthetic and real-world problems, optimizations
including the module consistently outperform a standard genetic algorithm and a standard
particle swarm optimization algorithm.

References

M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva and J. C. Langford.
The Isomap Algorithm and Topological Stability. Science, vol. 295(5552), 7a, 2002.

M. Belkin, P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data
Representation, Neural Computation, June 2003; 15 (6):1373-1396.

F.Boschetti, M. Dentith, R. List, Inversion of seismic refraction data using Genetic
Algorithms, 1996, Geophysics, 1715-1727.

F.Boschetti, M. Dentith, R. List, Inversion of gravity and magnetic data by Genetic
Algorithm, 1997, Geophysical Prospecting, 461-478

F. Boschetti and L. Moresi, 2001, "Interactive Inversion in Geosciences", Geophysics, 64,
1226-1235.

M. Brand, 2002, Charting a manifold. Neural Information Processing Systems 15
(NIPS'2002)

T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, London, 1994.

Davis, L., 1991, Handbook on genetic algorithms: Van Nostrand Reinhold.

D. L. Donoho and C. E. Grimes. Hessian eigenmaps: locally linear embedding techniques
for highdimensional data. Proceedings of the National Academy of Arts and Sciences,
100:5591–5596, 2003.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

Goldberg,D. E., 1989, Genetic algorithms in search, optimization, and
machine learning: Addison-Wesley Publ. Co., Inc.

Kouropteva O, Okun O, Hadid A, Soriano M, Marcos S & Pietikäinen M (2002) Beyond
Locally Linear Embedding Algorithm. Technical Report MVG-01-2002, University of
Oulu, Machine Vision Group, Information Processing Laboratory.

Moré, J.J., Garbow, B.S. and Hillstrom, K.E., Testing Unconstrained Optimization
Software, ACM Trans. Math. Software 7 (1981), 17-41.

Mouser C., and Dunn S., 2004, Comparing Genetic Algorithms and Particle Swarm
Optimisation for an Inverse Problem Exercise, The 12th Biennial Computational
Techniques and Applications Conference, Melbourne, Australia (submitted).

Oldenburg D.W., and Ellis R.G., 1991, Inversion of Geophysical Data Using an
Approximate Inverse Mapping, Geophysical Journal International, 105, 325-353

S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear
Embedding. Science, 290, 2323--2326, 2000.

L. Saul and S. Roweis. Think Globally, Fit Locally: Unsupervised Learning of Nonlinear
Manifolds. Technical Report MS CIS-02-18, University of Pennsylvania, 2002.

J.B. Tenenbaum, V. de Silva and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290, 2319--2323, 2000.

Yao X., Evolutionary Computation: Theory and Applications. World Scientific, 1999

Wijns, C., F. Boschetti and L. Moresi, "Inversion in Geology by Interactive Evolutionary
Computation", 2003, Journal of Structural Geology, 25(10), 1615-1621,
doi:10.1016/S0191-8141(03)00010-5.

